首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Discussions about social behavior are generally limited to fitness effects of interactions occurring between conspecifics. However, many fitness relevant interactions take place between individuals belonging to different species. Our detailed knowledge about the role of hormones in intraspecific interactions provides a starting point to investigate how far interspecific interactions are governed by the same physiological mechanisms. Here, we carried out standardized resident–intruder (sRI) tests in the laboratory to investigate the relationship between androgens and both intra- and interspecific aggression in a year-round territorial coral reef fish, the dusky gregory, Stegastes nigricans. This damselfish species fiercely defend cultivated algal crops, used as a food source, against a broad array of species, mainly food competitors, and thus represent an ideal model system for comparisons of intra-and interspecific territorial aggression. In a first experiment, resident S. nigricans showed elevated territorial aggression against intra- and interspecific intruders, yet neither elicited a significant increase in androgen levels. However, in a second experiment where we treated residents with flutamide, an androgen receptor blocker, males but not females showed decreased aggression, both towards intra- and interspecific intruders. Thus androgens appear to affect aggression in a broader territorial context where species identity of the intruder appears to play no role. This supports the idea that the same hormonal mechanism may be relevant in intra- and interspecific interactions. We further propose that in such a case, where physiological mechanisms of behavioral responses are found to be context dependent, interspecific territorial aggression should be considered a social behavior.  相似文献   

2.
It is well known that plasma androgens are rapidly released in response to aggressive or sexual stimuli in a broad array of vertebrates. However, experimental work on behavioral functions of rapid androgen elevation is rare. A combination of field-based behavioral experiments and lab-based neuroendocrinological approaches is beginning to show how steroid hormones rapidly regulate the expression of vocal communication signals in Gulf toadfish (Opsanus beta). Male toadfish emit multiharmonic "boatwhistles" and shorter-duration, broadband "grunts" during intraspecific communication. Neurophysiology experiments demonstrate that androgens and glucocorticoids rapidly modify vocal motor patterning in male toadfish. In this study, we simulated territorial intrusions (vocal "challenges") with acoustic playbacks to toadfish in the field, and observed simultaneous, rapid (within 5-20 min) changes in vocalizations and steroid hormones. Both plasma androgens and vocal activity increased following the presentation of pure tones that mimic the duration of natural boatwhistles (275 ms), while they remained unchanged following playbacks of tone stimuli that mimic the duration of grunts (75 ms) or the upper-range of boatwhistles (475 ms). Circulating glucocorticoids were elevated in calling vs. non-calling males but were unaffected by playback stimuli, suggesting a role in the energetics of vocalization. These results strongly suggest that one function of rapid androgen elevation in response to social challenge is to mediate similarly rapid changes in territorial vocal signaling. Given the conserved organization of neuroendocrine and vocal motor systems, rapid steroid action on vocalization mechanisms may be true of other vocal vertebrates as well, including birds and mammals.  相似文献   

3.
Social environment can affect the expression of sex-typical behavior in both males and females. Males of the African cichlid species Astatotilapia burtoni have long served as a model system to study the neural, endocrine, and molecular basis of socially plastic dominance behavior. Here we show that in all-female communities of A. burtoni, some individuals acquire a male-typical dominance phenotype, including aggressive territorial defense, distinctive color patterns, and courtship behavior. Furthermore, dominant females have higher levels of circulating androgens than either subordinate females or females in mixed-sex communities. These male-typical traits do not involve sex change, nor do the social phenotypes in all-female communities differ in relative ovarian size, suggesting that factors other than gonadal physiology underlie much of the observed variation. In contrast to the well-studied situation in males, dominant and subordinate females do not differ in the rate of somatic growth. Dominant females are not any more likely than subordinates to spawn with an introduced male, although they do so sooner. These results extend the well known extraordinary behavioral plasticity of A. burtoni to the females of this species and provide a foundation for uncovering the neural and molecular basis of social dominance behavior while controlling for factors such as sex, gonadal state and growth.  相似文献   

