共查询到20条相似文献,搜索用时 15 毫秒
1.
Kühn P Pieper J Kaminskaya O Eckert HJ Lechner RE Shuvalov V Renger G 《Photosynthesis research》2005,84(1-3):317-323
This short communication addresses three topics of photosynthetic water cleavage in Photosystem II (PS II): (a) effect of protonation in the acidic range on the extent of the ‘fast’ ns kinetics of P680+· reduction by YZ, (b) mechanism of O–O bond formation and (c) role of protein flexibility in the functional integrity of PS II. Based on measurements of light-induced absorption changes and quasielastic neutron scattering in combination with mechanistic considerations, evidence is presented for the protein acting as a functionally active constituent of the water cleavage machinery, in particular, for directed local proton transfer. A specific flexibility emerging above a threshold of about 230 K is an indispensable prerequisite for oxygen evolution and plastoquinol formation. 相似文献
2.
We have used antibodies generated against synthetic peptides to determine the topology of the 43 kD chlorophyll a binding protein (CP 43) of Photosystem II. Based on the pattern of proteolytic fragments detected (on western blots) by peptide specific antibodies, a six transmembrane span topological model, with the amino and carboxyl termini located on the stromal membrane surface, is predicted. This structure is similar to that predicted for CP 47, a PS II chlorophyll a binding protein (Bricker T (1990) Photosynth Res 24: 1–13). The model is discussed in reference to the possible location of chlorophyll binding sites.This work was supported by National Institutes of Health Research Grant, GM40703 and U.S. Department of Energy Grant, DE-FG01-92ER20076 (to R.T.S.). 相似文献
3.
4.
This review summarizes our current state of knowledge on the structural organization and functional pattern of photosynthetic water splitting in the multimeric Photosystem II (PS II) complex, which acts as a light-driven water: plastoquinone-oxidoreductase. The overall process comprises three types of reaction sequences: (1) photon absorption and excited singlet state trapping by charge separation leading to the ion radical pair [Formula: see text] formation, (2) oxidative water splitting into four protons and molecular dioxygen at the water oxidizing complex (WOC) with P680+* as driving force and tyrosine Y(Z) as intermediary redox carrier, and (3) reduction of plastoquinone to plastoquinol at the special Q(B) binding site with Q(A)-* acting as reductant. Based on recent progress in structure analysis and using new theoretical approaches the mechanism of reaction sequence (1) is discussed with special emphasis on the excited energy transfer pathways and the sequence of charge transfer steps: [Formula: see text] where (1)(RC-PC)* denotes the excited singlet state (1)P680* of the reaction centre pigment complex. The structure of the catalytic Mn(4)O(X)Ca cluster of the WOC and the four step reaction sequence leading to oxidative water splitting are described and problems arising for the electronic configuration, in particular for the nature of redox state S(3), are discussed. The unravelling of the mode of O-O bond formation is of key relevance for understanding the mechanism of the process. This problem is not yet solved. A multistate model is proposed for S(3) and the functional role of proton shifts and hydrogen bond network(s) is emphasized. Analogously, the structure of the Q(B) site for PQ reduction to PQH(2) and the energetic and kinetics of the two step redox reaction sequence are described. Furthermore, the relevance of the protein dynamics and the role of water molecules for its flexibility are briefly outlined. We end this review by presenting future perspectives on the water oxidation process. 相似文献
5.
Goussias C Boussac A Rutherford AW 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2002,357(1426):1369-81; discussion 1419-20
Conceptually, photosystem II, the oxygen-evolving enzyme, can be divided into two parts: the photochemical part and the catalytic part. The photochemical part contains the ultra-fast and ultra-efficient light-induced charge separation and stabilization steps that occur when light is absorbed by chlorophyll. The catalytic part, where water is oxidized, involves a cluster of Mn ions close to a redox-active tyrosine residue. Our current understanding of the catalytic mechanism is mainly based on spectroscopic studies. Here, we present an overview of the current state of knowledge of photosystem II, attempting to delineate the open questions and the directions of current research. 相似文献
6.
