首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Litter accumulation in woodlands contaminated by Pb,Zn, Cd and Cu   总被引:4,自引:0,他引:4  
Summary Close to a primary lead-zinc-cadmium smelter the standing crop of litter in woodlands was found to be elevated relative to more distant sites. The total litter accumulation is similar to that from contaminated sites reported by other authors but in this case the concentrations of heavy metals are considerably lower than those reported for other sites. Evidence is provided to support the hypothesis that within the woodlands studied, litter accumulation is not closely pH dependent, but is clearly related to both cadmium and zinc concentrations in litter. Litter accumulation occurs in certain particle size ranges and fractionation shows that the weight of accumulated litter in these size ranges is highly correlated to cadmium concentrations. These results are discussed in relation to the reported possible long term effects of metal contamination on decomposition processes and the possibility of adaptation to these adverse effects.  相似文献   

2.
Soil heavy metal pollution resulting from human activities is causing major concern due to its potential risk. In this study, four crop species with different cultivars were planted in 2 levels (heavily and slightly) of heavy metal contaminated soils, and the accumulation of Cu, Zn, Pb, and Cd in the edible parts of the crops were investigated. Metal concentrations in sesame seeds grown in both soils exceeded both the Chinese Food Hygiene Standard (CFHS) and Codex Alimentarius Commission Standard (CACS), while the metal concentrations in all pepper cultivars in the slightly contaminated soil were below the CFHS and CACS. Other crops were generally in between in both soils. Among the tested crops, the order of soil-plant transfer factor (TF) was: sesame > green soybean > cowpea > pepper. Additionally, old fruit of cowpea contained larger amounts of metals than young fruit. It suggests that sesame should not be planted in the metal contaminated area, while pepper cultivar "Chaobianjiao No.1" may be an alternative to be grown in the slightly contaminated soil. There were differences in individual human susceptibilities to metals. Therefore, a comprehensive risk assessment should consider the frequency, amount and species consumed by human besides metal concentrations in crops.  相似文献   

3.
农作物体内铅,镉,铜的化学形态研究   总被引:67,自引:8,他引:67  
本文报道了农作物体内重金属存在的化学形态。用逐步提取法分析了生长在污染土壤上的水稻、小麦的根与叶。结果表明,在两种作物中,根部的铅以活性较低的醋酸可提取态与盐酸可提取态占优势,而叶中的铅以盐酸可提取态占优势。不论根部或叶部,在各种形态镉中,以氯化钠可提取镉所占比例较高,作用较重要。作物体内的铜活性较强,根部以乙醇可提取态占优势,叶中以水提取态占优势。各种结合形态的重金属迁移能力、毒性效应有显著差异。作物体内重金属化学形态特征与其表观毒性效应有密切联系。  相似文献   

4.
Organic materials with different functional groups can be used to enhance metal bioavailability. Traditional organic materials (rice straw and clover) and ethylenediamine disuccinic acid (EDDS) were applied to enhance metal uptake from polluted soil by Sedum plumbizincicola after repeated phytoextraction. Changes in pH, dissolved organic carbon (DOC) and metal concentrations were determined in the soil solution after EDDS application. Amendment of the soil with ground rice straw or ground clove resulted in higher concentrations of Cd only (by factors of 1.92 and 1.71 respectively) in S. plumbizincicola compared to control soil. Treatment with 3 mmol kg(-1) EDDS increased all the metals studied by factors of 60.4, 1.67, and 0.27 for Cu, Cd, and Zn, respectively. EDDS significantly increased soil solution DOC and pH and increased soil plant-available metals above the amounts that the plants could take up, resulting in high soil concentrations of soluble metals and high risk of ground water contamination. After repeated phytoremediation of metal contaminated soils the efficiency of metal removal declines as the concentrations of bioavailable metal fractions decline. Traditional organic materials can therefore be much more effective and environmentally friendly amendments than EDDS in enhancing phytoremediation efficiency of Cd contaminated soil  相似文献   

5.
Most metals disperse easily in environments and can be bioconcentrated in tissues of many organisms causing risks to the health and stability of aquatic ecosystems even at low concentrations. The use of plants to phytoremediation has been evaluated to mitigate the environmental contamination by metals since they have large capacity to adsorb or accumulate these elements. In this study we evaluate Salvinia minima growth and its ability to accumulate metals. The plants were cultivated for about 60 days in different concentrations of Cd, Ni, Pb and Zn (tested alone) in controlled environmental conditions and availability of nutrients. The results indicated that S. minima was able to grow in low concentrations of selected metals (0.03 mg L?1 Cd, 0.40 mg L?1 Ni, 1.00 mg L?1 Pb and 1.00 mg L?1 Zn) and still able to adsorb or accumulate metals in their tissues when cultivated in higher concentrations of selected metals without necessarily grow. The maximum values of removal metal rates (mg m2 day?1) for each metal (Cd = 0.0045, Ni = 0.0595, Pb = 0.1423 e Zn = 0.4046) are listed. We concluded that S. minima may be used as an additional tool for metals removal from effluent.  相似文献   

