首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cathepsin B-like enzyme from the white muscle of common mackerel Scomber japonicus was a cysteine protease that hydrolyzed Z-Arg-Arg-MCA, the substrate for cathepsin B. In a partial purified cathepsin B-like enzyme preparation at 4 degrees C left over time, a converted enzyme that hydrolyzes Z-Arg-Arg-MCA and Z-Phe-Arg-MCA appeared in the preparation. The converted enzyme was purified from the cathepsin B-like enzyme, characterized and was identified as mackerel cathepsin B. These results suggested that the mackerel cathepsin B-like enzyme was a precursor of cathepsin B. Mackerel cathepsin B formed in the purified cathepsin B-like enzyme preparation by adding of a small amount of the purified cathepsin B to the preparation. Therefore, mackerel cathepsin B-like enzyme was converted to the mature form of cathepsin B by autoactivation. The conversion of the cathepsin B-like enzyme (molecular mass 60 kDa) to cathepsin B (molecular mass 23 kDa) was detected by immunoblotting by using human anti-(cathepsin B) antibody. The intermediate forms of 40 kDa and 38 kDa were also detected during the conversion.  相似文献   

2.
Bovine spleen cathepsin B1 and collagenolytic cathepsin were separated by chromatography on Amberlite IRC-50 and collagenolytic cathepsin was partially purified by chromatography on DEAE-Sephadex (A-50). 2. Collagenolytic cathepsin degraded insoluble tendon collagen maximally at pH 3.5 and 28 degrees C; mainly alpha-chain components were released into solution. At 28 degrees C the telopeptides in soluble skin collagen were also cleaved to yield alpha-chain components. Collagenolytic cathepsin was thus similar to cathepsin B1 in its action against native collagen, but mixtures of these two enzymes exhibited a synergistic effect. 3. The addition of thiol-blocking compounds produced similar inhibition of collagenolytic cathepsin and cathepsin B1. The enzyme responded similarly to all other compounds tested except to 6-aminohexanoic acid, when collagenolytic cathepsin was slightly activated and cathepsin B1 was almost unaffected. 4. Leupeptin, which is a structural analogue of arginine-containing synthetic substrates, inhibited collagenolytic cathepsin as effectively as cathepsin B1. Collagenolytic cathepsin was shown to retain a low residual activity against alpha-N-benzoyl-DL-arginine p-nitroanilide during purification which was equivalent to 0.2% of the activity of cathepsin B1. 5. Cathepsin B1 and collagenolytic cathepsin could not be separated by affinity chromatography on organomercurial-Sepharose 4B. The two enzymes could be resolved on DEAE-Sephadex (A-50) and by isoelectric focusing in an Ampholine pH gradient. The pI of the major cathepsin B1 isoenzyme was 4.9 and the pI of collagenolytic cathepsin was 6.4. 6. From chromatography on Sephadex G-75 (superfine grade) the molecular weights were calculated to be 26000 for cathepsin B1 and 20000 for collagenolytic cathepsin. The difference in molecular weight was confirmed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis.  相似文献   

3.
A sialidase [EC 3.2.1.18] from the ovary of starfish Asterina pectinifera was isolated and highly purified by preparative PAGE. The SDS-PAGE separation of the purified enzyme revealed two natures of protein bands, upper (50 kDa) and a lower (47 kDa). To identify the protein, N-terminal amino acid sequence of the upper band was done. The sequence matched with the N-terminal amino acid sequence of human lysosomal mature cathepsin D and cathepsin D activity was also found in all the preparation steps. Protease inhibitor pepstatin A inhibited the proteolysis activity of cathepsin D against a synthetic substrate. The two enzymes sialidase and cathepsin D were separated from each other by using high-performance gel-filtration chromatography. The Western blot analysis and isoelectric focusing showed the co-purified cathepsin D is a 50 kDa protein with a PI value of 4.2.  相似文献   

