首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of phorbol ester on the isometric contractile response of aorta from endotoxic rats was examined. In endotoxic rat aorta, the contractile responses to KCl and phorbol 12,13-dibutyrate (PDBu) were both remarkably diminished, compared to those in control rat aorta. Preincubation with PDBu augmented the aortic contractile response to KCl in both control and endotoxic rats. This augmentative effect of PDBu was significantly more pronounced in endotoxic rats than in controls. When the contractile response to 80 mM KCl reached a plateau after PDBu pretreatment, addition of 5 mM CaCl2 (final concentration) to the organ bath completely reversed the diminished contractile response of endotoxic rat aorta to the control level. These results suggest that the hyporesponsiveness of endotoxic rat aorta to KCl may be caused by decreases in both protein kinase C mediated response and calcium sensitivity of vascular smooth muscle cells.  相似文献   

2.
The effect on the vasocontractile response of pretreatment with NH4Cl at a concentration (10 mM) that made almost no change in the resting tension was investigated using aortic strips from rats. NH4Cl pretreatment for 10 min significantly potentiated strip contractions induced by KCl (less than or equal to 30 mM), BAY K 8644 (0.1 microM) and phenylephrine (0.01 microM). This potentiating action of NH4Cl was eliminated in presence of nifedipine (1 microM). KCl (14.7 mM)-stimulated 45Ca uptake in rat aorta was significantly potentiated by pretreatment with NH4Cl (10 mM) for 10 min, but this NH4Cl effect was also eliminated in the presence of nifedipine. These results suggest that NH4Cl potentiates contractions induced by KCl and agonists in rat aorta by facilitating calcium influx through the nifedipine-sensitive calcium channel.  相似文献   

3.
《Life sciences》1994,54(2):PL29-PL33
This study investigates the relationship between the contractile efficacy of phorbol esters and their ability to activate protein kinase C in intact rabbit aorta. Phorbol dibutyrate (PDB) induced a maximal contraction approximately 3.5-fold greater than that to phorbol myristate acetate (PMA). The magnitude of maximal PDB- and PMA-induced contraction correlated with the magnitude of protein kinase C activation, as assessed by the decrease in cytosolic protein kinase C activity. KCl (60mM) did not potentiate the PMA-induced decrease in cytosolic protein kinase C activity. These results suggest that the lack of efficacy of PMA is due to its inability to activate protein kinase C in the intact rabbit aorta. It is speculated that the different contractile efficacies of phorbol esters result from selective activation of protein kinase C isoforms, and that the amounts of these isoforms varies amongst vascular tissues.  相似文献   

4.
The sources of calcium for cholecystokinin octapeptide (CCK-OP)-induced gallbladder smooth muscle contraction are considered both extracellular and intracellular, but the relative need for intracellular calcium especially at low, physiological concentrations is not clear. To better define the calcium sources responsible for guinea-pig gallbladder contractions in vitro, we inhibited calcium influx using the calcium channel blocker, methoxyverapamil, and a calcium-free Krebs' solution. Availability and release of intracellular calcium stores were depleted by strontium substitution and ryanodine. CCK-OP was compared to bethanechol and potassium chloride (KCl). Preventing calcium influx with 10(-5) M methoxyverapamil depressed the responses to CCK-OP, bethanechol and KCl. Methoxyverapamil, however, had little effect on the time-dependent generation of tension to CCK-OP, but significantly reduced the response to bethanechol and KCl, each at ED50. The duration of the contractile response in the calcium-free Krebs' solution to CCK-OP was longer than that for bethanechol. Strontium (2.5 mM) significantly attenuated the response to CCK-OP and bethanechol, but not to KCl. Ryanodine significantly reduced contractions induced by CCK-OP but not for bethanechol, both at low dose ED25. These results indicate that contraction of the guinea-pig gallbladder induced by CCK-OP, bethanechol and KCl requires extracellular calcium influx. Further, the initiation and maintenance of contraction by CCK-OP and bethanechol necessitates calcium mobilisation from intracellular stores. CCK-OP may have a greater penchant for these calcium stores, particularly at physiological doses.  相似文献   