6.
Epidermal uptake of Pb,Cd, and Zn in tubificid worms   总被引:1,自引:0,他引:1  
Hans Back 《Oecologia》1990,85(2):226-232
Summary The epidermal uptake of Pb, Cd, and the essential element Zn by tubificid worms was investigated. The animals were starved and contaminated via the water column at 4°C and 25°C. Atomic absorption spectroscopy (AAS), energy-dispersive X-ray microanalysis (EDX), laser induced mass analysis (LAMMA), electron microscopy, and the sulfide-silver method at the electron microscopical level were used. The sulfidesilver method revealed many reaction products indicating heavy metals in membrane-limited lysosomal structures in epidermal cells of contaminated Limnodrilus udekemianus. In these lysosomes, which were particularly abundant in the epidermis of the hind end, Pb, Cd, and Zn were detected by LAMMA and EDX analysis. Beside this distinct occurrence of the three elements a uniform pattern of reaction products was found in epidermal cells after contamination with Cd and Zn, but not after treatment with Pb. As shown by atomic absorption spectroscopy, Cd was the most enriched element at 25°C, followed by Pb and Zn. Simultaneous application of Zn reduced the uptake of Cd, whereas the uptake of Pb was increased. At 4° C uptake of Pb and Cd was slower than at 25° C, while Zn uptake was blocked completely. This shows that heavy metal uptake can be strongly dependent on environmental conditions, which has to be taken into account if animals are used as monitor organisms for heavy metal pollution in the environment.  相似文献   

7.
Dolomite collected from Surat Thani Province in Thailand was investigated for use as a sorbent for the removal of divalent heavy metal cations from an aqueous solution. The sorbent had a surface area of 2.46 m2/g and a pH of zero point charge (pHzpc) of 9.2. Batch sorption was used to examine the effect of the pH (pH 3–7) on the sorption capacity of Cd2+, Pb2+ and Zn2+, alone or together as an equimolar mixture at various concentrations. Alone, each heavy metal cation was adsorbed faster at a higher pH, where the sorption of Cd2+ and Pb2+ fitted a Langmuir isotherm, but Zn2+ sorption best fitted a Freundlich isotherm. Under equimolar competitive sorption, the sorption capacity of each cation was decreased by 75.8% (0.29–0.07 mM/g), 82.8% (0.53–0.09 mM/g), and 95.7% (0.84–0.04 mM/g) for Cd2+, Pb2+ and Zn2+, respectively, compared to that with the respective single cation. Desorption of these heavy metal cations from dolomite was low, with an average desorption level of 0.06–17.4%. Furthermore, since dolomite is readily available and rather cheap, it is potentially suitable for use as an efficient sorbent to sorb Cd2+ and Pb2+, and perhaps Zn2+, from contaminated water.  相似文献   

8.
In order to show the accumulation of Cd, Pb, Cu and Zn in smokers, levels of these metals in serum were determined in 108 subjects: 32 non-smokers, 37 average cigarette smokers and 39 heavy cigarette smokers. The analysis was carried out by potentiometric stripping analysis (PSA) with the Tecator "Striptec System". Backward oxidation time of the amalgamated metals, by means of electrolysis, in a thin "film" of mercury in an electrode, gives their concentration measure. Our data showed an increase in average values of Cd and Pb in the serum of heavy smokers compared with average and non-smokers. Instead, as regards Cu and Zn, no differences were found in the two groups of smokers compared with the non-smokers used as controls. Results obtained of the Cd and Pb levels in serum are compatible with the presence of these metals in cigarette tobacco and inhaling them could contribute to disease connected with their accumulation in the human organism. For these subjects the increase in Cd values is of particular importance as it could predispose pulmonary emphysema.  相似文献   

