首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pathogens are considered a serious threat to which wild populations must adapt, most particularly under conditions of rapid environmental change. One way host adaptation has been studied is through genetic population structure at the major histocompatibility complex (MHC), a complex of adaptive genes involved in pathogen resistance in vertebrates. However, while associations between specific pathogens and MHC alleles or diversity have been documented from laboratory studies, the interaction between hosts and pathogens in the wild is more complex. As such, identifying selective agents and understanding underlying co-evolutionary mechanisms remains a major challenge. In this issue of Molecular Ecology , Evans & Neff (2009) characterized spatial and temporal variation in the bacterial parasite community infecting Chinook salmon ( Oncorhynchus tshawytscha ) fry from five populations in British Columbia, Canada. They used a 16S rDNA sequencing-based approach to examine the prevalence of bacterial infection in kidney and looked for associations with MHC class I and II genetic variability. The authors found a high diversity of bacteria infecting fry, albeit at low prevalence. It was reasoned that spatial variability in infection rate and bacterial community phylogenetic similarity found across populations may represent differential pathogen-mediated selection pressures. The study revealed some evidence of heterozygote advantage at MHC class II, but not class I, and preliminary associations between specific MHC alleles and bacterial infections were uncovered. This research adds an interesting perspective to the debate on host–pathogen co-evolutionary mechanisms and emphasizes the importance of considering the complexity of pathogen communities in studies of host local adaptation.  相似文献   

2.
Coevolutionary interactions between plants and their bacterial and eukaryotic pathogens are mediated by virulence effectors. These effectors face the daunting challenge of carrying out virulence functions, while also potentially exposing the pathogen to host defense systems. Very strong selective pressures are imposed by these competing roles, and the subsequent genetic changes leave their footprints in the extant allelic variation. This review examines the evolutionary processes that drive pathogen-host interactions as revealed by the genetic signatures left in virulence effectors, and speculate on the different pressures imposed on bacterial versus eukaryotic pathogens. We find numerous instances of positive selection for new allelic forms, and diversifying selection for genetic variability, which results in altered host-pathogen interactions. We also describe how the genetic structure of both bacterial and eukaryotic virulence effectors may contribute to their rapid generation and turnover.  相似文献   

3.
The virulence levels attained by serial passage of pathogens through similar host genotypes are much higher than observed in natural systems; however, it is unknown what keeps natural virulence levels below these empirically demonstrated maximum levels. One hypothesis suggests that host diversity impedes pathogen virulence, because adaptation to one host genotype carries trade‐offs in the ability to replicate and cause disease in other host genotypes. To test this hypothesis, with the simplest level of population diversity within the loci of the major histocompatibility complex (MHC), we serially passaged Friend virus complex (FVC) through two rounds, in hosts with either the same MHC genotypes (pure passage) or hosts with different MHC genotypes (alternated passage). Alternated passages showed a significant overall reduction in viral titre (31%) and virulence (54%) when compared to pure passages. Furthermore, a resistant host genotype initially dominated any effects due to MHC diversity; however, when FVC was allowed to adapt to the resistant host genotype, predicted MHC effects emerged; that is, alternated lines show reduced virulence. These data indicate serial exposure to diverse MHC genotypes is an impediment to pathogen adaptation, suggesting genetic variation at MHC loci is important for limiting virulence in a rapidly evolving pathogen and supports negative frequency‐dependent selection as a force maintaining MHC diversity in host populations.  相似文献   

4.
The Major Histocompatibility Complex (MHC) is a multigene family of outstanding polymorphism. MHC molecules bind antigenic peptides in the peptide-binding region (PBR) that consists of five binding pockets (P). In this study, we compared the genetic diversity of domestic pigs to that of the modern representatives of their wild ancestors, the wild boar, in two MHC loci, the oligomorphic DQA and the polymorphic DRB1. MHC nucleotide polymorphism was compared with the actual functional polymorphism in the PBR and the binding pockets P1, P4, P6, P7, and P9. The analysis of approximately 200 wild boars collected throughout Europe and 120 domestic pigs from four breeds (three pureblood, Pietrain, Leicoma, and Landrace, and one mixed Danbred) revealed that wild boars and domestic pigs share the same levels of nucleotide and amino acid polymorphism, allelic richness, and heterozygosity. Domestication did not appear to act as a bottleneck that would narrow MHC diversity. Although the pattern of polymorphism was uniform between the two loci, the magnitude of polymorphism was different. For both loci, most of the polymorphism was located in the PBR region and the presence of positive selection was supported by a statistically significant excess of nonsynonymous substitutions over synonymous substitutions in the PBR. P4 and P6 were the most polymorphic binding pockets. Functional polymorphism, i.e., the number and the distribution of pocket variants within and among populations, was significantly narrower than genetic polymorphism, indicative of a hierarchical action of selection pressures on MHC loci.  相似文献   

