首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Apoptosis mediates the precise and programmed natural death of neurons and is a physiologically important process in neurogenesis during maturation of the central nervous system. However, premature apoptosis and/or an aberration in apoptosis regulation are implicated in the pathogenesis of neurodegeneration. Thus, it is important to identify neuronal pathways/factors controlling apoptosis. Pink1 [phosphatase and tensin homologue (PTEN)-induced kinase 1] is a ubiquitously expressed gene and has been reported to have a physiological role in mitochondrial maintenance, suppressing mitochondrial oxidative stress, fission and autophagy. However, how Pink1 is involved in neuronal survival against oxidative stress remains not well understood. In the present paper, we demonstrate that thapsigargin, a specific irreversible inhibitor of endoplasmic reticulum (ER) calcium-ATPase, could lead to dramatic oxidative stress and neuronal apoptosis by ectopic calcium entry. Importantly, the neuronal toxicity of thapsigargin inhibits antioxidant gene Pink1 expression. Although Pink1 knockdown enhances the neuronal apoptosis by thapsigargin, its overexpression restores it. Our findings have established the neuronal protective role of Pink1 against oxidative stress and afford rationale for developing new strategy to the therapy of neurodegenerative diseases.  相似文献   

2.
3.
In neurons, DNA is prone to free radical damage, although repair mechanisms preserve the genomic integrity. However, activation of the DNA repair system, poly(ADP-ribose) polymerase (PARP-1), is thought to cause neuronal death through NAD+ depletion and mitochondrial membrane potential (delta psi(m)) depolarization. Here, we show that abolishing PARP-1 activity in primary cortical neurons can either enhance or prevent apoptotic death, depending on the intensity of an oxidative stress. Only in severe oxidative stress does PARP-1 activation result in NAD+ and ATP depletion and neuronal death. To investigate the role of PARP-1 in an endogenous model of oxidative stress, we used an RNA interference (RNAi) strategy to specifically knock down glutamate-cysteine ligase (GCL), the rate-limiting enzyme of glutathione biosynthesis. GCL RNAi spontaneously elicited a mild type of oxidative stress that was enough to stimulate PARP-1 in a Ca2+-calmodulin kinase II-dependent manner. GCL RNAi-mediated PARP-1 activation facilitated DNA repair, although neurons underwent delta psi(m) loss followed by some apoptotic death. PARP-1 inhibition did not prevent delta psi(m) loss, but enhanced the vulnerability of neurons to apoptosis upon GCL silencing. Conversely, mild expression of PARP-1 partially prevented to GCL RNAi-dependent apoptosis. Thus, in the mild progressive damage likely occur in neurodegenerative diseases, PARP-1 activation plays a neuroprotective role that should be taken into account when considering therapeutic strategies.  相似文献   

4.
Several neurodegenerative diseases and brain injury involve reactive oxygen species and implicate oxidative stress in disease mechanisms. Hydrogen peroxide (H2O2) formation due to mitochondrial superoxide leakage perpetuates oxidative stress in neuronal injury. Catalase, an H2O2-degrading enzyme, thus remains an important antioxidant therapy target. However, catalase therapy is restricted by its labile nature and inadequate delivery. Here, a nanotechnology approach was evaluated using catalase-loaded, poly(lactic co-glycolic acid) nanoparticles (NPs) in human neuronal protection against oxidative damage. This study showed highly efficient catalase encapsulation capable of retaining∼99% enzymatic activity. NPs released catalase rapidly, and antioxidant activity was sustained for over a month. NP uptake in human neurons was rapid and nontoxic. Although human neurons were highly sensitive to H2O2, NP-mediated catalase delivery successfully protected cultured neurons from H2O2-induced oxidative stress. Catalase-loaded NPs significantly reduced H2O2-induced protein oxidation, DNA damage, mitochondrial membrane transition pore opening and loss of cell membrane integrity and restored neuronal morphology, neurite network and microtubule-associated protein-2 levels. Further, catalase-loaded NPs improved neuronal recovery from H2O2 pre-exposure better than free catalase, suggesting possible applications in ameliorating stroke-relevant oxidative stress. Brain targeting of catalase-loaded NPs may find wide therapeutic applications for oxidative stress-associated acute and chronic neurodegenerative disorders.  相似文献   