9.
A pot experiment with an orthogonal experimental design L9(34) was conducted to study the combined effects of Cd, Zn, and Pb on the growth and metal content of celery grown in a ferric acrisol. The uptake of Cd, Zn, and Pb by celery was not only affected by the individual elements, but also by combinations of the elements. The effect of coexisting elements on plant uptake of the heavy metals depended on the concentration ratios of the elements. There is a given ratio where a maximum antagonism or synergism effect occurs. The combinations of elements clearly affected the dry weight of celery and the heavy metal concentration in celery. The removal rate (the ratio of plant total uptake to the total metal content in soil) was in the order of Cd > Zn > Pb, with no obvious difference between the removal rate under single pollution and that under compound pollution.  相似文献   

10.
Toxic metal accumulation in soils of agricultural interest is a serious problem needing more attention, and investigations on soil–plant metal transfer must be pursued to better understand the processes involved in metal uptake. Arbuscular mycorrhizal (AM) fungi are known to influence metal transfer in plants by increasing plant biomass and reducing metal toxicity to plants even if diverging results were reported. The effects of five AM fungi isolated from metal contaminated or non-contaminated soils on metal (Cd, Zn) uptake by plant and transfer to leachates was assessed with Medicago truncatula grown in a multimetallic contaminated agricultural soil. Fungi isolated from metal-contaminated soils were more effective to reduce shoot Cd concentration. Metal uptake capacity differed between AM fungi and depended on the origin of the isolate. Not only fungal tolerance and ability to reduce metal concentrations in plant but also interactions with rhizobacteria affected heavy metal transfer and plant growth. Indeed, thanks to association with nodulating rhizobacteria, one Glomus intraradices inoculum increased particularly plant biomass which allowed exporting twofold more Cd and Zn in shoots as compared to non-mycorrhizal treatment. Cd concentrations in leachates were variable among fungal treatments, but can be significantly influenced by AM inoculation. The differential strategies of AM fungal colonisation in metal stress conditions are also discussed.  相似文献   

11.
Chemical fractionation methods may be capable of providing an inexpensive estimate of contaminant bioavailability and risk in smelter-contaminated soil. In this study, the relationship between metal fractionation and methods used to estimate bioavailability of these metal contaminants in soil was evaluated. The Potentially BioAvailable Sequential Extraction (PBASE) was used for Cd, Pb, and Zn fractionation in 12 soils contaminated from Pb and Zn mining and smelting activities. The PBASE procedure is a four-step sequential extraction: extraction 1 (E1) is 0.5 M Ca(NO3)2, E2 is 1.0 M NaOAc, E3 is 0.1 M Na2EDTA, and E4 is 4 M HNO3. Metal bioavailability for two human exposure pathways, plant uptake (phytoavailability) and incidental ingestion (gastrointestinal, Gl, availability), was estimated using a lettuce (Lactuca sativa L.) bioassay and the in vitro-Gl Physiologically Based Extraction Test(PBET). Metal in the PBASE E1 fraction was correlated with lettuce Cd (P < 0.001) and Zn (P < 0.05) and was the best predictor of Cd and Zn phytoavailability. Only total metal content or the sum of all PBASE fractions, ΣE1–4, were correlated (P < 0.001) with PBET gastric phase for Pb. The sum of the first two PBASE fractions, ΣE1–2, was strongly correlated (P < 0.001) with Pb extracted by the PBET intestinal phase. The PBASE extraction method can provide information on Cd and Zn phytoavailability and Gl availability of Pb in smelter-contaminated soils.  相似文献   

12.
A new method CEHIXM for extracting hea vy metals from high permeable soils under coupled electric-hydraulic gradient was investigated. Spent foundry sand, containing high levels of Pb, Cd, Zn, and Mn, was used as the contaminated source. A suitable ion-exchange resin was used for trapping and recovering the metals from the aqueous medium. Control experiments were conducted using hydraulic gradient alone to assess the leachability of the contaminants. The experiments were repeated with 50?V across the soil sample and without hydraulic gradient to evaluate ion migration under electric gradient. A number of CEHIXM experiments involving both hydraulic and electric gradients were conducted at a constant DC voltage of 50?V and a constant flow velocity of 0.0178?cm/ sec. With hydraulic gradient only, 3 to 8% metals were extracted, whereas with electric gradient only the metal removal rate was 0 to 0.7%. When the electric and hydraulic gradients were coupled, as much as 93% of Pb, 97% of Cd, 98% of Zn, and 94% of Mn were extracted, after 100?h of the processing.  相似文献   

