首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
P. Laurenson  J. Rine 《Genetics》1991,129(3):685-696
  相似文献   

5.
Silencing in the yeast Saccharomyces cerevisiae is known in three classes of loci: in the silent mating-type loci HML and HMR, in subtelomeric regions, and in the highly repetitive rDNA locus, which resides in the nucleolus. rDNA silencing differs markedly from the other two classes of silencing in that it requires a DNA-associated protein complex termed RENT. The Net1 protein, a central component of RENT, is required for nucleolar integrity and the control of exit from mitosis. Another RENT component is the NAD(+)-dependent histone deacetylase Sir2, which is the only silencing factor known to be shared among the three classes of silencing. Here, we investigated the role of Net1 in HMR silencing. The mutation net1-1, as well as NET1 expression from a 2micro-plasmid, restored repression at silencing-defective HMR loci. Both effects were strictly dependent on the Sir proteins. We found overexpressed Net1 protein to be directly associated with the HMR-E silencer, suggesting that Net1 could interact with silencer binding proteins and recruit other silencing factors to the silencer. In agreement with this, Net1 provided ORC-dependent, Sir1-independent silencing when artificially tethered to the silencer. In contrast, our data suggested that net1-1 acted indirectly in HMR silencing by releasing Sir2 from the nucleolus, thus shifting the internal competition for Sir2 from the silenced loci toward HMR.  相似文献   

6.
7.
8.
9.
The yeast silent mating loci HML and HMR are located at opposite ends of chromosome III adjacent to the telomeres. Mutations in the N terminus of histone H4 have been previously found to derepress the yeast silent mating locus HML to a much greater extent than HMR. Although differences in the a and alpha mating-type regulatory genes and in the cis-acting silencer elements do not appear to strongly influence the level of derepression at HMR, we have found that the differential between the two silent cassettes is largely due to the position of the HMR cassette relative to the telomere on chromosome III. While HML is derepressed to roughly the same extent by mutations in histone H4 regardless of its chromosomal location, HMR is affected to different extends depending upon its chromosomal positioning. We have found that HMR is more severely derepressed by histone H4 mutations when positioned far from the telomere (cdc14 locus on chromosome VI) but is only minimally affected by the same mutations when integrated immediately adjacent to another telomere (ADH4 locus on chromosome VII). These data indicate that the degree of silencing at HMR is regulated in part by its neighboring telomere over a distance of at least 23 kb and that this form of regulation is unique for HMR and not present at HML. These data also indicate that histone H4 plays an important role in regulating the silenced state at both HML and HMR.  相似文献   

10.
The structure of transposable yeast mating type loci   总被引:133,自引:0,他引:133  
K A Nasmyth  K Tatchell 《Cell》1980,19(3):753-764
A recombinant plasmid containing a MAT alpha mating type locus of Saccharomyces cerevisiae has been isolated by its ability to complement a sterile mat alpha mutation. The plasmid hybridizes to restriction fragments containing both active mating type loci (MATa and MAT alpha) and both silent mating type loci (HMRa and HML alpha). All loci therefore have common sequences. Recombinant lambda clones of the locihave been isolated by plaque hybridization and their structures have been compared by a heteroduplex analysis. At its center, each locus contains one of two apparently nonhomologous sequences. Loci concerned with the alpha phenotype (MAT alpha and HML alpha) contain and 850 bp alpha-specific sequence, whereas loci concerned with the a phenotype (MATa and HMRa) contain a 700 bp a-specific sequence. The a- or alpha-specific sequences are surrounded by DNA sequences that are common to all loci. These homologous sequences extend for 230 bp on the left and 700 bp on the right. They appear to be unrelated to each other. Surprisingly, HML alpha and HMRa differ in their extent of homology to MATa and MAT alpha outside the above regions. HMRa lacks an extensive (700 bp) DNA sequence to the right of the large right-hand homologous region, and possibly also a small (90 bp) sequence to the left of the small left-hand homologous region, both of which are present at HML alpha, MATa and MAT alpha. Hybridization studies have shown that the 700 bp sequence is present at HMLa but absent at HMR alpha alleles. It is therefore characteristic of HML, irrespective of whether it contains a- or alpha-specific sequences. The results imply that mating type interconversion is effected by transposition of DNA sequences from HML or HMR to MAT, as predicted by the controlling element model of Oshima and Takano (1971) and the Cassette model of Hicks, Strathern and Herskowitz (1977).  相似文献   

