首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
ABSTRACT. The Gram-negative bacterium Holospora obrusa is a macronucleus-specific symbiont of the ciliate Paramecium caudatum. The infectious form of this bacterium infects the host macronucleus through digestive vacuoles and differentiates into the reproductive form two days after the infection in the nucleus. The monoclonal antibodies IF-3–1 and IF-3–2 reacted with 39 and 1S kDa periplasmic proteins, respectively, that were specific for the infectious form of H. obrusa. Because the antigens were not detected in the reproductive form of the bacterium, it appears that expression of the proteins decreases during or soon after the infection. Using these antibodies, quantitative changes in the antigens in the early infection process were examined by immunoblotting and immunogold electron microscopy. Immunoblotting showed that the amounts of both antigens were reduced within 1 h after the bacteria were engulfed into the digestive vacuoles of the paramecia, but that the amounts of IF-3–2 antigens declined earlier than the IF-3–1 antigen. Immunogold labeling showed that the level of IF-3–2 antigens became very low in the bacteria in the host digestive vacuoles, whereas there was no similar decrease in amount of IF-3–1 antigens. Possible functions of the antigens are discussed. The IF-3–1 antigens decrease in concentration in parallel with the decrease in the periplasmic region.  相似文献   

2.
With the help of monoclonal antibodies (MAbs) we investigated the occurrence of six polypeptides throughout parts of the life cycle of Holospora obtusa, a bacterium infecting the macronucleus of the ciliate Paramecium caudatum. The polypeptides of interest formed major bands in the protein pattern of the infectious form (IF) of H. obtusa. All MAbs used recognized individual polypeptide bands of the IF proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Three polypeptides were also detected in the reproductive form in trace amounts. Two-dimensional electrophoresis revealed that the 33,000-, 28,000-, and 14,000-Mr polypeptides wre acidic and exhibited multiple isoelectric points under native conditions. Four polypeptides (Mrs of 50,000, 33,000, 28,000, and 20,000) were no longer detected or became drastically reduced within the first 30 min of invasion. Concomitantly, a loss of electron-dense periplasmic material occurred, which is typical for invading IFs (H.-D. G?rtz and M. Wiemann, J. Protistol. 24:101-109, 1989). In an attempt to clarify the subcellular localization of the six polypeptides, we performed chloroform extraction studies and identified four of the released polypeptides with MAbs. A 14,000-Mr polypeptide was immunocytochemically localized in the periplasm of the IF. The results showed that the six major polypeptides of the IF were stage specific or stage specifically enriched and are likely to contribute to the electron-dense periplasmic material of the IF.  相似文献   

3.
ABSTRACT The reproductive form of a macronucleus-specific symbiont Holospora obtuse , when harbored by the macronucleus of the ciliate Paramecium caudatum , selectively synthesized a 63-kDa protein which is immunologically related to GroEL, or HSP60, of Escherichia coli. Heat shock treatment of isolated cells of the reproductive and infectious form of the bacterium also induced the synthesis of the GroEL homolog. Immunoblotting showed that the amount of this protein per cell, whether the reproductive or infectious form, is roughly constant. Cloning and sequencing of a gene coding for the GroEL homolog suggested that the protein is 55.2% identical to GroEL of E. coli at the amino acid sequence level, and that the gene is preceded by an open reading frame which encodes a protein 39.6% identical to GroES of E. coli. Northern blot hybridization showed that the GroEL homologous gene is highly expressed in the reproductive form, but only in a trace amount in the intermediate and infectious form. Immunoelectron microscopy revealed that the GroEL homolog is localized in the cytoplasm of the reproductive and infectious form.  相似文献   

4.
Alkaline phosphatase is normally localized to the periplasm of Escherichia coli and is unable to fold into its native conformation if retained in the cytoplasm of growing cells. The alkaline phosphatase activity of E. coli expressing a version of the protein without a signal sequence was nonetheless found to increase gradually when the growth of cells was suspended. At least 30% of the protein was activated over the course of several hours when freshly grown exponential-phase cells were held on ice. Similar behavior was observed with cells expressing certain other mutant versions of alkaline phosphatase that are retained in the cytoplasm. The activation resulted not from the passage of the alkaline phosphatase into the periplasm but from the slow folding of alkaline phosphatase into its native conformation in the cytoplasm. These findings indicate that the mechanism by which proteins are normally kept reduced in the cytoplasm fails to function if cells are not growing. It was found that the addition of the sulfhydryl-alkylating agent iodoacetamide to cells after growth blocks this activation completely. This treatment can therefore diminish the likelihood of spurious enzyme activity measurements in studies that make use of alkaline phosphatase fusion proteins.  相似文献   