5.
Pathogens are increasingly emerging in human-altered environments as a serious threat to biodiversity. In this context of rapid environmental changes, improving our knowledge on the interaction between ecology and evolution is critical. The objective of this study was to evaluate the influence of an immunocompetence gene, the major histocompatibility complex (MHC) class IIβ, on the pathogen infection levels in wild Atlantic salmon populations, Salmo salar, and identify selective agents involved in contemporary coevolution. MHC variability and bacterial infection rate were determined throughout the summer in juvenile salmon from six rivers belonging to different genetic and ecological regions in Québec, Canada. A total of 13 different pathogens were identified in kidney by DNA sequence analysis, including a predominant myxozoa, most probably recently introduced in North America. Infection rates were the highest in southern rivers at the beginning of the summer (average 47.6±6.3% infected fish). One MHC allele conferred a 2.9 times greater chance of being resistant to myxozoa, while another allele increased susceptibility by 3.4 times. The decrease in frequency of the susceptibility allele but not other MHC or microsatellite alleles during summer was suggestive of a mortality event from myxozoa infection. These results supported the hypothesis of pathogen-driven selection in the wild by means of frequency-dependent selection or change in selection through time and space rather than heterozygous advantage, and underline the importance of MHC standing genetic variation for facing pathogens in a changing environment.  相似文献   

6.
The extent to which pathogens maintain the extraordinary polymorphism at vertebrate Major Histocompatibility Complex (MHC) genes via balancing selection has intrigued evolutionary biologists for over half a century, but direct tests remain challenging. Here we examine whether a well-characterized epidemic of Mycoplasmal conjunctivitis resulted in balancing selection on class II MHC in a wild songbird host, the house finch (Carpodacus mexicanus). First, we confirmed the potential for pathogen-mediated balancing selection by experimentally demonstrating that house finches with intermediate to high multi-locus MHC diversity are more resistant to challenge with Mycoplasma gallisepticum. Second, we documented sequence and diversity-based signatures of pathogen-mediated balancing selection at class II MHC in exposed host populations that were absent in unexposed, control populations across an equivalent time period. Multi-locus MHC diversity significantly increased in exposed host populations following the epidemic despite initial compromised diversity levels from a recent introduction bottleneck in the exposed host range. We did not observe equivalent changes in allelic diversity or heterozygosity across eight neutral microsatellite loci, suggesting that the observations reflect selection rather than neutral demographic processes. Our results indicate that a virulent pathogen can exert sufficient balancing selection on class II MHC to rescue compromised levels of genetic variation for host resistance in a recently bottlenecked population. These results provide evidence for Haldane's long-standing hypothesis that pathogens directly contribute to the maintenance of the tremendous levels of genetic variation detected in natural populations of vertebrates.  相似文献   

7.
Local adaptation to heterogeneous environments generates population diversity within species, significantly increasing ecosystem stability and flows of ecosystem services. However, few studies have isolated the specific mechanisms that create and maintain this diversity. Here, we examined the relationship between water temperature in streams used for spawning and genetic diversity at a gene involved in immune function [the major histocompatibility complex (MHC)] in 14 populations of sockeye salmon (Oncorhynchus nerka) sampled across the Wood River basin in south‐western Alaska. The largest influence on MHC diversity was lake basin, but we also found a significant positive correlation between average water temperature and MHC diversity. This positive relationship between temperature and MHC diversity appears to have been produced by natural selection at very local scales rather than neutral processes, as no correlation was observed between temperature and genetic diversity at 90 neutral markers. Additionally, no significant relationship was observed between temperature variability and MHC diversity. Although lake basin was the largest driver of differences in MHC diversity, our results also demonstrate that fine‐scale differences in water temperature may generate variable selection regimes in populations that spawn in habitats separated by as little as 1 km. Additionally, our results indicated that some populations may be reaching a maximum level of MHC diversity. We postulate that salmon from populations in warm streams may delay spawning until late summer to avoid thermal stress as well as the elevated levels of pathogen prevalence and virulence associated with warm temperatures earlier in the summer.  相似文献   