4.
A procedure for the simultaneous isolation of four cysteine proteinases, cathepsins B, H, L and C, from human kidney is described. The method includes concentration of the acidified homogenate by ammonium sulphate precipitation. The resuspended and dialysed precipitate was chromatographed on DEAE-cellulose DE-32, to allow separation of cathepsins H and C from cathepsins B and L. The main isoform of cathepsin H was separated from cathepsin C by cation-exchange chromatography on CM-Sephadex C-50. These two enzymes were further purified by covalent chromatography on thiopropyl Sepharose and gel permeation on Sephacryl S-200. The last step allowed separation of cathepsin C and the minor isoform of cathepsin H. Purification of the other two enzymes, cathepsins B and L, was carried out on thiol Sepharose, followed by chromatography on CM-Sepharose C-50. In this step, pure cathepsin L was obtained, while two isoforms of cathepsin B had to be finally purified on Sephacryl S-200 columns. The purity of each enzyme was analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis, isoelectric focusing on polyacrylamide gels and N-terminal sequencing. The activities of the purified cathepsins B, H and L were determined in terms of kcat/KM for three substrates, Z-Phe-Arg-MCA, Z-Arg-Arg-MCA and Arg-MCA. The method produced 25 mg of cathepsin B, 6.5 mg of cathepsin H, 1.5 mg of cathepsin L and 3.8 mg of cathepsin C from 3.5 kg of human kidney.  相似文献   

5.
Some peculiarities of prolactin hydrolysis by rat mammary gland lysosomal proteinases were studied. It was demonstrated that at pH 3.0-3.7 the initial steps of prolactin hydrolysis are under control of cathepsin D. Cysteine cathepsins are responsible for the deep degradation of the peptides formed. The molecular mass of rat mammary gland cathepsin D as determined by chromatography on Sephadex G-100 is about 45 kDa. Using affinity chromatography on hemoglobin-Sepharose 4B, cathepsin D was purified 300--320-fold. The purified enzyme rapidly hydrolyzes low concentrations of prolactin down to peptides with Mr less than 1 kDa. At substrate--enzyme concentration ratios above 3:1, the limited proteolysis of prolactin occurred. At early steps of prolactin hydrolysis the formation of two peptides (Mr approximately 10 kDa) takes place. Deeper degradation of sheep prolactin led to the formation of four peptides with molecular masses of 6630, 3020, 1880 and 1040 Da (data from SDS-PAGE electrophoresis). An analysis of structural peculiarities of prolactin from different animal species revealed that this hormone is protected from the damaging effect of exopeptidases.  相似文献   

6.
A cDNA encoding cathepsin B was cloned from the scuticociliate, Uronema marinum, which invades the olive flounder, Paralichthys olivaceus, leading to high mortalities in culturing fish. The full-length scuticociliate cathepsin B (ScCtB) gene contains an open reading frame of 1053 base pairs encoding 350 amino acids. A homology search revealed that ScCtB shares sequence identity with several piscine cathepsin Bs (48%-45%). The protein of ScCtB from U. marinum extracts was purified 12.8-fold by a one step purification process using a DEAE-Sephagel high performance liquid chromatography (HPLC) column. It had a molecular mass of 30 kDa, as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting, which was consistent with predicting molecular mass of mature protein (29.2 kDa) of ScCtB. The protease activity of the ScCtB enzyme was demonstrated by electrophoresis in a gelatin-acrylamide copolymerized gel. Its activity was quantified by cleaving a synthetic fluorogenic peptide substrate, Z-arginyl-arginyl-7-amido-4-methylcoumarin (Z-Arg-Arg-AMC). The optimum pH for the protease activity was 5.5. Typical of cysteine proteases, the enzyme was inhibited by trans-epoxysuccinyl-L-leucyl-amido(4-guanidino)butane (E-64) and leupeptin.  相似文献   

7.
Phenoloxidase (PO) from the humoral fluid of amphioxus B. belcheri tsingtauense was purified using a sequential combination of ammonium sulphate precipitation, Sephadex G-200 chromatography and DEAE Sepharose Fast Flow chromatography. In PAGE, the purified enzyme exhibited a single band of 150 kDa under non-reducing conditions, and was resolved to three bands with molecular masses of 72, 46 and 44 kDa, respectively, under reducing conditions, suggesting that the PO in amphioxus humoral fluid seems to be a heterotrimer of three polypeptides held together by disulphide bonds. The substrate specificity and inhibition characteristics both indicate that the PO isolated from amphioxus humoral fluid is a tyrosinase-type enzyme. In addition, mouse antisera against the purified PO were prepared, and their specificity was confirmed by Western blotting, facilitating the future determination of the origin of PO in the humoral fluid and the distribution of PO-synthesising tissues in amphioxus.  相似文献   