The interaction of exogenous quinones with the Photosystem II (PS II) acceptor side has been analyzed by measurements of flash-induced 320 nm absorption changes, transient flash-induced variable fluorescence changes, thermoluminescence emission and oxygen yield in dark-adapted thylakoids and PS II membrane fragments. Two classes of 1,4-benzoquinones were shown to give rise to remarkably different reaction patterns. (A) Phenyl-p-benzoquinone (Ph-p-BQ) -type compounds give rise to a marked binary oscillation of the initial amplitudes of 320 nm absorption changes induced by a flash train in dark-adapted PS II membrane fragments and a retardation of the decay kinetics of the flash-induced variable fluorescence. The electron transfer reactions to these type of quinones are severely inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). (B) In the presence of tribromotoluquinone (TBTQ) a different oscillation pattern of the 320 nm absorption changes is observed characterized by a marked relaxation after the first flash in the 5 ms domain. This relaxation is insensitive to 10 μM DCMU. Likewise the decay of the flash-induced variable fluorescence in TBTQ-treated samples is much less sensitive to DCMU than in control. The thermoluminescence emission exhibits an oscillation in samples incubated for 5 min with TBTQ before addition of 30 μM DCMU. Under the same conditions a significant flash-induced oxygen evolution is observed only after the third and fourth flash, respectively, whereas in the presence of TBTQ alone a normal oscillation pattern is observed. The different functional patterns of PS II caused by the two types of classes of exogenous quinones are interpreted by their binding properties: a noncovalent association with the QB-site of Ph-p-BQ-type quinones versus a tight (covalent?) binding in the vicinity of QA (possibly also at the QB-site) in the case of halogenated 1,4-benzoquinones. The mechanistic implications of these findings are discussed. 相似文献
7.
The polypeptide composition and membrane structure of a variegated mutant of tobacco have been investigated. The pale green mutant leaf regions contain chloroplasts in which the amount of membrane stacking has been reduced (although not totally eliminated). The mutant membranes are almost totally deficient in Photosystem II when compared to wild-type chloroplast membranes, but still show near-normal levels of Photosystem I activity. The pattern of membrane polypeptides separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows several differences between mutant and wild-type membranes, although the major chlorophyll-protein complexes described in many other plant species are present in both mutant and wild-type samples. Freeze-fracture analysis of the internal structure of these photosynthetic membranes shows that the Photosystem II-deficient membranes lack the characteristic large particle associated with the E fracture face of the thylakoid. These membranes also lack a tetramer-like particle visible on the inner (ES) surface of the membrane. The other characteristics of the photosynthetic membrane, including the small particles observed on the P fracture faces in both stacked and unstacked regions, and the characteristic changes in the background matrix of the E fracture face which accompany thylakoid stacking, are unaltered in the mutant. From these and other observations we conclude that the large (EF and ES) particle represents an amalgam of many components comprising the Photosystem II reaction complex, that the absence of one or more of its components may prevent the structure from assembling, and that in its absence, Photosystem II activity cannot be observed. 相似文献
8.
This mini-review briefly summarizes our current knowledge on the reaction pattern of light-driven water splitting and the
structure of Photosystem II that acts as a water:plastoquinone oxidoreductase. The overall process comprises three types of
reaction sequences: (a) light-induced charge separation leading to formation of the radical ion pair P680+•QA−•; (b) reduction of plastoquinone to plastoquinol at the QB site via a two-step reaction sequence with QA−• as reductant and (c) oxidative water splitting into O2 and four protons at a manganese-containing catalytic site via a four-step sequence driven by P680+• as oxidant and a redox active tyrosine YZ acting as mediator. Based on recent progress in X-ray diffraction crystallographic structure analysis the array of the cofactors
within the protein matrix is discussed in relation to the functional pattern. Special emphasis is paid on the structure of
the catalytic sites of PQH2 formation (QB-site) and oxidative water splitting (Mn4O
x
Ca cluster). The energetics and kinetics of the reactions taking place at these sites are presented only in a very concise
manner with reference to recent up-to-date reviews. It is illustrated that several questions on the mechanism of oxidative
water splitting and the structure of the catalytic sites are far from being satisfactorily answered. 相似文献
9.
Rutherford AW Faller P 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2003,358(1429):245-253
Based on the current model of its structure and function, photosystem II (PSII) seems to have evolved from an ancestor that was homodimeric in terms of its protein core and contained a special pair of chlorophylls as the photo-oxidizable cofactor. It is proposed that the key event in the evolution of PSII was a mutation that resulted in the separation of the two pigments that made up the special chlorophyll pair, making them into two chlorophylls that were neither special nor paired. These ordinary chlorophylls, along with the two adjacent monomeric chlorophylls, were very oxidizing: a property proposed to be intrinsic to monomeric chlorophylls in the environment provided by reaction centre (RC) proteins. It seems likely that other (mainly electrostatic) changes in the environments of the pigments probably tuned their redox potentials further but these changes would have been minor compared with the redox jump imposed by splitting of the special pair. This sudden increase in redox potential allowed the development of oxygen evolution. The highly oxidizing homodimeric RC would probably have been not only inefficient in terms of photochemistry and charge storage but also wasteful in terms of protein or pigments undergoing damage due to the oxidative chemistry. These problems would have constituted selective pressures in favour of the lop-sided, heterodimeric system that exists as PSII today, in which the highly oxidized species are limited to only one side of the heterodimer: the sacrificial, rapidly turned-over D1 protein. It is also suggested that one reason for maintaining an oxidizable tyrosine, TyrD, on the D2 side of the RC, is that the proton associated with its tyrosyl radical, has an electrostatic role in confining P(+) to the expendable D1 side. 相似文献
10.