5.
6.
Hydrogen peroxide (H2O2), a major non-radical reactive oxygen species (ROS) could elicit intracellular oxidative damage and/or cause extracellular free calcium influx by activating the NMDA receptor or through calcium channels. In the present study, NMDA receptor antagonist MK-801 fully blocked H2O2-induced neuronal cell death, whereas green tea (GT) extract containing-antioxidants only partially suppressed the neurotoxicity of H2O2. These suggest that majority of ROS overproduction is downstream of H2O2-induced calcium influx. A novel neuroprotectant PAN-811 was previously demonstrated to efficiently attenuate ischemic neurotoxicity. PAN-811 hereby fully blocks H2O2-elicited neuronal cell death with a more advanced neuroprotective profile than that of GT extract. PAN-811 was also shown to protect against CaCl2-elicited neurotoxicity. Efficient protection against oxidative stress-induced neurotoxicity by PAN-811 indicates its potential application in treatment of ROS-mediated neurodegenerative diseases. W.P. and C.M.D. had equal contributions to this project  相似文献   

7.
8.
The unfolded protein response (UPR) signals protein misfolding in the endoplasmic reticulum (ER) to effect gene expression changes and restore ER homeostasis. Although many UPR-regulated genes encode ER protein processing factors, others, such as those encoding lipid catabolism enzymes, seem unrelated to ER function. It is not known whether UPR-mediated inhibition of fatty acid oxidation influences ER function or, if so, by what mechanism. Here we demonstrate that pharmacological or genetic inhibition of fatty acid oxidation renders liver cells partially resistant to ER stress-induced UPR activation both in vitro and in vivo. Reduced stress sensitivity appeared to be a consequence of increased cellular redox potential as judged by an elevated ratio of oxidized to reduced glutathione and enhanced oxidative folding in the ER. Accordingly, the ER folding benefit of inhibiting fatty acid (FA) oxidation could be phenocopied by manipulating glutathione recycling during ER stress. Conversely, preventing cellular hyperoxidation with N-acetyl cysteine partially negated the stress resistance provided by blocking FA oxidation. Our results suggest that ER stress can be ameliorated through alteration of the oxidizing environment within the ER lumen, and they provide a potential logic for the transient regulation of metabolic pathways by the UPR during stress.  相似文献   

9.
High glucose concentrations cause oxidative injury and programmed cell death in neurons, and can lead to diabetic neuropathy. Activating the type 3 metabotropic glutamate receptor (mGluR3) prevents glucose-induced oxidative injury in dorsal root ganglion neurons co-cultured with Schwann cells. To determine the mechanisms of protection, studies were performed in rat dorsal root ganglion neuron-Schwann cell co-cultures. The mGluR3 agonist 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate prevented glucose-induced inner mitochondrial membrane depolarization, reactive oxygen species accumulation, and programmed cell death, and increased glutathione (GSH) concentration in co-cultured neurons and Schwann cells, but not in neurons cultured without Schwann cells. Protection was diminished in neurons treated with the GSH synthesis inhibitor l-buthionine-sulfoximine, suggesting that mGluR-mediated protection requires GSH synthesis. GSH precursors and the GSH precursor GSH-ethyl ester also protected neurons from glucose-induced injury, indicating that GSH synthesis in Schwann cells, and transport of reaction precursors to neurons, may underlie mGluR-mediated neuroprotection. These results support the conclusions that activating glial mGluR3 protects neurons from glucose-induced oxidative injury by increasing free radical scavenging and stabilizing mitochondrial function, through increased GSH antioxidant defense.  相似文献   