8.
alpha-L-Iduronidase from human liver was purified by a three-step five-column procedure and by immunoaffinity chromatography with a monoclonal antibody raised against purified enzyme. Seven bands identified by staining with Coomassie Blue had molecular masses of 74, 65, 60, 49, 44, 18 and 13 kDa and were present in both preparations of the liver enzyme. However, relative to the immunopurification procedure, alpha-L-iduronidase purified by the five-column procedure was considerably enriched in the 65 kDa polypeptide band. The seven bands were identified by Western-blot analysis with two different monoclonal antibodies raised against alpha-L-iduronidase. The chromatographic behaviour of alpha-L-iduronidase on the antibody column was dependent upon the quantity of enzyme loaded. Above a particular load concentration a single peak of enzyme activity was eluted, whereas at load concentrations below the critical value alpha-L-iduronidase was eluted in two peaks of activity, designated form I (eluted first) and form II (eluted second). The following properties of the two forms of alpha-L-iduronidase were determined. (1) The two forms from liver were composed of different proportions of the same seven polypeptides. (2) When individually rechromatographed on the antibody column, each form from liver shifted to a more retarded elution position but essentially retained its chromatographic behaviour relative to the other form. (3) Forms I and II of liver alpha-L-iduronidase showed no difference in their activities towards disaccharide substrates derived from two glycosaminoglycan sources, heparan sulphate and dermatan sulphate. (4) The native molecular size of forms I and II of liver alpha-L-iduronidase was 65 kDa as determined by gel-permeation chromatography. (5) Immunoaffinity chromatography of extracts of human lung and kidney resulted in the separation of alpha-L-iduronidase into two forms, each with different proportions of the seven common polypeptide species. (6) Lung forms I and II were taken up readily into cultured skin fibroblasts taken from a patient with alpha-L-iduronidase deficiency. Liver forms I and II were not taken up to any significant extent. Lung form II gave intracellular contents of alpha-L-iduronidase that were more than double those of normal control fibroblasts, whereas lung form I gave contents approximately equal to normal control values. We propose that all seven polypeptides are derived from a single alpha-L-iduronidase gene product, and that different proportions of these polypeptides can function as a single alpha-L-iduronidase entity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Persistent reovirus infections of murine L929 (L) fibroblast cells select mutant (LX) cells that do not support proteolytic disassembly of reovirus virions within the endocytic pathway. To better understand the function and regulation of endocytic proteases, we conducted experiments to define the block to reovirus disassembly displayed by LX cells. In contrast to parental L cells, mutant LX cells harbor defects that interfere with the maturation and activity of cathepsin B and cathepsin L but not cathepsin H. The cDNAs encoding cathepsin B and cathepsin L in L cells are identical to those in LX cells, indicating that LX cells manifest an extrinsic block to the function of these enzymes. Mixed lysates of L cells and LX cells lack activity of both cathepsin B and cathepsin L, suggesting the presence of an inhibitor of cathepsin function in LX cells. A cathepsin B-green fluorescent protein (GFP) fusion protein expressed in L cells and purified by immunoprecipitation retains cathepsin B activity, whereas cathepsin B-GFP expressed in LX cells does not. However, activity of cathepsin B-GFP expressed in LX cells can be recovered by incubating the immunoprecipitate with L cell lysate followed by immunoprecipitation, providing further evidence that LX cells express a cathepsin inhibitor. Native-gel electrophoresis and gel filtration chromatography demonstrate that, in both cell lines, the double-chain form of cathepsin B is sequestered in a large molecular weight complex that renders this form of the enzyme inactive. Alteration of this sequestration complex appears to be responsible for inhibition of cathepsin B in LX cells. These findings suggest that cathepsins can be regulated within the endocytic pathway. Moreover, this regulation influences host cell susceptibility to intracellular pathogens.  相似文献   