5.
The effect of endothelin-1 (ET-1) on the basilar arteries from control and subarachnoid hemorrhage (SAH) dogs were examined. The maximal contraction of the basilar artery in response to ET-1 was markedly decreased in the SAH group. Treatment with 10(-8)M phorbol 12-myristate 13-acetate (PMA) reduced the contractile responses to ET-1 in the basilar arteries from control dogs. ET-1-induced contractions of the basilar arteries from control dogs were similar to those in strips from SAH dogs by the treatment with 10(-8) M PMA. Ca(2+)-induced contraction of the basilar arteries which were depolarized with isotonic K+ (64 mM) were significantly attenuated in SAH dogs. Treatment with PMA also reduced the contractile responses to Ca2+ in the basilar arteries from control dogs. These results indicate that decreased contractile responses of the basilar arteries to ET-1 and Ca2+ in the SAH group may be related to changes in the activity of the protein kinase C in vascular smooth muscle.  相似文献   

6.
Ishihata A  Sakai M  Katano Y 《Peptides》2006,27(1):80-86
To elucidate whether aging influences the vascular contractile effect of urotensin II in rat thoracic aorta, and to evaluate the contribution of endothelial vasodilating substances in mediating the effect of urotensin II, the effect of urotensin II was examined in the vessels of young (2-3-month-old) and aged rat. Isolated rat aortic rings incubated in Krebs-Henseleit solution gassed with 95% O2/5% CO2 were stimulated with urotensin II, and the developed tension was measured. Urotensin II increased the developed tension, which was decreased by aging. In 2-3-months-old young aorta without endothelium, urotensin II (10(-10) to 10(-7)) elicited a concentration-dependent aortic contraction to the maximal response almost equivalent to high KCl-induced contraction (79.4+/-11.3% of KCl(max)). In the presence of endothelium, the urotensin II-induced vasoconstriction in young aorta was significantly attenuated to 33.3+/-4.6% of KCl(max). However, the contractile response was greater in the pretreatment with N(G)-nitro-L-arginine (L-NNA) (100 microM) (50.3+/-8.4% of KCl(max) in endothelial denuded aorta), suggesting the vasorelaxing role of endothelial nitric oxide. In 25-27-months-old aged rat aorta, the urotensin II-mediated contraction was remarkably decreased, both in the presence (6.3+/-2.0% of KCl(max)) and absence (11.7+/-3.0% of KCl(max)) of endothelium. A cyclooxygenase inhibitor, diclofenac (10 microM), did not have any effect on the urotensin II-induced contraction. These results suggest that urotensin II can induce vascular smooth muscle contraction in rat aorta, and there was an aging-related decline in the urotensin II-induced contraction. Endothelial production of nitric oxide in response to urotensin II but not cyclooxygenase metabolites such as prostacyclin may play a role in reducing the vascular constriction especially in young aorta.  相似文献   

7.
Comparative effects of endothelin and phorbol 12-13 dibutyrate in rat aorta   总被引:1,自引:0,他引:1  
The vasoconstrictive properties of endothelin (ET-1) and the protein kinase C activator, phorbol 12-13 dibutyrate (PDB) were comparatively investigated in isolated rat aorta. ET-1 (0.3-100 nM) and PDB (10 nM-3 microM) induced a slowly developing sustained contraction in endothelium denuded aorta. Maximal contractions induced by ET-1 and PDB were unaffected by diltiazem (10 microM). Substantial contraction to ET-1 (30 nM) and PDB (0.1 microM) remained in calcium-free medium. Contractions of ET-1 and PDB in calcium-free medium were unaffected by intracellular calcium depletion induced by phenylephrine. Following the response to ET-1 and PDB in a calcium-free medium, an additional sustained contraction was observed after calcium (2.5 mM) was added to the bath. The protein kinase C inhibitor, H7 (100 microM) was more potent in inhibiting contractions induced by phenylephrine and KCl than the ones elicited by ET-1 and PDB. The other protein kinase C inhibitors i.e. staurosporine (50 nM) and phloretin (100 microM) inhibited to a similar extent all the agonists tested. These results suggest that protein kinase C may play an important role in mediating the contraction to ET-1 in rat aorta.  相似文献   