10.
The present study was designed to assess the possible protective effects of Quercetin (QUER), a flavonoid with well-known pharmacological effects, against Dichlorvos (DDVP)-induced toxicity in vitro using HCT116 cells. The cytotoxicity was monitored by cell viability, reactive oxygen species (ROS) generation, anti-oxidant enzyme activities, malondialdehyde (MDA) production, and DNA fragmentation. The apoptosis was assessed through the measurement of the mitochondrial transmembrane potential (ΔΨm) and caspase activation. The results indicated that pretreatment of HCT116 cells with QUER, 2 h prior to DDVP exposure, significantly decreased the DDVP-induced cell death, inhibited the ROS generation, modulated the activities of catalase (CAT) and superoxide dismutase (SOD), and reduced the MDA level. The reductions in mitochondrial membrane potential, DNA fragmentation, and caspase activation were also attenuated by QUER. These findings suggest that dietary QUER can protect HCT116 cells against DDVP-induced oxidative stress and apoptosis.  相似文献   

11.
12.
Cysteine has been implicated in myocardial protection, although this is controversial and constrained by limited knowledge about the effects of cysteine at the cellular level. This study tested the hypothesis that a physiologically relevant dose of l-cysteine could be safely loaded into isolated cardiomyocytes leading to improved protection against oxidative stress. Freshly isolated adult rat ventricular cardiomyocytes were incubated for 2 h at 37°C with (cysteine incubated) or without (control) 0.5 mM cysteine prior to washing and suspension in fresh cysteine-free media. Cysteine incubated cells had higher intracellular cysteine levels compared to controls (9.6 ± 0.78 vs. 6.5 ± 0.65 nmol/mg protein, P < 0.02, n = 6 ± SE). Cell homeostasis indicators were similar in the two groups. Cysteine incubated cells had significantly higher glutathione peroxidase (GPx) activity (1.11 ± 0.23 vs. 0.54 ± 0.1 U/mg protein, P < 0.05, n = 5 ± SE) and significantly greater expression of GPx-1 (5.01 ± 0.48 vs. 3.01 ± 0.25 OD units/mm2, P < 0.05, n = 4 ± SE) compared to controls. Upon exposure to H2O2, cysteine incubated cells generated fewer reactive oxygen species and took longer to show contractile changes and undergo hypercontracture. However, when cells were exposed to H2O2 in the presence of 0.05 mM of the GPx inhibitor mercaptosuccinic acid, this increased the control cells’ susceptibility to H2O2 and completely abolished the cysteine mediated protection. These results suggest a new role for cysteine in myocardial protection involving stimulation of glutathione peroxidase.  相似文献   

13.
The major cellular antioxidant, glutathione, is mostly localized in the cytosol but a small portion is found in mitochondria. We have recently shown that highly selective depletion of mitochondrial glutathione in astrocytes in culture markedly increased cell death induced by the peroxynitrite donor, 3-morpholino-syndnonimine. The present study was aimed at characterizing the increase in susceptibility arising from mitochondrial glutathione loss and testing the possibility that elevating this metabolite pool above normal values could be protective. The increased vulnerability of astrocytes with depleted mitochondrial glutathione to Sin-1 was confirmed. Furthermore, these cells showed marked increases in sensitivity to hydrogen peroxide and also to high concentrations of the nitric oxide donor, S-nitroso-N-acetyl-penicillamine. The increase in cell death was mostly due to necrosis as indicated by substantially increased release of lactate dehydrogenase and staining of nuclei with propidium iodide but little change in annexin V staining and caspase 3 activation. The enhanced cell loss was blocked by prior restoration of the mitochondrial glutathione content. It was also essentially fully inhibited by treatment with cyclosporin A, consistent with a role for the mitochondrial permeability transition in the development of cell death. Susceptibility to the classical apoptosis inducer, staurosporine, was only affected to a small extent in contrast to the response to the other substances tested. Incubation of normal astrocytes with glutathione monoethylester produced large and long-lasting increases in mitochondrial glutathione content with much smaller effects on the cytosolic glutathione pool. This treatment reduced cell death on exposure to 3-morpholino-syndnonimine or hydrogen peroxide but not S-nitroso-N-acetyl-pencillamine or staurosporine. These findings provide evidence for an important role for mitochondrial glutathione in preserving cell viability during periods of oxidative or nitrative stress and indicate that increases in this glutathione pool can confer protection against some of these stressors.  相似文献   