10.
Human cathepsin B1. Purification and some properties of the enzyme   总被引:8,自引:31,他引:8       下载免费PDF全文
1. Cathepsin B1 was purified from human liver by a method involving autolysis, fractional precipitation with acetone, adsorption on, and stepwise elution from, CM-cellulose and an organomercurial adsorbent, gel chromatography and finally equilibrium chromatography on CM-cellulose. 2. The early stages of the procedure, including the use of the organomercurial adsorbent, were suitable for the simultaneous isolation of cathepsin D. The two cathepsins were sharply separated on the organomercurial column, and particular attention was given to the method for the preparation and use of this adsorbent. 3. A method is described for the staining of analytical isoelectric-focusing gels for cathepsin B1 activity, as well as protein. By this method it was shown that cathepsin B1 was represented by at least six isoenzymes during the greater part of the purification procedure. After the gel-chromatography step this group of isoenzymes was obtained essentially free of other proteins, in good yield. The isoenzymes were resolved from this mixture by chromatography on CM-cellulose. The purified enzyme was stable for several weeks at slightly acid pH values in the absence of thiol compounds; it was unstable above pH7. 4. The pI values of the isoenzymes of cathepsin B1 extended from pH4.5 to 5.5, that of the major isoenzyme tending to increase from 5.0 to 5.2 during the purification procedure. Gel chromatography indicated a molecular weight of 27500 for all of the isoenzymes, whereas polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate gave a value of 24000. 5. An antiserum raised in sheep against the purified enzyme reacted specifically with the alkali-denatured molecule. Purified cathepsin B1 contained no material precipitable by an anti-(human cathepsin D) serum. 6. The enzyme hydrolysed several N-substituted derivatives of l-arginine 2-naphthylamide, as well as haemoglobin, azo-haemoglobin, azo-globin and azo-casein. Greatest activity was obtained near pH6.0. 7. The sensitivity of human cathepsin B1 to chemical inhibitors was generally similar to that of other thiol proteinases. The enzyme was inactivated by the chloromethyl ketones derived from tosylphenylalanine, tosyl-lysine, acetyltetra-alanine and acetyldialanylprolylalanine. 8. The hydrolysis of alpha-N-benzoyl-dl-arginine 2-naphthylamide by extracts of human liver at pH6 was attributable entirely to cathepsin B1.  相似文献   

11.
A novel lectin (CAA-II) was isolated and purified from the seeds of Cicer arietinum by ammonium sulphate fractionation and affinity chromatography on an N-acetyl-D-galactosamine-linked agarose column. The lectin is composed of four identical subunits of 30 kDa and the molecular mass of the native lectin was estimated to be 120 kDa by gel filtration chromatography and confirmed by mass spectrometry. The lectin showed agglutination activity against rabbit erythrocytes (trypsin-treated and untreated) as well as against human erythrocytes. Haemagglutination inhibition assays showed that the lectin is a galactose-specific protein having a high affinity for N-acetyl-D-galactosamine. The molecular weight, haemagglutination pattern, carbohydrate specificity and N-terminal amino acid sequence indicated that the lectin is clearly distinct from the previously reported chickpea lectin CAA-I.  相似文献   

12.
Structural differences between rabbit cathepsin E and cathepsin D   总被引:1,自引:0,他引:1  
Rabbit cathepsins D and E were isolated from bone marrow. Both enzymes were purified by affinity chromatography on pepstatin-Sepharose 4B and Con A-Sepharose 4B. Purity of the enzymes was ascertained by two-dimensional gel electrophoresis after iodination. The isoelectric point of cathepsin D was found to be 6.95. Cathepsin E was shown to consist of two subunits having molecular masses each of 40 kDa and isoelectric points of 4.60 and 4.65, respectively. The amino-acid composition of cathepsin E was found to be different from that of cathepsin D.  相似文献   

13.
A rapid purification procedure is described for cathepsin B from bovine liver. After preparation of crude lysosomal extracts, the method only involves DEAE Zeta-Prep-Disk chromatography, gel filtration, and fast protein liquid chromatography on Mono-S column. Two active peaks (P1 and P2) of cathepsin B were distinguished. Both presented uncleaved (relative mass (Mr) 30,000) and cleaved (Mr 25,000 + Mr 5000) chains, but different isoforms as revealed by isoelectrofocusing. These two different populations of cathepsin B isoforms nevertheless exhibited similar enzymatic properties. Km and kcat were 114 microM and 52 s-1, and 125 microM and 75 s-1, for hydrolysis of Z-Arg-Arg-NMec by P1 and P2, respectively. Both were rapidly inhibited by low concentrations of E-64 or leupeptin, but were unaffected by cathepsin-L-specific inhibitor Z-Phe-Phe-CHN2.  相似文献   