The electron transport properties of photosystem II (PSII) from five different domains of the thylakoid membrane were analyzed by flash-induced fluorescence kinetics. These domains are the entire grana, the grana core, the margins from the grana, the stroma lamellae, and the Y100 fraction (which represent more purified stroma lamellae). The two first fractions originate from appressed grana membranes and have PSII with a high proportion of O(2)-evolving centers (80-90%) and efficient electron transport on the acceptor side. About 30% of the granal PSII centers were found in the margin fraction. Two-thirds of those PSII centers evolve O(2), but the electron transfer on the acceptor side is slowed. PSII from the stroma lamellae was less active. The fraction containing the entire stroma has only 43% O(2)-evolving PSII centers and slow electron transfer on the acceptor side. In contrast, PSII centers of the Y100 fraction show no O(2) evolution and were unable to reduce Q(B). Flash-induced fluorescence decay measurements in the presence of DCMU give information about the integrity of the donor side of PSII. We were able to distinguish between PSII centers with a functional Mn cluster and without any Mn cluster, and PSII centers which undergo photoactivation and have a partially assembled Mn cluster. From this analysis, we propose the existence of a PSII activity gradient in the thylakoid membrane. The gradient is directed from the stroma lamellae, where the Mn cluster is absent or inactive, via the margins where photoactivation accelerates, to the grana core domain where PSII is fully photoactivated. The photoactivation process correlates to the PSII diffusion along the membrane and is initiated in the stroma lamellae while the final steps take place in the appressed regions of the grana core. The margin domain is seemingly very important in this process. 相似文献
11.
D W Wilson S W Whiteheart M Wiedmann M Brunner J E Rothman 《The Journal of cell biology》1992,117(3):531-538
The N-ethylmaleimide sensitive fusion protein (NSF) is required for fusion of lipid bilayers at many locations within eukaryotic cells. Binding of NSF to Golgi membranes is known to require an integral membrane receptor and one or more members of a family of related soluble NSF attachment proteins (alpha-, beta-, and gamma-SNAPs). Here we demonstrate the direct interaction of NSF, SNAPs and an integral membrane component in a detergent solubilized system. We show that NSF only binds to SNAPs in the presence of the integral receptor, resulting in the formation of a multisubunit protein complex with a sedimentation coefficient of 20S. Particle assembly reveals striking differences between members of the SNAP protein family; gamma-SNAP associates with the complex via a binding site distinct from that used by alpha- and beta-SNAPs, which are themselves equivalent, alternative subunits of the particle. Once formed, the 20S particle is subsequently able to disassemble in a process coupled to the hydrolysis of ATP. We suggest how cycles of complex assembly and disassembly could help confer specificity to the generalized NSF-dependent fusion apparatus. 相似文献
12.
High light treatments were given to attached leaves of pumpkin (Cucurbita pepo L.) at room temperature and at 1°C where the diffusion- and enzyme-dependent repair processes of Photosystem II are at a minimum. After treatments, electron transfer activities and fluorescence induction were measured from thylakoids isolated from the treated leaves. When the photoinhibition treatment was given at 1°C, the Photosystem II electron transfer assays that were designed to require electron transfer to the plastoquinone pool showed greater inhibition than electron transfer from H2O to paraphenyl-benzoquinone, which measures all PS II centers. When the light treatment was given at room temperature, electron transfer from H2O to paraphenyl-benzoquinone was inhibited more than whole-chain electron transfer. Variable fluorescence measured in the presence of ferricyanide decreased only during room-temperature treatments. These results suggest that reaction centers of one pool of Photosystem II, non-QB-PS II, replace photoinhibited reaction centers at room temperature, while no replacement occurs at 1°C. A simulation of photoinhibition at 1°C supports this conclusion.Abbreviations BSA
bovine serum albumin
- Chl
chlorophyll
- DCMU
3-(3,4,-dichlorophenyl)-1,1,-dimethylurea
- DCPIP
dichlorophenol-indophenol (2,6-dichloro-4((4-hydroxyphenyl)imino)-2,5-cyclohexadien-1-one)
- DPC
diphenyl carbazide (2,2-diphenylcarbonic dihydrazide)
- FeCN
ferricyanide (hexacyanoferrate(III))
- app
apparent quantum yield of photosynthetic oxygen evolution
- MV
methyl viologen (1,1-dimethyl-4,4-bipyridinium dichloride)
- PPBQ
phenyl-p-benzoquinone
- PPFD
photosynthetic photon flux density
- PQ
pool plastoquinone
- QB
secondary quinone acceptor of PS II
- RT
room temperature
- WC
whole chain electron transfer 相似文献
13.