14.
We evaluated the cytoprotective effects of americanin B, a lignan compound, against hydrogen peroxide (H2O2)-induced cell damage. Americanin B decreased the level of DPPH radicals, superoxide anions, hydroxyl radicals, and intracellular reactive oxygen species. Americanin B also attenuated DNA damage induced by H2O2 treatment, as shown by the inhibition of formation of comet tails, indicative of DNA strand breakage, and prevented the oxidation of protein and peroxidation of lipid, as determined by protein carbonyls and 8-isoprostane. Furthermore, americanin B protected against H2O2-induced apoptotic cell death, as determined by a reduction in the numbers of apoptotic bodies stained with Hoechst 33342. These findings suggest that americanin B protects cells against oxidative damage by exerting antioxidant effects and inhibiting apoptosis.  相似文献   

15.
The cause of selective dopaminergic neuronal degeneration in Parkinson disease has still not been resolved, but it has been hypothesized that oxidative stress and the ubiquitin-proteasome system are important in the pathogenesis. In this report, we investigated the effect of proteasome inhibition on oxidative stress-induced cytotoxicity in PC12 cells, an in vitro model of Parkinson disease. Treatment with proteasome inhibitors provided significant protection against toxicity by 6-hydroxydopamine and H(2)O(2) in a concentration-dependent manner. The measurement of intracellular reactive oxygen species using 2',7'-dichlorofluorescein diacetate demonstrated that lactacystin, a proteasome inhibitor, significantly reduced 6-hydroxydopamineand H(2)O(2)-induced reactive oxygen species production. Proteasome inhibitors elevated the amount of glutathione and phosphorylated p38 mitogen-activated protein kinase (MAPK) prior to glutathione elevation. The treatment with lactacystin induced the nuclear translocation of NF-E2-related factor 2 (Nrf2) and increased the level of mRNA for gamma-glutamylcysteine synthetase, a rate-limiting enzyme in glutathione synthesis. Furthermore, SB203580, an inhibitor of p38 MAPK, abolished glutathione elevation and cytoprotection by lactacystin. These data suggest that proteasome inhibition afforded cytoprotection against oxidative stress by the elevation of glutathione content, and its elevation was mediated by p38 MAPK phosphorylation.  相似文献   

16.
This study was to determine if cellular glutathione peroxidase (GPX1) protects against acute oxidative stress induced by diquat. Lethality and hepatic biochemical indicators in GPX1 knockout mice [GPX1(-/-)] were compared with those of wild-type mice (WT) after an intraperitoneal injection of diquat at 6, 12, 24, or 48 mg/kg of body weight. Although the WT survived all the doses, the GPX1(-/-) survived only 6 mg diquat/kg and were killed by 12, 24, and 48 mg diquat/kg at 52, 4.4 and 3.9 hr, respectively. Compared with those of surviving mice that were sacrificed on Day 7, the dead GPX1(-/-) had diquat dose-dependent increases (P < 0.05) in plasma alanine aminotransferase (ALT) activities. The GPX1(-/-) also had higher (P < 0.05) liver carbonyl contents than those of the WT, but the differences were irrespective of diquat doses. Whereas hepatic total GPX and phospholipid hydroperoxide glutathione peroxidase activities or hepatic GPX1 protein was not significantly affected by the diquat treatment, liver thioredoxin reductase and catalase activities were lower (P < 0.05) in the GPX1(-/-) injected with 12 mg diquat/kg than those of other groups. In conclusion, normal GPX1 expression is necessary to protect mice against the lethality, hepatic protein oxidation, and elevation of plasma ALT activity induced by 12-48 mg diquat/kg.  相似文献   

17.
Flow cytometric studies of rat cerebellum neurons are described under conditions inducing cell death. Using a double labeling technique, discrimination between apoptotic and necrotic cell transformations is demonstrated. Histidine containing neuropeptides were found to regulate cell stability, taking part in selection of the preferable way of neuronal death under oxidative stress.  相似文献   