5.
In the T. bielanensis embryo, only karyokinesis occurs during the first cleavage division, and a two-nuclear syncytial embryo forms. Then, two cytoplasmic concentrations in the form of elongated rolls perpendicular to each other develop below the periplasm at the animal pole of the egg. The second cleavage division is also associated with karyokineses only. After the embryo reaches the four-nuclear stage, cytokinesis occur at its animal pole, and two cleavage furrows perpendicular to each other develop in the periplasm above the cytoplasmic concentrations. The cell membranes forming within the furrows do not invade the cytoplasmic concentrations, but their growing tips push them into the egg interior, where they merge and form the central cytoplasmic concentration. The developing cell membranes do not invade the central cytoplasm; they band and grow above its surface. Four pyramidal blastomeres form as a result of this. The eight-blastomere embryo forms through both karyokinesis and cytokinesis, but the growing cell membranes now band below the previous ones and cut off anucleate parts of the mother blastomeres, which fuse with the central cytoplasm. Thus, during this phase of development the transition from holoblastic to partial superficial cleavage is initiated. Morphological analysis suggests that the formation of the first two cytokinesis is predetermined by and depends on factors connected with the animal pole periplasm. It also suggests that the central cytoplasm constitutes the morphological field, inducing the transition from holoblastic to partial superficial cleavage.  相似文献   

6.
应用间接免疫荧光标记技术和激光共聚焦扫描显微镜成像技术观察洋葱小孢子母细胞减数分裂过程中微管分布变化。减数分裂之前,小孢子母细胞中的微管较短,呈辐射状,由细胞核表面向四周扩散。减数分裂开始后,细胞质中的一部分微管蛋白聚集成纺锤体微管,控制染色体的分布。进入减数分裂I后期,纺锤体微管变为牵引染色体移向两极的着丝粒微管和连接纺锤体两极的极丝微管。之后,所有微管集中在两个核之间,构成成膜体。然后,微管解聚成微管蛋白弥散在细胞质中。减数分裂I完成后,二分体2个子细胞中的微管蛋白又聚集成2个纺锤体微管,开始减数分裂II过程。经过减数分裂II中期,2个二分体细胞中的微管再次集中在2个细胞核之间形成成膜体,隔离2个细胞核。此后,微管蛋白解聚,弥散分布在小孢子细胞质中。  相似文献   

7.
Pyoverdines are siderophores produced by fluorescent Pseudomonads to acquire iron. At least 60 different pyoverdines produced by diverse strains have been chemically characterized. They all consist of a dihydroquinoline‐type chromophore linked to a peptide. These peptides are of various lengths and the sequences are strain specific. Pyoverdine biosynthesis in Pseudomonas aeruginosa and fluorescent Pseudomonads is a complex process involving at least 12 different proteins, starting in the cytoplasm and ending in the periplasm. The cellular localization of pyoverdine precursors was recently shown to be consistent with their biosynthetic enzymes. In the cytoplasm, pyoverdine appears to be assembled at the inner membrane and particularly at the old cell pole of the bacterium. Mature pyoverdine is uniformly distributed throughout the periplasm, like the periplasmic enzyme PvdQ. Secretion of pyoverdine involves a recently identified ATP‐dependent efflux pump, PvdRT‐OpmQ. This efflux system does not only secrete newly synthesized pyoverdine but also pyoverdine that already transported iron into the bacterial periplasm and any pyoverdine–metal complex other than ferri‐pyoverdine present in the periplasm. This review considers how these new insights into pyoverdine biosynthesis and secretion contribute to our understanding of the role of pyoverdine in iron and metal homeostasis in fluorescent Pseudomonads.  相似文献   

