首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chen YM  Huang DH  Lin SF  Lin CY  Key JL 《Plant physiology》1983,73(3):746-753
Nucleoli from auxin-treated tissues (Glycine max L. var Wayne or Kaoshiung No. 3) were isolated and purified by Percoll density gradient centrifugation. There was a 2.1-fold increase in RNA and a 2.8-fold increase in protein after a 24-h auxin treatment per unit nucleolar DNA. More than 150 acid-soluble protein spots were associated with the auxin-treated nucleoli on two dimensional (2-D) gel electropherograms.

Nucleoli from auxin-treated tissue were fractionated by suspension in 20 millimolar dithiothreitol at room temperature for 20 minutes into two distinct fractions referred to as the nucleolar chromatin and preribosomal particle fractions. The DNA:RNA:protein ratio of the chromatin fraction was 1:2.5:14. Most of RNA polymerase 1 activity and nucleolar DNA recovered in this fraction. The acid-soluble proteins in the chromatin were resolved into 32 protein spots on 2-D gel electropherogram. The most abundant spots were identified as histones.

The nucleolar preribosomal particle fraction had a DNA:RNA:protein ratio of 1:24:102 and contained only trace amounts of RNA polymerase 1 activity and only 10 per cent of the nucleolar DNA. Acid-soluble proteins associated with these particles were resolved into 78 protein spots; 72 of these (acid-soluble) protein spots corresponded in 2-D gel electrophoresis to 80S cytoplasmic ribosomal proteins. Some 15 protein spots found in 80S ribosomal proteins were absent in the preribosomal particles. It seems reasonable, based on these data, that the enlargement of nucleoli after auxin treatment is primarily due to the large increase in ribosomal proteins and rRNA which accumulate and assemble in the nucleoli in the form of preribosomal particles.

  相似文献   

2.
After labeling for two hours in vivo with 32P-labeled orthophosphate, proteins from cytoplasmic ribosomes and nucleolar preribosomal particles of Novikoff hepatoma ascites cells were analyzed by two-dimensional polyacrylamide gel electrophoresis and autoradiography. Five proteins (B2, B3, B6, B32 and B35P) were phosphorylated in the ribosomes. Approximately 19 proteins were phosphorylated in the nucleolar preribosomal particles; although four of these were ribosomal proteins, they were different from the proteins labeled in the ribosomes. The 15 additional phosphorylated nucleolar preribosomal particle proteins were non-ribosomal. These results suggest that phosphorylation of proteins of the nucleolar preribosomal particles is independent of phosphorylation of the cytoplasmic ribosomal proteins and may be a part of the maturation process of preribosomal particles.  相似文献   

3.
Two-dimensional polyacrylamide gel electrophoresis of nucleolar proteins of rat liver revealed marked changes at various times after partial hepatectomy. Some of the non-histone protein spots including A11, A24, A25, C13, and C14 decreased in size and density. Others, including A15, B13, B16, B18, B24-25, B27, B33, B34, C1, C2, C8, C11, C17, and C23-24 were markedly increased in size and density. In vitro labeling of the nucleoli using [gamma-32P]ATP and subsequent analysis of the proteins by two-dimensional gel electrophoresis and autoradiography indicated that the uptake of 32P into proteins increased greatly during regeneration. In addition, the relative labelling of various spots changed throughout the regeneration process. With spot B33 as a reference, there was increased labeling of spots A1P, B2, B5, B24-25, C2, and C23-24 at 8 hours after hepatectomy. On the other hand, the labeling of spots A8P, A16, A20, B9, and B13 decreased at 8 hours after hepatectomy. Since the primary role of the nucleolus is the snythesis of ribosomal precursors, these changes in protein content and phosphorylation are presumably primarily associated with the increased processing and transport of peribosomal ribonucleoproteins in regenerating liver.  相似文献   

4.
Biochemical and morphological studies were performed on Novikoff hepatoma ascites cell nucleolar matrix fractions prepared by deoxyribonuclease I digestion and high-molarity salt extractions essentially according to a published method [Berezney, R., & Buchholz, L. A. (1981) Exp. Cell Res. 20, 4995-5002]. The nucleolar matrix fraction was enriched in polypeptides of molecular mass of 28, 37.5, 40, 70, 72, 110 (protein C23), and 160 kDa, compared to the nuclear fraction in which polypeptides of molecular mass of 31, 33.5, 43.5, 46, 50, 56, and 59 kDa were predominant. About one-fourth of the protein, half of the RNA, and less than 4% of the DNA originally present in the nucleoli remained in the matrix fraction. Addition of single agents such as ethylenediaminetetraacetic acid, ribonuclease A, or mercaptoethanol during preparation had no significant effect on the polypeptide composition of the nucleolar matrix fraction. However, the combination of mercaptoethanol and ribonuclease A caused most of the RNA and protein to be removed, including protein C23 and the 160-kDa polypeptide, with polypeptides in the range of Mr 30 000-50 000 remaining. Electron microscopy of nucleolar matrix fractions revealed the presence of particles similar in size to the granular elements of nucleoli. However, when ribonuclease A and mercaptoethanol were included in the procedure, only amorphous material remained. Many proteins of nucleolar preribosomal RNP particles were also associated with the nucleolar matrix fraction. RNA from the nucleolar matrix fraction was enriched in sequences from 18S and 28S ribosomal RNA. These results indicate that preribosomal RNP particles are major constituents of a nucleolar matrix fraction prepared by the deoxyribonuclease I-high-molarity salt method.  相似文献   