8.
The genes of the major histocompatibility complex (MHC) are an important component of the vertebrate immune system and can provide insights into the role of pathogen‐mediated selection in wild populations. Here, we examined variation at the MHC class II peptide‐binding region in 27 populations of sockeye salmon (Oncorhynchus nerka), distributed among three distinct spawning ecotypes, from a complex of interconnected rivers and lakes in south‐western Alaska. We also obtained genotypes from 90 putatively neutral single nucleotide polymorphisms for each population to compare the relative roles of demography and selection in shaping the observed MHC variation. We found that MHC divergence was generally partitioned by spawning ecotype (lake beaches, rivers and streams) and was 30 times greater than variation at neutral markers. Additionally, we observed substantial differences in modes of selection and diversity among ecotypes, with beach populations displaying higher levels of directional selection and lower MHC diversity than the other two ecotypes. Finally, the level of MHC differentiation in our study system was comparable to that observed over much larger geographic ranges, suggesting that MHC variation does not necessarily increase with increasing spatial scale and may instead be driven by fine‐scale differences in pathogen communities or pathogen virulence. The low levels of neutral structure and spatial proximity of populations in our study system indicate that MHC differentiation can be maintained through strong selective pressure even when ample opportunities for gene flow exist.  相似文献   

9.
Pathogen‐mediated selection is thought to maintain the extreme diversity in the major histocompatibility complex (MHC) genes, operating through the heterozygote advantage, rare‐allele advantage and fluctuating selection mechanisms. Heterozygote advantage (i.e. recognizing and binding a wider range of antigens than homozygotes) is expected to be more detectable when multiple pathogens are considered simultaneously. Here, we test whether MHC diversity in a wild population of European badgers (Meles meles) is driven by pathogen‐mediated selection. We examined individual prevalence (infected or not), infection intensity and co‐infection of 13 pathogens from a range of taxa and examined their relationships with MHC class I and class II variability. This population has a variable, but relatively low, number of MHC alleles and is infected by a variety of naturally occurring pathogens, making it very suitable for the investigation of MHC–pathogen relationships. We found associations between pathogen infections and specific MHC haplotypes and alleles. Co‐infection status was not correlated with MHC heterozygosity, but there was evidence of heterozygote advantage against individual pathogen infections. This suggests that rare‐allele advantages and/or fluctuating selection, and heterozygote advantage are probably the selective forces shaping MHC diversity in this species. We show stronger evidence for MHC associations with infection intensity than for prevalence and conclude that examining both pathogen prevalence and infection intensity is important. Moreover, examination of a large number and diversity of pathogens, and both MHC class I and II genes (which have different functions), provide an improved understanding of the mechanisms driving MHC diversity.  相似文献   

10.
Antagonistic coevolution between hosts and parasites has been proposed as a mechanism maintaining genetic diversity in both host and parasite populations. In particular, the high level of genetic diversity usually observed at the major histocompatibility complex (MHC) is generally thought to be maintained by parasite-driven selection. Among the possible ways through which parasites can maintain MHC diversity, diversifying selection has received relatively less attention. This hypothesis is based on the idea that parasites exert spatially variable selection pressures because of heterogeneity in parasite genetic structure, abundance or virulence. Variable selection pressures should select for different host allelic lineages resulting in population-specific associations between MHC alleles and risk of infection. In this study, we took advantage of a large survey of avian malaria in 13 populations of the house sparrow (Passer domesticus) to test this hypothesis. We found that (i) several MHC alleles were either associated with increased or decreased risk to be infected with Plasmodium relictum, (ii) the effects were population specific, and (iii) some alleles had antagonistic effects across populations. Overall, these results support the hypothesis that diversifying selection in space can maintain MHC variation and suggest a pattern of local adaptation where MHC alleles are selected at the local host population level.  相似文献   