13.
14.
The relationships between the concentrations of zinc, cadmium and lead in aquatic plants and the concentrations of these metals in the ambient water have been compared for three algae (Lemanea fluviatilis, Cladophora glomerata, Stigeoclonium tenue), one liverwort (Scapania undulata) and three mosses (Amblystegium riparium, Fontinalis antipyretica, Rhynchostegium riparioides). The data to establish these relationships are all based on our own studies, some published already, some here for the first time. They come from a wide range of streams and rivers in Belgium, France, Germany, Ireland, Italy and the U.K. There were significant bivariate positive relationships between concentrations of Zn, Cd and Pb in water and plant for all species except Cd and Pb in Stigeoclonium tenue. When relationships were compared using datasets with total or filtrable metals in water, most differences were slight. However there were marked differences both between species and between metals. Comparison for the seven species of Zn in the plant when aqueous Zn is 0.01 mg l–1, a concentration at which all seven were found, shows that the four bryophytes had the highest concentrations; however the two green algae had steeper slopes (representing change in concentration in plant in response to change in aqueous concentration). Lemanea fluviatilis had a slope closer to that of the bryophytes, but the concentration was about one order of magnitude lower. All seven species were found at a concentration of 0.01 mg l–1 Pb, and at this concentration there were almost two orders of magnitude difference between the species which accumulated the most (Scapania undulata) and the one which accumulated the least (Cladophora glomerata). The steepest slope was however shown by C. glomerata.When multiple stepwise regression was applied, the aqueous metal under consideration was the first variable extracted in only nine of the 21 regressions. However one of the other heavy metals (aqueous or accumulated) was extracted first in all but one of the other regressions, presumably because the occurrences of Zn, Cd and Pb were strongly cross-correlated. The principal non-heavy metal factor extracted for Zn and Cd, but not Pb, was aqueous Ca. The relevance of these results to the use of aquatic plants for monitoring heavy metals is discussed.  相似文献   

15.
Studies on two lead and zinc smelters in Northern France (Metaleurop Nord and Umicore) showed that the level of metallic contamination of kitchen garden soils is higher than the agricultural soils located in the same environment. This results most particularly from cropping practices and the addition of various products. Due to the physical and chemical parameters of these soils, the behaviour and transfer of pollutants towards various plants (grass, trees, and vegetables) may be perceptibly different than what is observed on agricultural soils.For a better understanding of pollutant behaviour in kitchen garden topsoils, the Cd, Pb and Zn was fractionated using the SM&T protocol and various extracting solutions (CaCl2, acetic acid, and citric acid) to evaluate their mobility in two highly contaminated soils chosen in the area affected by the past atmospheric emissions of the two smelters. In addition, agricultural topsoil was sampled in a non-massively contaminated area and was therefore chosen as the control soil.The three soils were amended with a mixture of hydroxyapatite (HA) and diammonium phosphate (DAP). At 6 months, extracting procedures were carried out to evaluate the effects of the amendment on the mobility of Cd, Pb and Zn. This step was then supplemented by an evaluation of the impact of the amendment on the phytoavailability of pollutants, which was determined in plant uptake studies with ryegrass (Lolium perenne L.) by considering only the pollutant concentrations in their shoots. Two experiments were carried out. In the first one, unamended and amended soils and ryegrass were watered with distilled water (pH = 7). In the second one, osmosed water (pH = 5.5) was used to evaluate the effects of the acid water-phosphate amendment system on the mobility and phytoavailability of Cd, Pb and Zn. Six months after the start of the experiments, the selective extractions showed that the effectiveness of the amendment studied depended on the element, the soil and the water's pH. Reductions of metal eluted from the contaminated soils were 1.5-37.9% for Cd, and 9.1-80.9% for Pb. Application of P amendment to the combination of osmosed water was generally the most effective for immobilising Cd and Pb elution. In contrast, the mixture of HA and DAP was ineffective for reducing Zn elution. The plant-fresh biomass yield was significantly (p < 0.05) increased by the combination of P amendment and distilled water, whereas a reduction of biomass was recorded with the combined amendment and osmosed water. Addition of P amendment generally reduced Pb uptake in ryegrass shoots (1-47%), while both Cd and Zn were increased by 17.9-79% and 0.45-100%, respectively.  相似文献   

16.
Trace elements in soils exist as components of several different fractions. We have analyzed the correlation between total and extractable (EDTA, calcium chloride and deionized water) Zn, Pb and Cu concentrations in soils and the concentration of these elements in plant leaves. Soil and plant samples have been taken from Sulcis-Iglesiente (Sardinia), an area rich in mining tailings. This has made that the concentrations of the trace element under study in soils were varied. Three plants have been studied: Dittrichia viscosa, Cistus salviifolius, and Euphorbia pithyusa subsp. cupanii. Soil samples beneath each of them at depths of 0–30 and 30–60 cm have been considered. The highest concentration of trace elements in the leaves of the studied species has been found for Zn. The calcium carbonate content and the crystalline and amorphous forms of iron in the soil have determined the concentration of metal in plant leaves. The soil concentrations that have been found with the extraction methods are uncorrelated with Pb and Cu concentrations in plants, but Zn is correlated with the fraction extracted with EDTA and calcium chloride. The concentrations of trace metals in plants are most closely related to the soil contents of CaCO3, electrical conductivity, Feox, and Fedc.  相似文献   