4.
Behavior of wild vertebrate individuals can vary in response to environmental or social factors. Such within-individual behavioral variation is often mediated by hormonal mechanisms. Hormones also serve as a basis for among-individual variations in behavior including animal personalities and the degree of responsiveness to environmental and social stimuli. How do relationships between hormones and behavioral traits evolve to produce such behavioral diversity within and among individuals? Answering questions about evolutionary processes generating among-individual variation requires characterizing how specific hormones are related to variation in specific behavioral traits, whether observed hormonal variation is related to individual fitness and, whether hormonal traits are consistent (repeatable) aspects of an individual's phenotype. With respect to within-individual variation, we need to improve our insight into the nature of the quantitative relationships between hormones and the traits they regulate, which in turn will determine how they may mediate behavioral plasticity of individuals. To address these questions, we review the actions of two steroid hormones, corticosterone and testosterone, in mediating changes in vertebrate behavior, focusing primarily on birds. In the first part, we concentrate on among-individual variation and present examples for how variation in corticosterone concentrations can relate to behaviors such as exploration of novel environments and parental care. We then review studies on correlations between corticosterone variation and fitness, and on the repeatability over time of corticosterone concentrations. At the end of this section, we suggest that further progress in our understanding of evolutionary patterns in the hormonal regulation of behavior may require, as one major tool, reaction norm approaches to characterize hormonal phenotypes as well as their responses to environments.In the second part, we discuss types of quantitative relationships between hormones and behavioral traits within individuals, using testosterone as an example. We review conceptual models for testosterone-behavior relationships and discuss the relevance of these models for within-individual plasticity in behavior. Next, we discuss approaches for testing the nature of quantitative relationships between testosterone and behavior, concluding that again reaction norm approaches might be a fruitful way forward.We propose that an integration of new tools, especially of reaction norm approaches into the field of behavioral endocrinology will allow us to make significant progress in our understanding of the mechanisms, the functional implications and the evolution of hormone–behavior relationships that mediate variation both within and among individuals. This knowledge will be crucial in light of already ongoing habitat alterations due to global change, as it will allow us to evaluate the mechanisms as well as the capacity of wild populations to adjust hormonally-mediated behaviors to altered environmental conditions.  相似文献   

5.
Gonadal hormones can produce striking behavioral and neural plasticity in adult organisms. For example, systemic administration of testosterone to adult female canaries induces the development of male-typical song behavior and results in a striking increase in the size of brain nuclei that are known to be involved with song control. The mechanism whereby androgens produce such neural plasticity is not known, although it has seemed likely that growth-promoting effects of androgens are due to a direct induction of protein synthesis in cells containing hormone receptors (following activation of specific genes by the hormone-receptor complex). In this experiment we have examined the trophic effect of testosterone in the song-control nucleus HVc (caudal nucleus of the ventral hyperstriatum), which has been shown to contain androgen-concentrating cells as well as neurons that are especially responsive to conspecific song. We report here that testosterone administration increases the volume of HVc in hearing adult female canaries only; testosterone-induced growth of HVc is greatly attenuated in birds that are deprived of auditory stimulation via deafening. Thus, testosterone treatment alone is not a sufficient stimulus for neural growth in HVc. This result suggests that testosterone does not stimulate growth solely via a direct action on hormone receptors in HVc, but rather that testosterone and sensory stimulation can act synergistically to produce structural plasticity in the adult brain.  相似文献   

6.
Across vertebrates, androgens are rapidly elevated within minutes in response to aggressive or reproductive stimuli, yet it is unclear what the causal relationship is between fast androgen elevation and the ongoing (minute-by-minute) expression of behavior. This study tested the hypothesis that rapid increases in plasma steroid levels induce similarly rapid increases in both vocal behavior and the neurophysiological output of a central pattern generator that governs vocal behavior. In Gulf toadfish (Opsanus beta), males call to attract females to their nesting sites, and both males and females vocalize in aggressive interactions. Previous field experiments with males showed that simulated territorial challenges produce rapid and concurrent elevations in ongoing calling behavior and circulating levels of the teleost-specific androgen 11-ketotestosterone (11kT), but not the glucocorticoid cortisol. The current field experiments showed that non-invasive (food) delivery of 11kT, but not cortisol, induced an elevation within 10 min in the ongoing calling behavior of males. Electrophysiological experiments revealed that intramuscular injections of either 11kT or cortisol, but neither testosterone nor 17-beta-estradiol, induced increases within 5 min in the output of the vocal pattern generator in males, whereas only cortisol had similarly fast effects in females. The field behavioral results support predictions generated by the challenge hypothesis and also parallel the 11kT-dependent modulation of the vocal pattern generator in males. The cortisol effect on the vocal pattern generator in both sexes predicts that glucocorticoids regulate vocalizations in non-advertisement contexts. Together, these experiments provide strong support for the hypothesis that surges in circulating steroid levels play a causal role in shaping rapid changes in social behavior (vocalizations) through non-genomic-like actions on neural (vocal motor) circuits that directly encode behavioral patterning.  相似文献   