11.
Climate change will strongly impact aquatic ecosystems particularly in arid and semi‐arid regions. Fish–parasite interactions will also be affected by predicted altered flow and temperature regimes, and other environmental stressors. Hence, identifying environmental and genetic factors associated with maintaining diversity at immune genes is critical for understanding species’ adaptive capacity. Here, we combine genetic (MHC class IIβ and microsatellites), parasitological and ecological data to explore the relationship between these factors in the remnant wild Rio Grande silvery minnow (Hybognathus amarus) population, an endangered species found in the southwestern United States. Infections with multiple parasites on the gills were observed and there was spatio‐temporal variation in parasite communities and patterns of infection among individuals. Despite its highly endangered status and chronically low genetic effective size, Rio Grande silvery minnow had high allelic diversity at MHC class IIβ with more alleles recognized at the presumptive DAB1 locus compared to the DAB3 locus. We identified significant associations between specific parasites and MHC alleles against a backdrop of generalist parasite prevalence. We also found that individuals with higher individual neutral heterozygosity and higher amino acid divergence between MHC alleles had lower parasite abundance and diversity. Taken together, these results suggest a role for fluctuating selection imposed by spatio‐temporal variation in pathogen communities and divergent allele advantage in maintenance of high MHC polymorphism. Understanding the complex interaction of habitat, pathogens and immunity in protected species will require integrated experimental, genetic and field studies.  相似文献   

12.
Genes of the major histocompatibility complex (MHC) play a critical role in immune recognition and are the most genetically diverse loci known. One hypothesis to explain this diversity postulates that pathogens adapt to common MHC haplotypes and thus favour selection of new or rare alleles. To determine whether the pathogenic yeast Cryptococcus neoformans adapts to MHC-dependent immune responses, it was serially passaged in two independent replicate lines of five B10 MHC-congenic strains and Balb/c mice. All passaged lines increased in virulence as measured by reduced host survival. MHC influenced the rate (trajectory) of virulence increase during passages as measured by significant differences in mortality rate (p < 0.001). However, when the post-passage strains were tested, no MHC differences in mortality rate remained and only minor differences in titres were observed. Also contrary to expectations, increased virulence in three lines passaged in B10 mice had a larger effect in Balb/c mice, and the evolution of virulence in lines passaged in alternating hosts was not retarded. To our knowledge, these data represent the first experimental test of MHC-specific adaptation in a non-viral pathogen. The failure to observe MHC effects despite dramatically increased virulence and host-genotype-specific adaptation to non-MHC genes suggests that escape of MHC-dependent immune recognition may be difficult for pathogens with unlimited epitopes or that other virulence factors can swamp MHC effects.  相似文献   

13.
The major histocompatibility complex (MHC) is a key model of genetic polymorphism, but the mechanisms underlying its extreme variability are debated. Most hypotheses for MHC diversity focus on pathogen-driven selection and predict that MHC polymorphism evolves under the pressure of a diverse parasite fauna. Several studies reported that certain alleles offer protection against certain parasites, yet it remains unclear whether variation in parasite pressure more generally covaries with allelic diversity and rates of molecular evolution of MHC across species. We tested this prediction in a comparative study of 41 primate species. We characterized polymorphism of the exon 2 of DRB region of the MHC class II. Our phylogenetic analyses controlled for the potential effects of neutral mutation rate, population size, geographic origin and body mass and revealed that nematode species richness associates positively with nonsynonymous nucleotide substitution rate at the functional part of the molecule. We failed to find evidence for allelic diversity being strongly related to parasite species richness. Continental distribution was a strong predictor of both allelic diversity and substitution rate, with higher values in Malagasy and Neotropical primates. These results indicate that parasite pressure can influence the different estimates of MHC polymorphism, whereas geography plays an independent role in the natural history of MHC.  相似文献   