8.
The mechanism for hypoxic pulmonary vasoconstriction (HPVC) was investigated in human pulmonary arterial strips. Hypoxia in the presence of histamine (10(-6) M) caused marked pulmonary arterial contraction, which was reversed by O2. The hypoxic contraction in the presence of histamine was inhibited by diphenhydramine, but not by cimetidine. The hypoxic histamine-mediated contraction was attenuated but still present in the absence of extracellular Ca2+, or by the inhibitors of voltage-dependent Ca2+ influx. However, it was inhibited significantly by a further depletion of intracellular Ca2+, or by HA 1004, an intracellular calcium antagonist. A low concentration (10(-7) M) of a calcium ionophore, A23187, enhanced the hypoxic contraction in the presence of histamine, whereas procaine completely inhibited it. W-7, a calmodulin inhibitor, significantly decreased the hypoxic histamine-mediated contraction, but 12-O-tetradecanoylphorbol-13-acetate (TPA), a C-kinase promotor, had no effect. The hypoxic contractile response was also observed in the presence of both A23187 and KCl instead of histamine, but the hypoxia-induced contraction with KCl alone was much smaller than that. These results indicate that hypoxia in the presence of certain other vasoactive agents has a potent contractile effect on the human pulmonary artery and that the response is dependent on Ca2+. Enhancement of both Ca2+ influx and Ca2+ release from intracellular storage sites by hypoxia, which interacts with calmodulin, were suggested to be involved in the mechanism of HPVC.  相似文献   

9.
In order to elucidate the role of tyrosine phosphorylation in vasoconstriction, we investigated the effects of inhibitors of tyrosine kinase (genistein, 30 microM) and phosphatase (sodium o-vanadate, 5 microM) on the contraction of aorta isolated from guinea pig. Genistein significantly inhibited norepinephrine-induced contraction, but it did not affect that induced by KCI. Thus, tyrosine phosphorylation may not be involved in the contractile response to KCI alone. The aortic contraction elicited by KCl was significantly augmented by sodium o-vanadate, which increased both the maximum force and pD2 values of KCl contraction. In the presence of verapamil, KCl-induced contraction was abolished even after pretreatment with sodium o-vanadate. Sodium o-vanadate also augmented Ca2+-induced contraction in the aortic strips depolarized with KCl, increasing both its maximum force and pD2 values. Neither basal 45Ca2+ uptake nor verapamil-sensitive 45Ca2+ uptake induced by KCl were affected by pretreatment with sodium o-vanadate. These results suggest that tyrosine phosphorylation is involved in the contraction of guinea-pig aorta not through transplasmalemmal Ca2+ entry but through increased Ca2+ sensitivity of the intracellular contractile pathway.  相似文献   

10.
Effects of taurine on the reactivity of aortas from diabetic rats   总被引:2,自引:0,他引:2  
Abebe W 《Life sciences》2008,82(5-6):279-289
The effects of the semi-essential amino acid-like nutrient, taurine, on alterations in the reactivities of aortas from male rats with chronic streptozotocin-induced diabetes were examined under in vitro conditions. In the absence of taurine, the contractile responsiveness of endothelium-denuded aortic rings from diabetic rats to norepinephrine, but not KCl, was enhanced compared to controls. This effect of norepinephrine on the diabetic rat aorta appeared to be associated with increased release of intracellular calcium, influx of extracellular calcium and protein kinase C-mediated responses. Incubation of endothelium-denuded aortic rings with 10 mM, but not 5 mM, taurine for 2 h reduced the augmented contractile responses of the tissues from diabetic rats to norepinephrine close to control levels, and this was associated with inhibition of responses linked to the release and influx of calcium, and protein kinase C activation. Endothelium-dependent relaxation of aortas from diabetic rats to acetylcholine was depressed relative to controls. This effect of diabetes was ameliorated close to control levels by incubating the tissues with 10 mM, but not 5 mM, taurine for 2 h. Incubation of nondiabetic rat aortic rings with 45 mM glucose for 3 h caused enhancement of contraction of the vascular smooth muscle to phenylephrine and impairment of endothelium-mediated vasorelaxation to acetylcholine, as compared to control responses. Co-incubation of the tissues with 5-10 mM taurine concentration-dependently reduced the alterations in both contractile and relaxant responses caused by high glucose. Overall, the data suggest that taurine ameliorates or prevents vascular reactivity alterations in diabetes. Such an observation provides preliminary evidence for taurine's potential as a therapeutic agent for the prevention or amelioration of vascular disorders in diabetes.  相似文献   