8.
莴苣花药发育过程中钙的分布特征   总被引:4,自引:0,他引:4  
减数分裂前,莴苣花药中的钙颗粒很少。减数分裂后,花药绒毡层细胞中的钙颗粒明显增加。同时在花药药室基质中也出现许多细小的钙颗粒。刚从四分体中释放出的小孢子内钙颗粒很少。伴随着花粉外壁物质在小孢子表面的沉积,钙颗粒开始积累在花粉壁部位。随后。小孢子中开始出现钙颗粒。当小孢子开始形成液泡后,钙颗粒向其中聚集,伴随着小液泡融合成大液泡。体积较大的钙颗粒主要集中在液泡中,而细胞质基质中的钙颗粒很少。随着二胞花粉中的大液泡消失,花粉细胞质中的钙颗粒变得很少。在以后的发育中,只有花粉壁中积累较多的钙颗粒。在莴苣花药发育过程中,钙与绒毡层细胞的退化和小孢子液泡形成以及二胞花粉中大液泡的消失有关。而花粉外壁表面积累丰富的钙与以后花粉的萌发有关。  相似文献   

9.
In this study, distribution of polysaccharides, lipids, and proteins in the developing anthers of Campsis radicans (L.) Seem. was examined from sporogenous cell stage to mature pollen, using cytochemical methods. To detect the distribution and dynamic changes of insoluble polysaccharides, lipid bodies, and proteins in the anthers through progressive developmental stages, semi-thin sections of anthers at different developmental stages were stained with periodic-acid-Schiff (PAS) reagent, Sudan black B, and Coomassie brilliant blue, respectively, and examined under light microscope. Ultrastructural observations with TEM were also carried out to determine the storage form of starch in the connective tissue, and storage form of lipids in the tapetal cells. In sporogenous cell stage, anther wall contains numerous insoluble polysaccharides. However, from the sporogenous cell stage to the vacuolated microspore stage, the amount of insoluble polysaccharides in the anther wall decreases gradually. At bicellular pollen stage, tapetum degenerates completely and polysaccharides are not seen in the anther wall. Lipid bodies are observed in the cytoplasm of both middle layer and tapetal cells at tetrad stage, whereas they disappear in the vacuolated microspore stage. Compared with polysaccharides, proteins are limited in the anther wall at early stages of development. During pollen development, polysaccharides, proteins, and lipid bodies are scarce in the cytoplasm of sporogenous cells, but their amount increases at premeiotic stage. From tetrad stage to bicellular pollen stage, microspore cytoplasm contains variable amount of insoluble polysaccharide grains, lipid and protein bodies. At bicellular pollen stage, plentiful amount of starch granules are stored in the cytoplasm of the pollen grains. Proteins and lipid bodies are also present in the cytoplasm.  相似文献   

10.
Alginate is an acidic heteropolysaccharide produced by brown seaweed and certain kinds of bacteria. The cells of Sphingomonas sp. strain A1, a gram-negative bacterium, have several alginate-degrading enzymes in their cytoplasm and efficiently utilize this polymer for their growth. Sphingomonas sp. strain A1 cells can directly incorporate alginate into their cytoplasm through a transport system consisting of a “pit” on their cell surface, substrate-binding proteins in their periplasm, and an ATP-binding cassette transporter in their inner membrane. This review deals with the structural and functional aspects of bacterial systems necessary for the recognition and uptake of alginate.  相似文献   

11.
莴苣花药发育过程中钙的分布特征   总被引:1,自引:0,他引:1  
减数分裂前,莴苣花药中的钙颗粒很少。减数分裂后,花药绒毡层细胞中的钙颗粒明显增加, 同时在花药药室基质中也出现许多细小的钙颗粒。刚从四分体中释放出的小孢子内钙颗粒很少,伴随着花粉外壁物质在小孢子表面的沉积,钙颗粒开始积累在花粉壁部位。随后,小孢子中开始出现钙颗粒。当小孢子开始形成液泡后,钙颗粒向其中聚集,伴随着小液泡融合成大液泡,体积较大的钙颗粒主要集中在液泡中,而细胞质基质中的钙颗粒很少。随着二胞花粉中的大液泡消失,花粉细胞质中的钙颗粒变得很少。在以后的发育中,只有花粉壁中积累较多的钙颗粒。在莴苣花药发育过程中,钙与绒毡层细胞的退化和小孢子液泡形成以及二胞花粉中大波泡的消失有关。而花粉外壁表面积累丰富的钙与以后花粉的萌发有关。  相似文献   