14.
To understand the evolution of genetic diversity within species--bacterial and others--we must dissect the first steps of genetic adaptation to novel habitats, particularly habitats that are suboptimal for sustained growth where there is strong selection for adaptive changes. Here, we present the view that bacterial human pathogens represent an excellent model for understanding the molecular mechanisms of the adaptation of a species to alternative habitats. In particular, bacterial pathogens allow us to develop analytical methods to detect genetic adaptation using an evolutionary 'source-sink' model, with which the evolution of bacterial pathogens can be seen from the angle of continuous switching between permanent (source) and transient (sink) habitats. The source-sink model provides a conceptual framework for understanding the population dynamics and molecular mechanisms of virulence evolution.  相似文献   

15.
Intraspecific pathogen diversity is crucial for understanding the evolution and maintenance of adaptation in host–pathogen interactions. Traits associated with virulence are often a significant source of variation directly impacted by local selection pressures. The specialist fungal entomopathogen, Metarhizium acridum, has been widely implemented as a biological control agent of locust pests in tropical regions of the world. However, few studies have accounted for natural intraspecific phenotypic and genetic variation. Here, we examine the diversity of nine isolates of M. acridum spanning the known geographic distribution, in terms of (1) virulence towards two locust species, (2) growth rates on three diverse nutrient sources, and (3) comparative genomics to uncover genomic variability. Significant variability in patterns of virulence and growth was shown among the isolates, suggesting intraspecific ecological specialization. Different patterns of virulence were shown between the two locust species, indicative of potential host preference. Additionally, a high level of diversity among M. acridum isolates was observed, revealing increased variation in subtilisin-like proteases from the Pr1 family. These results culminate in the first in-depth analysis regarding multiple facets of natural variation in M. acridum, offering opportunities to understand critical evolutionary drivers of intraspecific diversity in pathogens.  相似文献   

16.
Gila trout (Oncorhynchus gilae gilae) was federally protected in 1973 because of severe declines in abundance and geographic range size. At present, four relict genetic lineages of the species remain in mountain streams of New Mexico and Arizona, USA. Management actions aimed at species recovery, including hatchery production and restocking of formerly occupied streams, have been guided by information from non-functional genetic markers. In this study, we investigated genetic variation at exon 2 of the major histocompatibility complex (MHC) class II β gene that is involved in pathogen resistance and thus presumably under natural selection. Phylogenetic analysis revealed trans-species polymorphism and a significantly high ratio of non-synonymous to synonymous amino acid changes consistent with the action of historical balancing selection that maintained diversity at this locus in the past. However, Gila trout exhibited low allelic diversity (five alleles from 142 individuals assayed) compared to some other salmonid fishes, and populations that originated exclusively from hatcheries possessed three or fewer MHC alleles. Comparative analysis of genetic variation at MHC and six presumably neutrally evolving microsatellite loci revealed that genetic drift cannot be rejected as a primary force governing evolution of MHC in contemporary populations of Gila trout. Maintenance of diversity at MHC will require careful implementation of hatchery breeding protocols and continued protection of wild populations to prevent loss of allelic diversity due to drift.  相似文献   

17.
Individuals in natural populations are frequently exposed to a wide range of pathogens. Given the diverse profile of gene products involved in responses to different types of pathogen, this potentially results in complex pathogen-specific selection pressures acting on a broad spectrum of immune system genes in wild animals. Thus far, studies into the evolution of immune genes in natural populations have focused almost exclusively on the Major Histocompatibility Complex (MHC). However, the MHC represents only a fraction of the immune system and there is a need to broaden research in wild species to include other immune genes. Here, we examine the evidence for natural selection in a range of non-MHC genes in a natural population of field voles (Microtus agrestis). We concentrate primarily on genes encoding cytokines, signalling molecules critical in eliciting and mediating immune responses and identify signatures of natural selection acting on several of these genes. In particular, genetic diversity within Interleukin 1 beta and Interleukin 2 appears to have been maintained through balancing selection. Taken together with previous findings that polymorphism within these genes is associated with variation in resistance to multiple pathogens, this suggests that pathogen-mediated selection may be an important force driving genetic diversity at cytokine loci in voles and other natural populations. These results also suggest that, along with the MHC, preservation of genetic variation within cytokine genes should be a priority for the conservation genetics of threatened wildlife populations.  相似文献   