5.
Total protein was released from isolated HeLa cell nucleoli by guanidine hydrochloride, purified by cesium chloride density gradient centrifugation, and analyzed by two-dimensional polyacrylamide gel electrophoresis. Conditions of electrophoresis restricted attention to proteins that are positively charged at pH 8.6. Most of the major nucleolar protein spots co-electrophoresed with ribosomal proteins; the majority of ribosomal proteins from both the large and small ribosomal subunits were represented. Several proteins found in association with polysomes but not on ribosomal subunits and several proteins unique to the nucleolus were also identified in these nucleolar protein patterns. In order to determine whether the ribosomal proteins found in the nucleolus represented sizable pools of ribosomal proteins, or merely ribosomal proteins contained in the preribosomal particles, [35S]methionine-labeled nucleoli were mixed with [3H]methionine-labeled polysomes. From analysis of isotopic ratios in individual protein spots it was possible to determine the stoidchiometry of individual ribosomal proteins in the nucleolus relative to their complement on cytoplasmic ribosomes. All but a few proteins exhibited relative nucleolar stoichiometry values of approximately one, indicating that there are not significant pools of most ribosomal proteins in isolated nucleoli.  相似文献   

6.
Proteins were isolated from 80-S preribosomal particles and ribosomal subunits of murine L5178Y cells after short and longer periods of incubation with tritiated amino acids. The labeling patterns of ribosomal proteins were compared by two-dimensional polyacrylamide gel electrophoresis. The analysis of isotopic ratios in individual protein spots showed marked differences in the relative kinetics of protein appearance within nucleolar peribosomes and cytoplasmic subunits. Among the about 60 distinct proteins characterized in 80-S preribosomes, 9 ribosomal proteins appeared to incorporate radioactive amino acids more rapidly. These proteins become labeled gradually in the cytoplasmic ribosomal subunits. It was found that one non-ribosomal protein associated with 80-S preribosomes takes up label far more quickly than other preribosomal polypeptides. It is suggested that this set of proteins could associate early with newly transcribed pre-rRNA, more rapidly than others after their synthesis on polyribosomes, and could therefore play a role in the regulation of ribosome synthesis. In isolated 60-S and 40-S ribosomal subunits, we detected five proteins from the large subunit and four proteins from the small subunit which incorporate tritiated amino acids more quickly than the remainder. These proteins were shown to be absent or very faintly labeled in 80-S preribosomal particles, and would associate with ribosomal particles at later stages of the maturation process.  相似文献   

7.
J W Weiss  H C Pitot 《Biochemistry》1975,14(2):316-326
Examination of nucleolar RNA from cultured Novikoff hepatoma cells treated for 3 hr with 5 x 10-4 M 5-azacytidine shows that significant amounts of analog-substituted 45S RNA are processed to the 32S RNA species, but 28S RNA formation is completely inhibited. Under these conditions of analog treatment 37% of the cytidine residues in the 45S RNA is replaced by 5-azacytidine. During coelectrophoresis of nucleolar RNA from 5-azacytidine-treated and control cells, the analog-substituted 45S RNA and 32S RNA display reduced mobilities compared to the control 45S RNA and 32S RNA. Coelectrophoresis of analog-substituted and control RNA after formaldehyde denaturation shows no differences in electrophoretic mobility between the two RNA samples, suggesting that 5-azacytidine incorporation may alter the secondary structure of the 45S RNA and the 32S RNA. 5-Azacytidine at 5 x 10-4 M severely inhibits protein synthesis in Novikoff cells by 3 hr. After this length of treatment, however, CsCl buoyant density analysis reveals no difference in density of either the 80S or 55S preribosomal ribonucleoprotein particles when compared to normal particles. Also 5-azacytidine treatment does not appear to cause major changes in the polyacrylamide gel electrophoresis patterns of the proteins in the 80S and 55S preribosomal particles. These results together with previous findings suggest that 5-azacytidine's inhibition of rRNA processing is possibly related to its alteration of the structure of the ribosomal precursor RNAs and is not a consequence of a general inhibition of ribosomal protein formation.  相似文献   