14.
The cholesterol sulphate sulphohydrolase (CHS-ase) exhibiting molecular weight of 30 kDa was purified from human placenta microsomes. The microsomal proteins were extracted with 0.5% Triton X-100. The DEAE-cellulose chromatography of the solubilized microsomal proteins, performed at pH 7.6 allowed to separate two enzymatically active fractions. One of them was associated with the protein fraction unbound by DEAE-cellulose, the other was tightly bound by ion exchanger. The 30 kDa cholesterol sulphate sulphohydrolase was purified to homogenity from the protein fraction tightly bound by DEAE-cellulose. The highly purified enzyme preparation (specific activity 385 nmol min(-1)mg(-1) of protein) exhibited optimal activity at pH 6.4, the K(m) was established to be 6.7 x 10(-6)M, the pI value was 7.4. The 30 kDa cholesterol sulphate sulphohydrolase, in contrast to the CHS-ase form originated from the protein fraction unbound by DEAE-cellulose, was not sensitive to alkaline phosphatase treatment and phosphohydrolase inhibitors. The effects of steroids, -SH reacting agents and sulphohydrolase inhibitors on the enzyme activity were tested.  相似文献   

15.
NADP-dependent isocitrate dehydrogenase (EC 1.1.42) was isolated and 430 times purified from the hyaloplasm fraction of bull adrenal cortex using fractionation by ammonium sulphate and acetone, heat treatment, chromatography on DEAE-Sephadex A-50, gel-filtration on Sephadex G-200 and affinity chromatography on 2',5'-ADP-sepharose 4B. The specific activity of homogeneous enzyme is 60 units per 1 mg of protein at 30 degrees C, yield--34%, pH optimum--8.0, molecular weight, determined by gel filtration on Sephadex G-200, is 96 kDa. The preparation electrophoresis in PAAG in the presence of DS-Na reveals one protein fraction with the mobility corresponding to that of protein having molecular weight of 46 kDa. The data obtained evidence for a dimer structure of the isocitrate dehydrogenase molecule from bull adrenals.  相似文献   

16.
A radiolabelled peptide chloromethyl ketone (125I-tyrosyl-L-alanyl-L-lysyl-L-arginine chloromethyl ketone) was used to affinity-label proteinases in rat thyroid cells (FRTL5). Two major proteins of 34 kDa and 32 kDa were affinity-labelled. Inhibitor competition studies demonstrated that both proteins were cysteine proteinases. Over the range pH 5-8, they exhibited maximum activity against the affinity probe at pH 5. They were soluble rather than membrane-bound and were both glycosylated. The 32 kDa proteinase but not the 34 kDa proteinase was immunoprecipitated using an anti-rat liver cathepsin B antibody. The data suggested that these proteinases were molecular forms of cathepsin B. The affinity-labelled proteins in the thyroid were compared with those in an insulin-secreting cell line (HIT T15) and a liver cell line (Hep G2). Two molecular forms of cathepsin B of Mr 39,000 and 33,000 were identified in the insulin-secreting cell line and a single form of Mr 34,000 in the liver cell line. These molecular forms of cathepsin B may reflect the different functions and compartmentation of cathepsin B in these cells.  相似文献   

17.
Transforming growth factor-beta 1 (TGF-beta 1) has been found to occur as latent high molecular weight complexes, with or without an associated component denoted latent TGF-beta 1-binding protein (LTBP). We show here that a human glioblastoma cell line (U-1240 MG) secretes all isoforms of TGF-beta s found in mammalian cells (TGF-beta 1, -beta 2, and -beta 3). Approximately 26% of the secreted TGF-beta is in an active form. Latent TGF-beta s were partially purified from medium conditioned by the U-1240 MG cell line using anion exchange chromatography. Analysis of the different fractions by immunoblotting using antisera against precursor parts of the different TGF-beta isoforms, and against LTBP, revealed that not only TGF-beta 1 but also other isoforms of TGF-beta may occur in high molecular weight forms containing LTBP. In addition, each one of the TGF-beta isoforms occurred in smaller forms not containing LTBP. Interestingly, each of the TGF-beta isoforms was also seen in complexes of about 210 kDa containing associated component(s) distinct from LTBP. These results indicate that each of the different isoforms of TGF-beta is synthesized and secreted by this glioblastoma cell line in several different high molecular weight latent forms; the biological importance of the various latent TGF-beta complexes is discussed.  相似文献   