7.
Social competence - the ability of animals to dynamically adjust their social behavior dependent on the current social context – is fundamental to the successful establishment and maintenance of social relationships in group-living species. The social opportunity paradigm, where animals rapidly ascend a social hierarchy following the removal of more dominant individuals, is a well-established approach for studying the neural and neuroendocrine mechanisms underlying socially competent behavior. In the current study, we demonstrate that this paradigm can be successfully adapted for studying socially competent behavior in laboratory mice. Replicating our previous reports, we show that male laboratory mice housed in a semi-natural environment form stable linear social hierarchies. Novel to the current study, we find that subdominant male mice immediately respond to the removal of the alpha male from a hierarchy by initiating a dramatic increase in aggressive behavior towards more subordinate individuals. Consequently, subdominants assume the role of the alpha male. Analysis of brain gene expression in individuals 1 h following social ascent indicates elevated gonadotropin-releasing hormone (GnRH) mRNA levels in the medial preoptic area (mPOA) of the hypothalamus compared to individuals that do not experience a social opportunity. Moreover, hormonal analyses indicate that subdominant individuals have increased circulating plasma testosterone levels compared to subordinate individuals. Our findings demonstrate that male mice are able to dynamically and rapidly adjust both behavior and neuroendocrine function in response to changes in social context. Further, we establish the social opportunity paradigm as an ethologically relevant approach for studying social competence and behavioral plasticity in mammals.  相似文献   

8.
突触可塑性是神经系统所具有的重要特征,也是神经系统实现其功能的重要保障。按照持续的时间划分,突触可塑性可分为短时程突触可塑性和长时程突触可塑性。短时程突触可塑性包括短时程增强和短时程压抑两种类型。与长时程突触可塑性不同,短时程突触可塑性的产生主要依赖于神经递质释放概率的变化,其往往决定神经回路的信息处理和反应模式,不仅直接参与了对输入信号的识别和处理,而且还可对长时程突触可塑性的表达产生重要影响。  相似文献   

9.
10.
Social experiences can profoundly shape social behavior and the underlying neural circuits. Across species, the formation of enduring social relationships is associated with both neural and behavioral changes. However, it remains unclear how longer‐term relationships between individuals influence brain and behavior. Here, we investigated how variation in social relationships relates to variation in female preferences for and neural responses to song in a pair‐bonding songbird. We assessed variation in the interactions between individuals in male‐female zebra finch pairs and found that female preferences for their mate's song were correlated with the degree of affiliation and amount of socially modulated singing, but not with the frequency of aggressive interactions. Moreover, variation in measures of pair quality and preference correlated with variation in the song‐induced expression of EGR1, an immediate early gene related to neural activity and plasticity, in brain regions important for auditory processing and social behavior. For example, females with weaker preferences for their mate's song had greater EGR1 expression in the nucleus Taeniae, the avian homologue of the mammalian medial amygdala, in response to playback of their mate's courtship song. Our data indicate that the quality of social interactions within pairs relates to variation in song preferences and neural responses to ethologically relevant stimuli and lend insight into neural circuits sensitive to social information. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1029–1040, 2016  相似文献   

11.
The Challenge Hypothesis postulates that male vertebrates can respond to social challenges, such as simulated territorial intrusions, by rapidly increasing their concentrations of plasma androgens, such as testosterone (T). This increase may facilitate the expression of aggressive behavior and lead to persistence of this behavior even after withdrawal of the challenge, thus potentially promoting territoriality and the probability of winning future challenges. The scope of the Challenge Hypothesis was tested by exposing free-ranging male Cassin's Sparrows, Peucaea cassinii, to conspecific song playback (SPB) at the beginning of the vernal nesting season. Exposure to SPB stimulated aggressive behavior but did not influence plasma T. Furthermore, plasma T did not correlate with the duration of exposure to SPB, and the behavioral response to SPB did not differ in males that were challenged a second time shortly after the first challenge. As birds were investigated at a stage of their reproductive cycle when plasma T is presumably seasonally high due to photostimulation, the lack of hormonal response to SPB may have been due to the hypothalamus-pituitary-gonadal axis secreting hormones at maximum rates. This was not the case, however, because administration of gonadotropin-releasing hormone I rapidly stimulated the secretion of luteinizing hormone (LH) and T, and treatment with ovine LH rapidly stimulated T secretion.  相似文献   