11.
In a previous work, we demonstrated that, in normotensive rats, AFL induced a marked hypotension due to a decrease in total peripheral resistances (TPR), partially secondary to the release of NO by the endothelium. NO did not, however, account for the total vasodilation produced by AFL in these rats. The aim of this study was to determine the involvement of the intracellular calcium mobilization in the vasorelaxant action induced by AFL in the rat aorta. In aorta of normotensive rats AFL (10, 20, 40 and 80 microg/ml) inhibited the sustained contractions induced by KCl (80 and 30 mM) and phenylephrine (Phe, 1 microM) with similar IC50 values (54 +/- 6, 52 +/- 4 and 65 +/- 4 microg/ml, respectively). The relaxing response induced by AFL against Phe-induced contractions was modified significantly by the endothelium removal (IC50 = 132 +/- 23 and 65 +/- 4 microg/ml, endothelium removed and intact endothelium aortic rings, respectively). Nevertheless, removal of the endothelium did not significantly change IC50 values when KCl (30 and 80 mM) was used as the contractile agent. The inhibitory effect induced by AFL on high (64.5 mM) K+-induced contraction was potentiated slightly (p < 0.05) by the decrease (from 2.5 to 0.3 mM, Ca2+) and attenuated by the increase (from 2.5 to 7.5 mM Ca2+) in the external [Ca2+]. In addition, in aortas from normotensive rats, AFL antagonized transient contractions induced in Ca2+-free media induced by 1 microM noradrenaline in a concentration-dependent manner, but not those induced by 20 mM caffeine. It is suggested that the remaining vasodilator effect of AFL in normotensive rats is probably due to an inhibition of Ca2+ influx and/or inhibition of intracellular Ca2+ mobilization from the noradrenaline-sensitive stores.  相似文献   

12.
The effects of mefloquine on the mechanical activity of the mouse isolated rectal smooth muscle was studied. Mefloquine (4.1x10-5 - 5.2x10-3M) when applied alone and separately exerted variable effects on the rectum. In some preparations, it caused slight phasic contractions while in others no response was elicited. When the external Ca(2+) was increased from 1.8mM to 300mM mefloquine produced phasic contractile activity which was abolished on return to normal 1.8mM suggesting that the contractile activity was due to extracellular Ca(2+) influx. Meflaquine [4.1x10-6M - 4.1x10-4M] caused contraction - dependent inhibition of KCL, Carbachol and CaCl2 [in depolarizing Tyrode Solution]. Mefloquine [2.1x10-4M] blocked KCL, but not carbachol contractions which were largely reversed by increasing [Ca2+]. The results show that mefloquine possesses anticholinergic and appreciable calcium channel blocking activity.  相似文献   

13.
The effects of MnCl2 on vascular smooth muscle contraction induced by noradrenaline (NA) and KCl were investigated. Rings segments from rat aorta were isolated and changes in isometric tension recorded. MnCl2 (10 microM and 1 mM) significantly attenuated the contractile responses to NA and KCI. There were also reductions in the contractile responses to CaCl2 in NA- and KCl-stimulated rings, after pretreatment with MnCl2. The magnitude of the phasic contraction to NA was significantly reduced in presence of MnCl2. The results suggest that MnCl2 inhibits vascular smooth muscle contraction by influencing a Ca2+-mediated mechanism.  相似文献   