18.
Cathepsin B is a vitally important enzyme in various physiological processes and in tumor invasion and metastasis. A cathepsin B inhibitor, HCB-SunI, was identified and purified from sunflower seeds, Helianthus annuus, using ammonium sulfate precipitation and two steps of conventional chromatography. The molecular mass of HCB-SunI was estimated to be 12 kDa by SDS-PAGE and 12.32 kDa by MALDI TOF MS. Its N-terminal amino acid sequence was determined to be: PYGGGGTESG. HCB-SunI not only inhibited Helicoverpa cathepsin B (HCB) but also decreased the growth of HeLa and glioma cells by 7-27% and 6-22%, respectively, when the cells were grown in a final concentration of 0.002-0.008 microM inhibitor.  相似文献   

19.
A cyclic AMP phosphodiesterase form of rat brain cytosol was purified by means of affinity chromatography on an immobilized analog of the specific inhibitor rolipram, followed by an exclusion chromatography step. The resulting preparation presented two protein bands in polyacrylamide gel electrophoresis, both with phosphodiesterase activity. Kinetics of cyclic AMP hydrolysis by the purified enzyme proved of the Michaelis type, with a Km of 3 microM, while hydrolysis of cyclic GMP displayed anomalous negatively cooperative kinetics. At micromolar concentrations, this enzyme from hydrolyzed highly specifically cyclic AMP (50-fold faster than cyclic GMP). Cyclic GMP proved a poor competitor of cyclic AMP hydrolysis (Ki 1.04 mM). The neurotropic compound, rolipram, strongly inhibited the enzyme, in a competitive manner (Ki 0.9 microM). This enzyme displayed a molecular mass of around 44 kDa as determined by exclusion chromatography, but two molecular masses of 42 kDa and 89 kDa were observable by electrophoresis on a polyacrylamide gradient gel, compatible with an equilibrium between dimeric and monomeric forms. Isoelectric focusing of the preparation gave rise to two activity peaks of pI 4.8 and 6.7, with identical properties, probably representing two charge isomers of the same protein. An enzyme prepared from rat heart cytosol by the same techniques as for brain phosphodiesterase isolation shared numerous characteristics with the enzyme of cerebral origin, suggesting identity of the rolipram-sensitive form between the two tissues. Since the rolipram-sensitive form detected in crude brain preparations markedly differs from the above-described isolated enzyme, both by its molecular mass in exclusion chromatography and by its pI, it is suggested that an alteration of the native protein, due to dissociation of putative subunits, occurs during the purification procedure.  相似文献   

20.
Interactions between different corneal proteoglycans.   总被引:1,自引:0,他引:1       下载免费PDF全文
Proteoglycans were extracted from bovine cornea with 4M-guanidinium chloride and purified by CsCl-density-gradient centrifugation. Under associative conditions two fractions were found: one capable of forming assemblies of high molecular weight and another lacking this property. The heavier fraction (density 1.59 g/ml) was eluted as a single retarded peak from Sepharose 2B, but on DEAE-Sephadex chromatography, gave two peaks: the first (eluted with 0.75 M-NaCl) contained mainly proteochondroitin sulphate and the second (eluted with 1.25 M-NaCl) mainly proteokeratan sulphate. Each of these proteoglycans was more retarded on Sepharose 2B than was the original sample from density-gradient centrifugation. Re-aggregation was obtained by recombination of the two fractions. The lighter fraction (density 1.44 g/ml), containing predominantly keratan sulphate chains, was eluted from DEAE-Sephadex as a single peak with 1.25 M-NaCl and was retarded on Sepharose 2B: this fraction was not able to form aggregates with proteochondroitin sulphate. Chemical analyses of the carbohydrate and protein moieties of the proteoglycans from DEAE-Sephadex confirmed that, in the cornea, different subunits are present with characteristic aggregation properties and hydrodynamic volumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号