8.
Multiple states of U3 RNA in Novikoff hepatoma nucleoli   总被引:18,自引:0,他引:18  
P Epstein  R Reddy  H Busch 《Biochemistry》1984,23(23):5421-5425
U3 RNA, a capped small nuclear RNA found thus far only in the nucleolus, has been implicated in the processing and/or transport of preribosomal RNA [Busch, H., Reddy, R., Rothblum, L., & Choi, Y. C. (1982) Annu. Rev. Biochem. 51, 617-654]. Tris(hydroxymethyl)aminomethane (Tris) (10 mM, pH 7.0) extracts of Novikoff hepatoma nucleoli, which contained about 80% of total nucleolar U3 RNA, were analyzed by sucrose density gradient centrifugation. Approximately 65% of the U3 RNA was bound to greater than 60S preribosomal ribonucleoprotein (RNP) particles, and about 15% sedimented at less than 20 S. The association between the 65% of U3 RNA that was bound to the preribosomal RNP particles was stable up to 55 degrees C. About 10% of U3 RNA was base paired to preribosomal RNA after deproteinization at 22 degrees C. The base-paired fraction of U3 RNA was released from the preribosomal RNA by heating to 45 degrees C or treating with 4 M urea. These results show that of the total nucleolar U3 RNP, (a) about 55% is bound to preribosomal RNP particles primarily by protein interactions, (b) about 10% is base paired to preribosomal RNA, (c) approximately 15% sedimented slowly and consisted presumably of free U3 RNP particles, and (d) the remaining 20% of U3 RNP was not extractable using 10 mM Tris buffer. On the basis of the different association states of U3 RNP particles, a model is proposed for the binding and dissociation events which take place between U3 RNP and preribosomal RNP particles.  相似文献   

9.
10.
Major nucleolar proteins shuttle between nucleus and cytoplasm   总被引:127,自引:0,他引:127  
  相似文献   

11.
12.
13.
The subcellular location of several nonribosomal nucleolar proteins was examined at various stages of mitosis in synchronized mammalian cell lines including HeLa, 3T3, COS-7 and HIV-1 Rev-expressing CMT3 cells. Nucleolar proteins B23, fibrillarin, nucleolin and p52 as well as U3 snoRNA were located partially in the peripheral regions of chromosomes from prometaphase to early telophase. However, these proteins were also found in large cytoplasmic particles, 1–2 μm in diameter, termed nucleolus-derived foci (NDF). The NDF reached maximum numbers (as many as 100 per cell) during mid- to late anaphase, after which their number declined to a few or none during late telophase. The decline in the number of NDF approximately coincided with the appearance of prenucleolar bodies and reforming nucleoli. The HIV-1 Rev protein and a mutant Rev protein defective in its nuclear export signal were also found in the NDF. The mutant Rev protein precisely followed the pattern of localization of the above nucleolar proteins, whereas the wild-type Rev did not enter nuclei until G1 phase. The nucleolar shuttling phosphoprotein Nopp 140 did not follow the above pattern of localization during mitosis: it dispersed in the cytoplasm from prometaphase through early telophase and was not found in the NDF. Although the NDF and mitotic coiled bodies disappeared from the cytoplasm at approximately the same time during mitosis, protein B23 was not found in mitotic coiled bodies, nor was p80 coilin present in the NDF. These results suggest that a class of proteins involved in preribosomal RNA processing associate with chromosome periphery and with NDF as part of a system to conserve and deliver preexisting components to reforming nucleoli during mitosis. Edited by: S. A. Gerbi  相似文献   

14.
The non-histone chromatin proteins of growing and non-growing tissues were compared by two-dimensional polyacrylamide gel electrophoresis. The tissues studied were normal rat liver, regenerating rat liver, thioacetamide-treated rat liver, normal rat kidney, Novikoff hepatoma and Walker 256 carcinosarcoma. Although most of the protein components were common to all of the tissues studied, the densities and sizes of spots C18, CP, C21, C25, CQ, CR, CS and CT were greater in the growing tissues than in the non-growing tissues, including the thioacetamide-treated liver. In the latter, the increased densities and sizes of spots C18, C21 and CQ are presumably related to the markedly increased nucleolar size rather than to cell division. Accordingly the increases in sizes and densities of spots C25, CP, CR, CS and CT are apparently of importance to the growth processes of normal and tumor tissues. The number of tissue specific proteins was small compared with the number of proteins in this fraction and includes BP and CBL for normal liver, BJ′ for kidney and CG′, CH′ and CP$?for the tumors.  相似文献   