12.
For most people, their quality of life depends on their successful interdependence with others, which requires sophisticated social cognition, communication, and emotional bonds. Across the lifespan, new bonds must be forged and maintained, and conspecific menaces must be managed. The dynamic nature of the human social landscape suggests ongoing specific alterations in neural circuitry across several brain systems to subserve social behavior. To discover the biological mechanisms that contribute to normal social activities, animal models of social behavior have been developed. One valuable model system has been female rat sexual behavior, which is governed by cyclic variation of ovarian hormones. This behavior is modulated by the neuropeptide oxytocin (OT) through its actions in the hypothalamic ventromedial nucleus (VMH). The fluctuation of this behavior is associated with dendrite remodeling, like several other examples of behavioral plasticity. This review compares hormone-induced plasticity in the VMH with other examples of dendrite plasticity across the mammalian nervous system, namely the neurobehavioral paradigms of environmental enrichment, chronic stress, and incentive sensitization, which affect the neocortex, hippocampal formation, and ventral striatum, respectively. This comparison suggests that the effects of ovarian hormones on VMH neurons in rats, given the simple dendritic arbor and short time course for dendrite remodeling, provide a dual opportunity for mechanistic and functional studies that will shed light on i) the neural actions of OT that regulate social behavior and, ii) behaviorally relevant dendrite regulation in a variety of brain structures. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.  相似文献   

13.
14.
Social isolation is a major stressor which impacts the physiology, behaviour and health of individuals in gregarious species. However, depending on conditional and contextual factors, such as social status and group composition, social isolation may be perceived differently by different individuals or even by the same individuals at different times. Here we tested the effects of social status (territorial vs. non-territorial) and previous group composition (i.e. type of social group: mixed sex group with two territorial males, TT vs. mixed sex group with one territorial and one non-territorial male, TnT) on the hormonal response (androgens and cortisol) to social isolation in a cichlid fish (Oreochromis mossambicus). The different steroid hormones measured responded differentially to social isolation, and their response was modulated by social factors. Social isolation elicited a decrease of 11-keto formation only in territorial males, whereas non-territorial males present a non-significant trend for increasing KT levels. Testosterone did not respond to social isolation. Cortisol only increased in isolated individuals from TnT groups irrespective of social status (i.e. both in territorials and non-territorials). These results suggest that it is the perception of social isolation and not the objective structure of the situation that triggers the hormonal response to isolation.  相似文献   

15.
Testosterone plays an important role in territorial behavior of many male vertebrates and the Challenge Hypothesis has been suggested to explain differences in testosterone concentrations between males. For socially monogamous birds, the challenge hypothesis predicts that testosterone should increase during male–male interactions. To test this, simulated territorial intrusion (STI) experiments have been conducted, but only about a third of all bird species investigated so far show the expected increase in testosterone. Previous studies have shown that male black redstarts (Phoenicurus ochruros) do not increase testosterone during STIs or short-term male–male challenges. The aim of this study was to evaluate whether black redstarts modulate testosterone in an experimentally induced longer-term unstable social situation. We created social instability by removing males from their territories and compared the behavior and testosterone concentrations of replacement males and neighbors with those of control areas. Testosterone levels did not differ among replacement males, neighbors and control males. Injections with GnRH resulted in elevation of testosterone in all groups, suggesting that all males were capable of increasing testosterone. We found no difference in the behavioral response to STIs between control and replacement males. Furthermore, there was no difference in testosterone levels between replacement males that had expanded their territory and new-coming males. In combination with prior work these data suggest that testosterone is not modulated by male–male interactions in black redstarts and that testosterone plays only a minor role in territorial behavior. We suggest that territorial behavior in species that are territorial throughout most of their annual life-cycle may be decoupled from testosterone.  相似文献   

16.
While aggression is often conceptualized as a highly stereotyped, innate behavior, individuals within a species exhibit a surprising amount of variability in the frequency, intensity, and targets of their aggression. While differences in genetics are a source of some of this variation across individuals (estimates place the heritability of behavior at around 25–30%), a critical driver of variability is previous life experience. A wide variety of social experiences, including sexual, parental, and housing experiences can facilitate “persistent” aggressive states, suggesting that these experiences engage a common set of synaptic and molecular mechanisms that act on dedicated neural circuits for aggression. It has long been known that sex steroid hormones are powerful modulators of behavior, and also, that levels of these hormones are themselves modulated by experience. Several recent studies have started to unravel how experience-dependent hormonal changes during adulthood can create a cascade of molecular, synaptic, and circuit changes that enable behavioral persistence through circuit level remodeling. Here, we propose that sex steroid hormones facilitate persistent aggressive states by changing the relationship between neural activity and an aggression “threshold”.  相似文献   