12.
Extracellular accumulation of recombinant proteins in the culture medium of Escherichia coli is desirable but difficult to obtain. The inner or cytoplasmic membrane and the outer membrane of E. coli are two barriers for releasing recombinant proteins expressed in the cytoplasm into the culture medium. Even if recombinant proteins have been exported into the periplasm, a space between the outer membrane and the inner membrane, the outer membrane remains the last barrier for their extracellular release. However, when E. coli was cultured in a particular defined medium, recombinant proteins exported into the periplasm could diffuse into the culture medium automatically. If a nonionic detergent, Triton X-100, was added in the medium, recombinant proteins expressed in the cytoplasm could also be released into the culture medium. It was then that extracellular accumulation of recombinant proteins could be obtained by exporting them into the periplasm or releasing them from the cytoplasm with Triton X-100 addition. The tactics described herein provided simple and valuable methods for achieving extracellular production of recombinant proteins in E. coli.  相似文献   

13.
Newt embryonic myocardial cells can undergo mitosis in culture. The successive changes in the striation pattern of sarcomeres of myofibrils during mitosis were studied by polarization microscopy without fixing or killing the cells. Birefringence of well-organized striation patterns, i.e., bright A-bands and dark I-bands, was clearly visible in interphase cells and did not show any detectable changes during incubation for 3 h or more. Electron microscopy showed the presence of well-organized myofibrils with Z-bands in these interphase cells. When myocardial cells entered the mitotic stage, the birefringence of striation pattern of their myofibrils gradually changed with the pattern in small parts of the myofibrils gradually becoming indistinct (called 'indistinct striation' in this paper). These indistinct regions increased in size during the mitotic stage. In addition, in some regions of the indistinct striation, the birefringence of sarcomeres gradually decreased and finally disappeared (called 'disappearance of sarcomeres' in this paper). No myocardial cells underwent mitosis without these disruptive changes of the myofibril striation patterns. In the post-mitotic stage, the well-organized striation of the myofibrils reappeared. Electron microscopy showed disorganized sarcomeres without Z-bands in the regions of indistinct striation, and no well-organized myofibrils in the regions where the sarcomeres had disappeared. Thus the well-organized myofibrils with Z-bands became transiently disorganized at least in some parts, during mitosis. They were then reorganized into daughter myocardial cells.  相似文献   

14.
Genome and proteome analysis of Chlamydia   总被引:2,自引:0,他引:2  
  相似文献   

15.
Erwinia chrysanthemi, a Gram-negative phythopathogenic bacterium, secretes two related extracellular metalloproteases, B and C, which do not have N-terminal signal sequences. The specific pathway by which they are secreted, which has been reconstituted in Escherichia coli, comprises three proteins -- PrtD, PrtE and PrtF. Hybrid proteins containing segments of these proteins fused to the C-terminus of protease B were purified and used to immunize rabbits. The antisera thus obtained were used to study the location and membrane topology of the three proteins. PrtD and PrtE were found to cofractionate almost exclusively with the cytoplasmic membrane, whereas PrtF was found to co-fractionate mostly with the outer membrane. Proteinase K accessibility experiments as well as sequence data lead us to propose that PrtF has one or both ends exposed to the periplasm, that PrtE has one transmembrane segment with its amino-terminus facing the cytoplasm and its C-terminal hydrophilic domain exposed to the periplasm, and that PrtD has six transmembrane segments with its N-terminus and its C-terminal hydrophilic domain in the cytoplasm.  相似文献   

16.
Plant cell transformation by Agrobacterium tumefaciens involves the transfer of a single-stranded DNA-protein complex (T-complex) from the bacterium to the plant cell. One of the least understood and important aspects of this process is how the T-complex exits the bacterium. The eleven virB gene products have been proposed to specify the DNA export channel on the basis of their predicted hydrophobicity. To determine the cellular localization of the VirB proteins, two different cell fractionation methods were employed to separate inner and outer membranes. Seven VirB-specific antibodies were used on Western blots (immunoblots) to detect the proteins in the inner and outer membranes and soluble (containing cytoplasm and periplasm) fractions. VirB5 was in both the inner membrane and cytoplasm. Six of the VirB proteins were detected in the membrane fractions only. Three of these, VirB8, VirB9, and VirB10, were present in both inner and outer membrane fractions regardless of the fractionation method used. Three additional VirB proteins, VirB1, VirB4, and VirB11, were found mainly in the inner membrane fraction by one method and were found in both inner and outer membrane fractions by a second method. These results confirm the membrane localization of seven VirB proteins and strengthen the hypothesis that VirB proteins are involved in the formation of a T-DNA export channel or gate. That most of the VirB proteins analyzed are found in both inner and outer membrane fractions suggest that they form a complex pore structure that spans both membranes, and their relative amounts in the two membrane fractions reflect their differential sensitivity to the experimental conditions.  相似文献   