11.
During homothallic switching of the mating-type (MAT) gene in Saccharomyces cerevisiae, a- or alpha-specific sequences are replaced by opposite mating-type sequences copied from one of two silent donor loci, HML alpha or HMRa. The two donors lie at opposite ends of chromosome III, approximately 190 and 90 kb, respectively, from MAT. MAT alpha cells preferentially recombine with HMR, while MATa cells select HML. The mechanisms of donor selection are different for the two mating types. MATa cells, deleted for the preferred HML gene, efficiently use HMR as a donor. However, in MAT alpha cells, HML is not an efficient donor when HMR is deleted; consequently, approximately one-third of HO HML alpha MAT alpha hmr delta cells die because they fail to repair the HO endonuclease-induced double-strand break at MAT. MAT alpha donor preference depends not on the sequence differences between HML and HMR or their surrounding regions but on their chromosomal locations. Cloned HMR donors placed at three other locations to the left of MAT, on either side of the centromere, all fail to act as efficient donors. When the donor is placed 37 kb to the left of MAT, its proximity overcomes normal donor preference, but this position is again inefficiently used when additional DNA is inserted in between the donor and MAT to increase the distance to 62 kb. Donors placed to the right of MAT are efficiently recruited, and in fact a donor situated 16 kb proximal to HMR is used in preference to HMR. The cis-acting chromosomal determinants of MAT alpha preference are not influenced by the chromosomal orientation of MAT or by sequences as far as 6 kb from HMR. These data argue that there is an alpha-specific mechanism to inhibit the use of donors to the left of MAT alpha, causing the cell to recombine most often with donors to the right of MAT alpha.  相似文献   

12.
Analysis of Y-Linked Mutations to Male Sterility in DROSOPHILA MELANOGASTER   总被引:3,自引:2,他引:1  
Kennison JA 《Genetics》1983,103(2):219-234
Mating type in haploid cells of the yeast Saccharomyces cerevisiae is determined by a pair of alleles MATa and MAT alpha. Under various conditions haploid mating types can be interconverted. It has been proposed that transpositions of silent cassettes of mating-type information from HML OR HMR to MAT are the source of mating type conversions. A mutation described in this work, designated AON1, has the following properties. (1) MAT alpha cells carring AON1 are defective in mating. (2) AON1 allows MAT alpha/MAT alpha but not MATa/MATa diploids to sporulate; thus, AON1 mimics the MATa requirement for sporulation. (3) mata-1 cells that carry AON1 are MATa phenocopies, i.e., MAT alpha/mata-1 AON1 diploids behave as standard MAT alpha/MATa cells; therefore, AON1 suppresses the defect of mata-1. (4) AON1 maps at or near HMRa. (5) Same-site revertants from AON1 lose the ability to convert mating type to MATa, indicating that reversion is associated with the loss of a functional HMRa locus. In addition, AON1 is a dominant mutation. We conclude that AON1 is a regulatory mutation, probably cis-acting, that leads to the constitutive expression of silent a mating-type information located at HMRa.  相似文献   

13.
14.
The alpha 2 protein, the product of the MAT alpha 2 cistron, represses various genes specific to the a mating type (alpha 2 repression), and when combined with the MATa1 gene product, it represses MAT alpha 1 and various haploid-specific genes (a1-alpha 2 repression). One target of a1-alpha 2 repression is RME1, which is a negative regulator of a/alpha-specific genes. We have isolated 13 recessive mutants whose a1-alpha 2 repression is defective but which retain alpha 2 repression in a genetic background of ho MATa HML alpha HMRa sir3 or ho MAT alpha HMRa HMRa sir3. These mutations can be divided into three different classes. One class contains a missense mutation, designated hml alpha 2-102, in the alpha 2 cistron of HML, and another class contains two mat alpha 2-202, in the MAT alpha locus. These three mutants each have an amino acid substitution of tyrosine or acid substitution of tyrosine or phenylalanine for cysteine at the 33rd codon from the translation initiation codon in the alpha 2 cistron of HML alpha or MAT alpha. The remaining 10 mutants make up the third class and form a single complementation group, having mutations designated aar1 (a1-alpha 2 repression), at a gene other than MAT, HML, HMR, RME1, or the four SIR genes. Although a diploid cell homozygous for the aarl and sir3 mutations and for the MATa, HML alpha, and HMRa alleles showed alpha mating type, it could sporulate and gave rise to asci containing four alpha mating-type spores. These facts indicate that the domain for alpha2 repression is separable from that for a1-alpha2 protein interaction or complex formation in the alpha2 protein and that an additional regulation gene, AAR1, is associated with the a1-alpha2 repression of the alpha1 cistron and haploid-specific genes.  相似文献   

15.
16.
Conditional mutations in the genes CDC36 and CDC39 cause arrest in the G1 phase of the Saccharomyces cerevisiae cell cycle at the restrictive temperature. We present evidence that this arrest is a consequence of a mutational activation of the mating pheromone response. cdc36 and cdc39 mutants expressed pheromone-inducible genes in the absence of pheromone and conjugated in the absence of a mating pheromone receptor. On the other hand, cells lacking the G beta subunit or overproducing the G alpha subunit of the transducing G protein that couples the receptor to the pheromone response pathway prevented constitutive activation of the pathway in cdc36 and cdc39 mutants. These epistasis relationships imply that the CDC36 and CDC39 gene products act at the level of the transducing G protein. The CDC36 and CDC39 gene products have a role in cellular processes other than the mating pheromone response. A mating-type heterozygous diploid cell, homozygous for either the cdc36 or cdc39 mutation, does not exhibit the G1 arrest phenotype but arrests asynchronously with respect to the cell cycle. A similar asynchronous arrest was observed in cdc36 and cdc39 cells where the pheromone response pathway had been inactivated by mutations in the transducing G protein. Furthermore, cdc36 and cdc39 mutants, when grown on carbon catabolite-derepressing medium, did not arrest in G1 and did not induce pheromone-specific genes at the restrictive temperature.  相似文献   