17.
18.
In many vertebrates, reproduction is regulated by social interactions in which dominant males control access to females and food. Subordinate males that displace dominant individuals must rapidly adopt behavioral and physiological traits of the higher rank to gain reproductive success. To understand the process of phenotypic plasticity during social ascent, we analyzed the temporal expression pattern of dominance behaviors and circulating androgen levels when socially-suppressed males of an African cichlid fish Astatotilapia burtoni ascended in status. These experiments tested a prediction of the ‘challenge hypothesis’ that, during periods of social instability, male androgen levels are higher than during socially stable times. We found that socially and reproductively suppressed males perform territorial and reproductive behaviors within minutes of an opportunity to ascend in status, and that animals switch from initial expression of territorial behaviors to more reproductive behaviors during territory establishment. Following this rapid response, social stability may be achieved within 1-3 days of social ascent. Consistent with predictions of the ‘challenge hypothesis’, circulating 11-ketotestosterone (11-KT) levels were elevated within 30 min following social opportunity, coincident with increased aggressive behavior. However, territorial behaviors and serum 11-KT levels were then dissociated by 72 h after social ascent, suggesting either rapid social stability and/or increased physiological potential for androgen production. This behavioral and physiological plasticity in male A. burtoni suggests that perception of social opportunity triggers a suite of quick changes to facilitate rapid transition towards reproductive success, and reveals important features of social ascent not previously recognized.  相似文献   

19.
It has been widely reported that gonadal hormones influence the display of aggression in Syrian hamsters; conversely, much less is known about whether gonadal hormones modulate submissive/defensive behaviors in these animals. Following social defeat, male hamsters no longer display normal territorial aggression but instead display submissive/defensive behavior in the presence of a smaller opponent, a phenomenon we have termed conditioned defeat (CD). The purpose of the present study was to examine the effect of gonadal hormones on the display of CD in male hamsters. In Experiment 1, males were castrated or sham-operated. The castrated males were significantly more submissive following social defeat relative to their intact counterparts. The increased submissive behavior in the castrated males during CD testing was particularly surprising, given the fact that they were attacked significantly less during CD training. In Experiment 2a, males were castrated and given hormone replacement. Castrated males treated with testosterone or dihydrotestosterone displayed significantly less submissive behavior following social defeat than did those treated with cholesterol or estradiol. Finally, in Experiment 2b, there was no effect of hormone replacement on aggressive behavior in non-defeated hamsters suggesting that the decrease in submissive behavior in males treated with dihydrotestosterone or testosterone is specific to being previously defeated. Taken together the data indicate that the presence of androgens reduces the display of submission in defeated male hamsters. More importantly, these findings suggest that androgens may have a protective effect against the development of depression-like or anxiety-like behaviors following exposure to an ethologically relevant stressor.  相似文献   

20.
After proposing the organizational hypothesis from research in prenatally androgenized guinea pigs (Phoenix, C.H., Goy, R.W., Gerall, A.A., Young, W.C., 1959. Organizational action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 65, 369–382.), the same authors almost immediately extended the hypothesis to a nonhuman primate model, the rhesus monkey. Studies over the last 50 years have verified that prenatal androgens have permanent effects in rhesus monkeys on the neural circuits that underlie sexually dimorphic behaviors. These behaviors include both sexual and social behaviors, all of which are also influenced by social experience. Many juvenile behaviors such as play, mounting, and vocal behaviors are masculinized and/or defeminized, and aspects of adult sexual behavior are both masculinized (e.g. approaches, sex contacts, and mounts) and defeminized (e.g. sexual solicits). Different behavioral endpoints have different periods of maximal susceptibility to the organizing actions of prenatal androgens. Aromatization is not important, as both testosterone and dihydrotestosterone are equally effective in rhesus monkeys. Although the full story of the effects of prenatal androgens on sexual and social behaviors in the rhesus monkey has not yet completely unfolded, much progress has been made. Amazingly, a large number of the inferences drawn from the original 1959 study have proved applicable to this nonhuman primate model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号