14.
We have examined the effect of phorbol myristate acetate (PMA) on airway smooth muscle (ASM) in the presence and absence of respiratory epithelium (RE) and analyzed the dependence of this response on extracellular sodium, Na+/H+ exchange, calcium, and cyclooxygenase products; we determined both the resting membrane potential and isometric force developed by ASM preparations. Removal of RE had no effect on the values of the resting membrane potential of ASM cells. In the presence of RE in the preparation, both electrical and contractile responses to PMA (10(-5) M) were significantly different compared with the response of ASM to PMA without RE. When the RE was present, stimulation of protein kinase C caused only a biphasic response in both membrane potential and isometric force. In either the presence or absence of RE, amiloride (10(-5) M) and a low-sodium solution inhibited both electrical and contractile changes of ASM cells caused by PMA. In the presence or absence of RE, verapamil (10(-5) M) attenuated (P less than 0.05) both electrical and contractile responses of ASM cells as induced by PMA. Verapamil, however, had no effect on the last phase of PMA-induced response. Pretreatment of preparations with indomethacin (10(-6) M) changed the PMA-induced response of ASM with RE to a response usually observed in ASM without RE. Finally, the incubation of tracheal preparations without RE with prostaglandin E2 (10(-8) M) altered the response of these preparations in such a way that their electrical and contractile response to PMA was essentially identical to the PMA response observed in preparations with an intact RE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The action of a tumor-promoting phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), on isolated rat aortic and tail artery strips has been characterized. TPA (10(-9)-10(-7) M) produced a graded contraction developing maximum tension over 30-40 min. The contraction was irreversible and was not relaxed by prolonged washing with physiologic saline. Relaxation occurred upon washing with Ca2+-free saline but readdition of Ca2+ restored response. TPA was without significant effect in rat tail arteries in physiologic saline but produced responses in saline containing elevated K+ (15 mM). The protein kinase C inhibitor, CP-46,665-1 (4-aminomethyl-1-[2,3-(di-n-decyloxy)n-propyl]-4-phenylpiperidine dihydrochloride) (5 X 10(-5) M), blocked the response to TPA but was without effect on responses to Bay K 8644 (2,6-dimethyl-3-carbomethoxy-5-nitro-4-(2-trifluoromethylphenyl) 1,4-dihydropyridine), KCl, phenylephrine, and B-HT 920 (6-allyl-2-amino-5,6,7,8-tetrahydro-4H-thiazolo[4,5-d]azepin dihydrochloride). The calcium channel antagonist nifedipine and its analogue, 2,6-dimethyl-3,5-dicarbomethoxy-4-(3-cyanophenyl)-1,4-dihydr opyridine, inhibited TPA responses with IC50 values of 9.28 X 10(-9) and 1.96 X 10(-7) M, respectively. Responses to Bay K 8644 in rat aorta were maximum in the presence of elevated KCl (10 mM), but TPA at concentrations of 10(-9) and 3 X 10(-9) M potentiated responses to Bay K 8644 in physiologic saline to levels approximating those in elevated K+ saline. TPA similarly potentiated responses to Ca2+ in Ca2+-free solution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The novel vasorelaxant HA1004 [N-(2-guanidinoethyl)-5-isoquinolinesulfonamide] was investigated with regard to its effects on transmembrane Ca2+ movement in relation to tension development in the rabbit aortic strips. The contractile responses to KCl (40 mM) and norepinephrine (3 X 10(-7) M) were inhibited by HA1004 (1 and 3 X 10(-5) M) (49-78%), whereas the increases in 45Ca efflux (which reflects increases in cytosolic Ca2+ levels) were not affected. Moreover, HA1004 (1 and 3 X 10(-5) M) did not significantly affect 45Ca influx due to KCl stimulation. While HA1004 at 10(-5) M had no effect on norepinephrine-induced 45Ca influx, the drug at 3 X 10(-5) M showed significant inhibition. Based on this and previously reported work, it is concluded that HA1004 inhibits contraction mainly through uncoupling of the Ca-tension relations in vascular smooth muscle.  相似文献   

17.
Endothelin: differential effects in vascular and nonvascular smooth muscle   总被引:3,自引:0,他引:3  
R J Secrest  M L Cohen 《Life sciences》1989,45(15):1365-1372
Endothelin, a potent vasoconstrictor, produced concentration-dependent contractions in aorta, trachea and bladder body obtained from rat and rabbit. Contractions developed slowly, reaching maxiMum within 15-20 min. Although, in both rat and rabbit tissues, endothelin was 3- to 10-fold more potent in contracting vascular (approximate EC50, 1 nM) than nonvascular smooth muscle, rat trachea and rabbit bladder did contract in response to endothelin. Rat bladder body and rabbit trachea were the least sensitive tissues with only modest contractile responses to endothelin. To determine the role of calcium in these endothelin-induced contractions, the effects of diltiazem and nitrendipine were examined. Although diltiazem (5 x 10-5) M) or nitrendipine (10(-6) M) markedly attenuated contractions produced by KCl, neither agent significantly affected concentration response curves produced by endothelin in rabbit aorta or rat trachea. In rat aorta, nitrendipine had no effect on endothelin responses, whereas diltiazem modestly decreased the maximal contraction to endothelin. However, in rabbit bladder, both calcium channel blockers significantly decreased the maximum response to endothelin with no change in EC50. These results indicate that smooth muscle sensitivity to the contractile effects of endothelin may be both species and tissue specific.  相似文献   