15.
16.
In studies on antinucleolar antibodies in sera from 24 patients with scleroderma, an autoimmune disease, one serum, designated "anti-To", contained antibodies against a nucleolar 7-2 ribonucleoprotein and a novel cytoplasmic 8-2 ribonucleoprotein. The 7-2 and 8-2 RNAs are distinct RNAs with a pppG terminus. They are partially conserved between rat and human species and are present in distinct ribonucleoprotein particles. Eight sera contained antibodies that precipitated particles containing nucleolar U3 RNA; these antibodies appear to be directed against preribosomal particles containing U3 ribonucleoprotein, rather than the U3 ribonucleoprotein particles alone. All these ribonucleoproteins required proteins for antigenicity. These antibodies will be of use in studies on the structure and function of these novel small ribonucleoproteins.  相似文献   

17.
Ribosome biogenesis in eukaryotes depends on the coordinated action of ribosomal and nonribosomal proteins that guide the assembly of preribosomal particles. These intermediate particles follow a maturation pathway in which important changes in their protein composition occur. The mechanisms involved in the coordinated assembly of the ribosomal particles are poorly understood. We show here that the association of preribosomal factors with pre-60S complexes depends on the presence of earlier factors, a phenomenon essential for ribosome biogenesis. The analysis of the composition of purified preribosomal complexes blocked in maturation at specific steps allowed us to propose a model of sequential protein association with, and dissociation from, early pre-60S complexes for several preribosomal factors such as Mak11, Ssf1, Rlp24, Nog1, and Nog2. The presence of either Ssf1 or Nog2 in complexes that contain the 27SB pre-rRNA defines novel, distinct pre-60S particles that contain the same pre-rRNA intermediates and that differ only by the presence or absence of specific proteins. Physical and functional interactions between Rlp24 and Nog1 revealed that the assembly steps are, at least in part, mediated by direct protein-protein interactions.  相似文献   

18.
Nucleolin (NCL) is one of the most abundant nucleolar proteins of exponentially growing eukaryotic cells. It is known to interact only transiently with rRNA and preribosomal particles and not to be detectable in mature cytoplasmic ribosomes, and is believed to function as multi-protein complexes during ribosome biogenesis and maturation. However, those multiprotein complexes remain only partially characterized due to the difficulty of conventional protein analysis methods. Here we report isolation of NCL-binding protein complex and its proteomic characterization with the use of an analytical method based on matrix-assisted laser desorption/ionization-time of flight analysis coupled with searching peptide mass databases. The NCL-binding protein complex was isolated by immunoprecipitation with anti-Flag antibody from human kidney 293 cells that were transfected with the Flag-tagged NCL gene, and showed RNA integrity for holding their protein constituents. Interaction between NCL and its binding complex was disrupted by an RNA oligonucleotide with a NCL recognition element, indicating that NCL binds to the ribonucleoprotein (RNP) complex mainly through the sequence specific protein-RNA interaction. We confirmed that an RNA-binding domain of NCL alone was sufficient to hold the entire NCL-binding RNP complex, indicating the strict binding specificity of NCL to the isolated RNP complex in 293 cells. We identified forty ribosomal proteins from both the large and small subunits, and twenty nonribosomal proteins. These results together suggest that the isolated NCL-binding RNP complex is a preribosomal particle present in the nucleolus of 293 cells.  相似文献   

19.
A high resolution, two-dimensional gel electrophoresis of the proteins from HeLa cell large ribosomal subunits and their nucleolar precursor particles is described. There are 40 major spots in the mature particles and about 65 in the precursors. Proteins in the precursor particles include 30 spots which are similar to those in mature large subunits, and at least 33 major spots which are restricted to the precursor stage. Labeling patterns of ribosomes showed a limited number of proteins associated with mature large subunits that incorporate radioactive amino acids more rapidly, indicating those proteins that are recycled in the cytoplasm. Among the proteins associated with pre-ribosomal particles, those that are similar to the proteins of mature ribosomes labeled more rapidly than the precursor-specific nucleolar proteins. The latter are apparently reutilized for ribosome assembly in the nucleolus. Thus, in addition to resolution of the proteins only transiently associated with precursor particles, results indicate the differences in their labeling properties, consistent with their behaviour during ribosome assembly in HeLa cells.  相似文献   

20.
The pathway and complete collection of factors that orchestrate ribosome assembly are not clear. To address these problems, we affinity purified yeast preribosomal particles containing the nucleolar protein Nop7p and developed means to separate their components. Nop7p is associated primarily with 66S preribosomes containing either 27SB or 25.5S plus 7S pre-rRNAs. Copurifying proteins identified by mass spectrometry include ribosomal proteins, nonribosomal proteins previously implicated in 60S ribosome biogenesis, and proteins not known to be involved in ribosome production. Analysis of strains mutant for eight of these proteins not previously implicated in ribosome biogenesis showed that they do participate in this pathway. These results demonstrate that proteomic approaches in concert with genetic tools provide powerful means to purify and characterize ribosome assembly intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号