17.
Silencing at the cryptic mating-type loci HML and HMR of Saccharomyces cerevisiae requires regulatory sites called silencers. Mutations in the Rap1 and Abf1 binding sites of the HMR-E silencer (HMRa-e**) cause the silencer to be nonfunctional, and hence, cause derepression of HMR. Here, we have isolated and characterized mutations in SAS2 as second-site suppressors of the silencing defect of HMRa-e**. Silencing conferred by the removal of SAS2 (sas2Δ) depended upon the integrity of the ARS consensus sequence of the HMR-E silencer, thus arguing for an involvement of the origin recognition complex (ORC). Restoration of silencing by sas2Δ required ORC2 and ORC5, but not SIR1 or RAP1. Furthermore, sas2Δ suppressed the temperature sensitivity, but not the silencing defect of orc2-1 and orc5-1. Moreover, sas2Δ had opposing effects on silencing of HML and HMR. The putative Sas2 protein bears similarities to known protein acetyltransferases. Several models for the role of Sas2 in silencing are discussed.  相似文献   

18.
A double-stranded DNA cut has been observed in the mating type (MAT) locus of the yeast Saccharomyces cerevisiae in cultures undergoing homothallic cassette switching. Cutting is observed in exponentially growing cells of genotype HO HML alpha MAT alpha HMR alpha or HO HMLa MATa HMRa, which switch continuously, but not in a/alpha HO/HO diploid strains, in which homothallic switching is known to be shut off. Stationary phase cultures do not exhibit the cut. Although this site-specific cut occurs in a sequence (Z1) common to the silent HML and HMR cassettes and to MAT, only the Z1 sequence at the MAT locus is cut. The cut at MAT occurs in the absence of the HML and HMR donor cassettes, suggesting that cutting initiates the switching process. An assay for switching on hybrid plasmids containing mata- cassettes has been devised, and deletion mapping has shown that the cut site is required for efficient switching. Thus a double-stranded cut at the MAT locus appears to initiate cassette transposition-substitution and defines MAT as the recipient in this process.  相似文献   

19.
SAD mutation of Saccharomyces cerevisiae is an extra a cassette.   总被引:8,自引:5,他引:3       下载免费PDF全文
Sporulation of Saccharomyces cerevisiae ordinarily requires the a1 function of the a mating type locus. SAD is a dominant mutation that allows strains lacking a1 (MAT alpha/MAT alpha and mata1/MAT alpha diploids) to sporulate. We provide functional and physical evidence that SAD is an extra cassette in the yeast genome, distinct from those at HML, MAT, and HMR. The properties of SAD strains indicate that the a cassette at SAD produces a limited amount of a1 product, sufficient for promoting sporulation but not for inhibiting mating and other processes. These conclusions come from the following observations. (i) SAD did not act by allowing expression of HMRa: mata1/MAT alpha diploids carrying SAD and only alpha cassettes at HML and HMR sporulated efficiently. (ii) SAD acted as an a cassette donor in HML alpha HMR alpha strains and could heal a mata1 mutation to MATa as a result of mating type interconversion. (iii) The genome of SAD strains contained a single new cassette locus, as determined by Southern hybridization. (iv) Expression of a functions from the SAD a cassette was limited by Sir: sir- SAD strains exhibited more extreme phenotypes than SIR SAD strains. This observation indicates that SAD contains not only cassette information coding for a1 (presumably from HMRa) but also sites for Sir action.  相似文献   

20.
K. S. Weiler  J. R. Broach 《Genetics》1992,132(4):929-942
Mating type interconversion in homothallic strains of the yeast Saccharomyces cerevisiae results from directed transposition of a mating type allele from one of the two silent donor loci, HML and HMR, to the expressing locus, MAT. Cell type regulates the selection of the particular donor locus to be utilized during mating type interconversion: MATa cells preferentially select HML alpha and MAT alpha cells preferentially select HMRa. Such preferential selection indicates that the cell is able to distinguish between HML and HMR during mating type interconversion. Accordingly, we designed experiments to identify those features perceived by the cell to discriminate HML and HMR. We demonstrate that discrimination does not derive from the different structures of the HML and HMR loci, from the unique sequences flanking each donor locus nor from any of the DNA distal to the HM loci on chromosome III. Moreover, we find that the sequences flanking the MAT locus do not function in the preferential selection of one donor locus over the other. We propose that the positions of the donor loci on the left and right arms of chromosome III is the characteristic utilized by the cell to distinguish HML and HMR. This positional information is not generated by either CEN3 or the MAT locus, but probably derives from differences in the chromatin structure, chromosome folding or intranuclear localization of the two ends of chromosome III.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号