18.
Cajaninstilbene acid (CSA) is a major active component present in the leaves of Cajanus cajan (L.) Millsp. The present study explores the underlying cellular mechanisms for CSA-induced relaxation in rat renal arteries. Vascular reactivity was examined in arterial rings that were suspended in a Multi Myograph System and the expression of signaling proteins was assessed by Western blotting method. CSA (0.1–10 µM) produced relaxations in rings pre-contracted by phenylephrine, serotonin, 9, 11-dideoxy-9α, 11α-epoxymethanoprostaglandin F (U46619), and 60 mM KCl. CSA-induced relaxations did not show difference between genders and were unaffected by endothelium denudation, nor by treatment with NG-nitro-L-arginine methyl ester, indomethacin, ICI-182780, tetraethylammonium ion, BaCl2, glibenclamide, 4-aminopyridine or propranolol. CSA reduced contraction induced by CaCl2 (0.01–5 mM) in Ca2+-free 60 mM KCl solution and by 30 nM (−)-Bay K8644 in 15 mM KCl solution. CSA inhibited 60 mM KCl-induced Ca2+ influx in smooth muscle of renal arteries. In addition, CSA inhibited contraction evoked by phorbol 12-myristate 13-acetate (PMA, protein kinase C agonist) in Ca2+-free Krebs solution. Moreover, CSA reduced the U46619- and PMA-induced phosphorylation of myosin light chain (MLC) at Ser19 and myosin phosphatase target subunit 1 (MYPT1) at Thr853 which was associated with vasoconstriction. CSA also lowered the phosphorylation of protein kinase C (PKCδ) at Thr505. In summary, the present results suggest that CSA relaxes renal arteries in vitro via multiple cellular mechanisms involving partial inhibition of calcium entry via nifedipine-sensitive calcium channels, protein kinase C and Rho kinase.  相似文献   

19.
Anion currents contribute to vascular smooth muscle (VSM) membrane potential. The substitution of extracellular chloride (Cl) with iodide (I) or bromide (Br) initially inhibited and then potentiated isometric contractile responses of rat aortic rings to norepinephrine. Anion substitution alone produced a small relaxation, which occurred despite a lack of active tone and minimal subsequent contraction of endothelium-intact rings (4.2 +/- 1.2% of the response to 90 mM KCl). Endothelium-denuded rings underwent a similar initial relaxation but then contracted vigorously (I > Br). Responses to 130 mM I (93.7 +/- 1.9% of 90 mM KCl) were inhibited by nifedipine (10(-6) M), niflumic acid (10(-5) M), tamoxifen (10(-5) M), DIDS (10(-4) M), and HCO(-)(3)-free buffer (HEPES 10 mM) but not by bumetanide (10(-5) M). Intact rings treated with N(omega)-nitro-L-arginine (10(-4) M) responded weakly to I (15.5 +/- 2.1% of 90 mM KCl), whereas hemoglobin (10(-5) M), indomethacin (10(-6) M), 17-octadecynoic acid (10(-5) M), and 1H-[1,2, 4]oxadiazole[4,3-a]quinoxalin-1-one (10(-6) M) all failed to augment the response of intact rings to I. We hypothesize that VSM takes up I primarily via an anion exchanger. Subsequent I efflux through anion channels having a selectivity of I > Br > Cl produces depolarization. In endothelium-denuded or agonist-stimulated vessels, this current is sufficient to activate voltage-dependent calcium channels and cause contraction. Neither nitric oxide nor prostaglandins are the primary endothelial modulator of these anion channels. If they are regulated by an endothelium-dependent hyperpolarizing factor it is not a cytochrome P-450 metabolite.  相似文献   

20.
In rat hepatocytes, active phorbol esters inhibited the alpha 1-adrenergic stimulation of phosphatidylinositol labeling with the expected potency order: phorbol myristate acetate (PMA) greater than phorbol dibutyrate (PDB). In contrast, in rabbit aorta the alpha 1-adrenergic action was inhibited dose-dependently by PDB but not by PMA. Similarly PDB (but not PMA) induced a strong contraction in rabbit aorta. The phorbol ester-induced contraction developed slowly, was dose-dependent and independent of extracellular calcium. These effects of PDB in rabbit aorta were neither inhibited by the protein kinase inhibitor H-7 nor mimicked by the synthetic diacylglycerol, OAG. Our results raise some doubts on the mechanism(s) through which the actions of PDB take place in rabbit aorta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号