18.
We investigated the toxicity of hemoglobin/myoglobin on endothelial cells under oxidative stress conditions that include cellular hypoxia and reduced antioxidant capacity. Bovine aorta endothelial cells (BAECs), grown on microcarrier beads, were subjected to cycles of hypoxia and reoxygenation in a small volume of medium, and endothelial cell monolayers were depleted of their intracellular glutathione (GSH) by treatment with buthionine sulfoximine. Incubation of diaspirin cross-linked hemoglobin (DBBF-Hb) or horse skeletal myoglobin (Mb) with BAECs subjected to 3 h of hypoxia caused transient oxidation of the hemoproteins to the ferryl form (Fe(4+)). Formation of the ferryl intermediate was decreased in a concentration-dependent manner by the addition of L-arginine, a substrate of NO synthase, after 3 h of hypoxia. Optimal inhibition of ferryl formation, possibly due to the antioxidant action of NO, was achieved with 900 microM L-arginine. Addition of hydrogen peroxide to GSH-depleted cells in the presence of DBBF-Hb or Mb significantly decreased cell viability. Ferryl Mb, but not ferryl DBBF-Hb, was observed in samples analyzed at the end of treatment, which may explain the greater toxicity observed with Mb as opposed to DBBF-Hb. This model may be utilized to identify causative agent(s) associated with hemoprotein cytotoxicity and in designing strategies to suppress or control heme-mediated injury under physiologically relevant conditions.  相似文献   

19.
过氧化氢预处理对抗氧化应激诱导的PC12细胞凋亡   总被引:1,自引:0,他引:1  
Tang XQ  Chen J  Tang EH  Feng JQ  Chen PX 《生理学报》2005,57(2):211-216
氧化应激可明显地诱导细胞凋亡。本研究旨在探讨H2O2预处理能否对H2O2诱导的PC12细胞凋亡生产保护作用及ATP敏感性K^ (ATP-sensitive potassinm,KATP)通道在其中的作用。采用PI染色流式细胞仪(flow cytometry, FCM)检测PC12细胞凋亡。结果表明,经10μmol/L H2O2预处理90min的PC12细胞,分别在20、30、50和100μmol/L H2O2作用24h后,其细胞凋亡率明显下降,与未经H2O2的预处理的PC12细胞相比,差异极显著(P<0.01),表明H2O2预处理对H2O2诱导PC12细胞凋亡具有保护作用。用10μmol/L的KATP通道激动齐pinacidil(Pin)可显著减少30和50μmol/L H2O2诱导的PC12细胞凋亡,10μmol/L的KATP通道拮抗齐glybenclamide(Gly)则可显著地抑制甚至取消KATP通道激动剂Pin对H2O3诱导PC12细胞凋亡的保护作用,但并不影响H2O2预处理对H2O2诱导PC12细胞凋亡的保护作用;然而,当联合应用H2O2预处理与Pin时,对PC12细胞凋亡的保护作用显大于各自的细胞凋亡作用。提示KATP通道开放不仅对H2O2诱导PC12细胞凋亡具有保护作用,而且与H2O2预处理一起产生抗PC12细胞凋亡的协同作用。但KATP通道开放可能不参与H2O2预处理的适应性保护作用。  相似文献   

20.
Oxidative stress induced by a glucose/glucose oxidase (G/GO) generator system dose-dependently decreased the viability of cultured vascular smooth muscle cells (VSMC) as estimated by MTT assay. Cell death was induced in 40% of cells exposed to 0.2 IU/ml of the free radical generating mixture. Annexin-V labeling, Hoechst staining together with DNA laddering demonstrated that apoptosis was responsible for this cell loss. Pretreatment of the cells with 10(-8) M calcitonin gene-related peptide (CGRP) significantly attenuated the damaging effect of the oxidative stress. Indeed, cell viability was estimated to be 80% in CGRP-treated group, instead of 60% in absence of CGRP treatment. This protective effect of CGRP was antagonized by 8-37 CGRP, an antagonist of CGRP-1 receptors, whereas it was not reproduced by amylin, a CGRP analogue. As indicated by the reduction in Hoechst staining and in DNA laddering, CGRP prevented the onset of apoptosis. We also demonstrated that the peptide significantly up-regulated the activation of ERK1/2 and P38 kinases. Inhibitors of the kinases prevented the protective effect of CGRP. We conclude that CGRP antagonizes oxidative stress-induced apoptosis by up-regulating MAP kinase activation and that activation of these kinases was necessary to protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号