17.
The heavy metals, Cd, Cu, Cr, Zn, and Pb, were used to incubate healthy specimens of the freshwater mussel species, Anodonta cygnea. Afterwards, their biological fluids, either haemolymph or extrapallial fluid were analyzed for the presence of several organic constituents, known to be important for biomineralization, such as proteins, glycosaminoglycans (GAGs) and glucosamine. Proteins were subjected to further study, namely through the total amino acid determination after acid hydrolysis. The most disturbing pollutants tested seem to be Pb, Zn, and Cr, which caused highly decreased overall compositions, namely with respect to protein, and glucosamine, in comparison to the control group. This suggests that this group contributes to a decrease of the metabolic activity, and thus mineralization, in the exposed animals.  相似文献   

18.
The influence of repeated applications of tartrate (TAR) and glutamate (GLU) at 50-mmol kg(-1) of soil on Cd, Cu, Pb, and Zn distribution between a contaminated soil and Paulownia tomentosa was investigated. TAR and GLU were applied by a single or a double dosage, the latter carried out with an interval between the two applications of thirty days. The comparison of the differences in mean amounts of metals accumulated in the whole plant at the end of single and double TAR and GLU application experiments indicated the positive effect of repeated GLU applications on the accumulation of Cu, Pb, and Zn by Paulownia tomentosa as compared to untreated controls. A similar effect was not observed for the TAR treatments. When soil treated with either TAR or GLU was compared with untreated controls, no significant effect on heavy-metal concentrations in the soil solution was observed 30 days after treatment, suggesting the absence of an increase of the long-term leaching risk of heavy metals in aquifers and surface waters due to the ligand application. A cost analysis of the treatment is also reported.  相似文献   

19.
重金属Cd、Zn、Cu、Pb对土壤微生物和酶活性的影响   总被引:3,自引:0,他引:3  
采用室内培养实验(25℃),研究了不同培养时间下重金属Cd、Zn、Cu、Pb(浓度分别为50,800,400,800mg.kg-1)污染对土壤微生物和酶活性的影响。结果表明,土壤蔗糖酶、过氧化氢酶和脱氢酶活性随着培养时间的增加而显著下降,在培养20d的时候达到最小值,然后酶活性缓慢升高。Cu对脲酶活性以及Cd对酸性磷酸酶和脲酶活性的抑制作用随时间增加而增加。土壤微生物生物量碳、细菌、真菌和放线菌数量随培养时间的增加均表现出先降低后升高的变化趋势。Cd和Cu对微生物生物量氮的抑制作用则随着培养时间的增加而增强,在培养30d时微生物生物量氮到达最低值,分别较培养10天减少了12.6%和16.5%。  相似文献   

20.
We used the stable isotope 13C to distinguish between food web components that depended on warm season grasses with the C4 photosynthetic pathway and those that depended on plants with the C3 pathway. The study site was contaminated by heavy metals from a zinc smelter that operated near Palmerton, Pennsylvania, U.S.A. C3 plants only contributed 1.16% of aboveground primary productivity, whereas recently seeded (5–7 year old) warm season C4 grasses contributed the remaining 98.84%. Analyses of tissue samples revealed that the carbon content of invertebrates and vertebrates did not reflect the composition of the vegetation. Of 135 samples, 48 (36%) had greater than 75% of their carbon from C4‐derived sources, while 32 (24%) of the samples had less than 25%. However, carbon from C4 grasses passed through to higher trophic levels, as shown by the abundance of predators with a high proportion of C4‐derived carbon. We document three channels of carbon flux through the food web, one based on warm season grasses, now supporting a functioning ecosystem at all key trophic levels, one based on C3 plants, and a third based on detritus. Theoretical and empirical studies have shown that relative configurations of such channels are important to ecosystem stability. Our results suggest that functional groupings of plants based on photosynthetic pathway or other plant traits likely form the basis for food web compartments. By using diverse functional groups of plants for reclamation or restoration, practitioners may be able to aid the development of channels and thereby promote desired ecosystem states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号