18.
Genetic diversity is fundamental to maintaining the long‐term viability of populations, yet reduced genetic variation is often associated with small, isolated populations. To examine the relationship between demography and genetic variation, variation at hypervariable loci (e.g., microsatellite DNA loci) is often measured. However, these loci are selectively neutral (or near neutral) and may not accurately reflect genomewide variation. Variation at functional trait loci, such as the major histocompatibility complex (MHC), can provide a better assessment of adaptive genetic variation in fragmented populations. We compared patterns of microsatellite and MHC variation across three Eastern Massasauga (Sistrurus catenatus) populations representing a gradient of demographic histories to assess the relative roles of natural selection and genetic drift. Using 454 deep amplicon sequencing, we identified 24 putatively functional MHC IIB exon 2 alleles belonging to a minimum of six loci. Analysis of synonymous and nonsynonymous substitution rates provided evidence of historical positive selection at the nucleotide level, and Tajima's D provided support for balancing selection in each population. As predicted, estimates of microsatellite allelic richness, observed, heterozygosity, and expected heterozygosity varied among populations in a pattern qualitatively consistent with demographic history and abundance. While MHC allelic richness at the population and individual levels revealed similar trends, MHC nucleotide diversity was unexpectedly high in the smallest population. Overall, these results suggest that genetic variation in the Eastern Massasauga populations in Illinois has been shaped by multiple evolutionary mechanisms. Thus, conservation efforts should consider both neutral and functional genetic variation when managing captive and wild Eastern Massasauga populations.  相似文献   

19.
The genes of the major histocompatibility complex (MHC) are a key component of the adaptive immune system and among the most variable loci in the vertebrate genome. Pathogen-mediated natural selection and MHC-based disassortative mating are both thought to structure MHC polymorphism, but their effects have proven difficult to discriminate in natural systems. Using the first model of MHC dynamics incorporating both survival and reproduction, we demonstrate that natural and sexual selection produce distinctive signatures of MHC allelic diversity with critical implications for understanding host–pathogen dynamics. While natural selection produces the Red Queen dynamics characteristic of host–parasite interactions, disassortative mating stabilizes allele frequencies, damping major fluctuations in dominant alleles and protecting functional variants against drift. This subtle difference generates a complex interaction between MHC allelic diversity and population size. In small populations, the stabilizing effects of sexual selection moderate the effects of drift, whereas pathogen-mediated selection accelerates the loss of functionally important genetic diversity. Natural selection enhances MHC allelic variation in larger populations, with the highest levels of diversity generated by the combined action of pathogen-mediated selection and disassortative mating. MHC-based sexual selection may help to explain how functionally important genetic variation can be maintained in populations of conservation concern.  相似文献   

20.
Aim Polymorphism at neutral markers and at MHC loci in rodent populations living on islands is generally low. The main genetic factors that may contribute to a reduced level of genetic variability are genetic drift, reduced gene flow and founder events. We investigated the pattern of polymorphism at the second exon of the Mhc‐DQA gene in island populations of Apodemus sylvaticus and in their mainland counterparts to investigate the pattern of MHC polymorphism in a phylogeographical context and to assess the impact of insularity on diversity at this locus. Location Eight north Mediterranean populations of Apodemus sylvaticus were studied, including five island populations (Majorca, Minorca, Porquerolles, Port‐Cros and Sicily) and three mainland populations. Methods cDNA sequencing and nucleotide sequences analyses. Synonymous and non‐synonymous substitutions were examined at the PBR and non‐PBR sites. The DQA allelic distribution in populations was compared with the woodmouse phylogeography. Results This study presents novel DQA alleles. High polymorphism of the DQA locus is recorded in natural populations of A. sylvaticus with 13 alleles being widely distributed irrespective of the geographical origin and palaeoclimatic history of populations. The DQA locus does not show the expected pattern for non‐synonymous substitutions at the PBR sites. However, island populations show a weak loss of polymorphism in comparison with their mainland counterparts. Main conclusions The DQA locus in the woodmouse seems to be subject to weak selection and does not allow resolution of phylogeographical relationships among European woodmouse populations. The presence of at least three alleles in island populations and the maintenance of five alleles between the two European lineages over 1.5 Myr suggest that balancing selection may act within populations, and more precisely within island populations, to maintain genetic variability. This study shows that phylogeographical studies are a prerequisite for any genetic investigation of selected genes in natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号