17.
Generally, when microbes assimilate macromolecules, they incorporate low-molecular-weight products derived from macromolecules through the actions of extracellular degrading enzymes. However, a Gram-negative bacterium, Sphingomonas sp. A1, has a smart biosystem for the import and depolymerization of macromolecules. The bacterial cells directly incorporate a macromolecule, alginate, into the cytoplasm through a "superchannel", as we named it. The superchannel consists of a pit on the cell surface, alginate-binding proteins in the periplasm, and an ATP-binding cassette transporter in the inner membrane. Cytoplasmic polysaccharide lyases depolymerize alginate into the constituent monosaccharides. Other than the proteins characterized so far, novel proteins (e.g., flagellin homologs) have been found to be crucial for the import and depolymerization of alginate through genomics- and proteomics-based identification, thus indicating that the biosystem is precisely constructed and regulated by diverse proteins. In this review, we focus on the structure and function of the bacterial biosystem together with the evolution of related proteins.  相似文献   

18.
One isoform of trehalase, TreF, is present in the cytoplasm and a second, TreA, in the periplasm. To study the questions of why one enzyme is exported efficiently and the other is not and whether these proteins can fold in their nonnative cellular compartment, we fused the signal sequence of periplasmic TreA to cytoplasmic TreF. Even though this TreF construct was exported efficiently to the periplasm, it was not active. It was insoluble and degraded by the periplasmic serine protease DegP. To determine why TreF was misfolded in the periplasm, we isolated and characterized Tre(+) revertants of periplasmic TreF. To further characterize periplasmic TreF, we used a genetic selection to isolate functional TreA-TreF hybrids, which were analyzed with respect to solubility and function. These data suggested that a domain located between residues 255 and 350 of TreF is sufficient to cause folding problems in the periplasm. In contrast to TreF, periplasmic TreA could fold into the active conformation in its nonnative cellular compartment, the cytoplasm, after removal of its signal sequence.  相似文献   

19.
The recombinant plasmids have been constructed encoding the synthesis of a full-sized diphtheria toxin from its own or PR, PL-promoters of bacteriophage lambda in Escherichia coli cells. The high level constitutive synthesis of toxin results in slow cell growth and plasmid elimination. The toxin was mainly detected in the periplasm, partially in the membrane and to a less extent in the cytoplasm and culturing medium. The dimeric form of toxin was found in the cytoplasm. Participation of toxin B-subunit in secreting of the toxin into culturing medium is discussed. Proteolytic degradation of the synthesized toxin in different Escherichia coli strains was demonstrated. The process takes place in cytoplasm and periplasm mainly. The main enzyme participating in the process is a La-protease. The data on proteolysis obtained by immunoprecipitation immunoblotting, affinity chromatography and in mini-cells of Escherichia coli are summarized.  相似文献   

20.
Pyoverdines, the main siderophores produced by fluorescent Pseudomonads, comprise a fluorescent dihydroxyquinoline chromophore attached to a strain-specific peptide. These molecules are thought to be synthesized as non-fluorescent precursor peptides that are then modified to give functional pyoverdines. Using the fluorescent properties of PVDI, the pyoverdine produced by Pseudomonas aeruginosa PAO1, we were able to show that PVDI was not present in the cytoplasm of the bacteria, but large amounts of a fluorescent PVDI precursor PVDIp were stored in the periplasm. Like PVDI, PVDIp is able to transport iron into P. aeruginosa cells. Mutation of genes encoding the periplasmic PvdN, PvdO and PvdP proteins prevented accumulation of PVDIp in the periplasm and secretion of PVDI into the growth medium, indicating that these three enzymes are involved in PVDI synthesis. Mutation of the gene encoding PvdQ resulted in the presence of fluorescent PVDI precursor in the periplasm and secretion of a functional fluorescent siderophore that had different isoelectric properties to PVDI, suggesting a role for PvdQ in the periplasmic maturation of PVDI. Mutation of the gene encoding the export ABC transporter PvdE prevented PVDI production and accumulation of PVDIp in the periplasm. These data are consistent with a model in which a PVDI precursor peptide is synthesized in the cytoplasm and exported to the periplasm by PvdE where siderophore maturation, including formation of the chromophore moiety, occurs in a process involving the PvdN, PvdO, PvdP and PvdQ proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号