This minireview presents a summary of information available on the secondary and tertiary structure of manganese stabilizing
protein (MSP) in solution, and on the identity of amino acid residues that affect binding and functional assembly of this
protein into Photosystem II. New data on the secondary structure of C-terminal mutants and 90 °C-heated manganese stabilizing
protein, along with earlier data on the secondary structure of N-terminal mutants and the tertiary structure of all modified
MSP species, allow for an evaluation of models for spinach MSP secondary and tertiary structure. This summary of previous
and new information better documents the natively unfolded behavior of the protein in solution. A two-step mechanism for binding
of manganese stabilizing protein to Photosystem II is discussed and possible solution three-dimensional conformations of the
wild-type protein and some of its unfolded mutants, are proposed.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
14.
Electron crystallography of photosystem II has revealed the location of important subunits and photoactive pigment molecules within this large membrane protein complex. It has also demonstrated a close evolutionary link among all types of photosynthetic reaction centres. 相似文献
15.
The polypeptide composition of a Photosystem II (PS II) core complex from higher plant chloroplasts has been characterized by subjecting the isolated complex to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two polypeptides in the 40–50 kDa size class, attributed to the chlorophyll a-binding apoproteins of PS II, were resolved when the urea concentration in the SDS-polyacrylamide gel electrophoresis was greater than 1 M. The two chlorophyll a-binding proteins were dissimilar in their primary structure based upon their different hydrolysis products on SDS-polyacrylamide gel electrophoresis following papain treatment. The core complex contained three additional polypeptides. Two polypeptides in the 30–34 kDa size class were resolved when the urea concentration in the gel system was increased to greater than 4 M. One of the polypeptides in this size class was identified as the herbicide-binding protein from azido[14C]atrazine labeling studies. The herbicide-binding protein displayed an anomalous electrophoretic migration behavior in SDS-polyacrylamide gel electrophoresis in the presence or absence of urea; its apparent molecular weight decreased when the urea concentration increased. The fifth protein component of the core complex was attributed to cytochrome b-559 which was found to consist of the ascorbate- and dithionite-reducible forms in the samples prior to SDS solubilization. 相似文献
16.
The organization of the pigmented multiprotein core complexof higher plant PS II has been examined. Oxygen-evolving PSII particles or thylakoid membranes of wild-type and Chi b-lessbarley were extracted with various glycosidic surfactants andelectrophoretically fractionated. The predominant multiproteincore complex II (CC II) fractions had sizes on gel electrophoresisof Mr=230,000 and Mr= 140,000 and were photochemically active.Both fractions had identical absorption spectra, contained thebeta-carotene-chl a-proteins (Cp47 and Cp43), the PS II reactioncenter subunits (Dl and D2), and the two cytochrome b559 subunitsin unit stoichiometry. The Mr=230,000 fraction could evolveoxygen in the light and contained an Mr=33,O0O oxygen evolutionenhancer (OEE 33) polypeptide, whereas the Mr= 140,000 fractionlacked OEE 33 and could not evolve oxygen. The apparent sizesof the two fractions were also estimated by gel filtration asMr=490,000 and Mr=220,000, respectively; the estimates by gelfiltration more accurately reflect their predicted sizes. Furtheranalyses by nondenaturing gel electrophoresis indicated thatCp47, Cp43 and the three OEE gene products probably occur ashomodimers in situ. Our data suggest that phosphorylation ofCC II subunits occurs when they are located in the oligomericform. We propose that the native state of the PS II core complexin higher plants is dimeric, and that this state, which waspreviously observed only in thermophilic cyanobacteria, is probablythe form present in all oxygenic organisms. (Received August 9, 1991; Accepted September 26, 1991) 相似文献
17.
6-Azido-5-decyl-2,3-dimethoxy-p-benzoquinone (6-azido-Q0C10) was found to replace the native plastoquinone at B (the second stable electron acceptor to Photosystem II (PS II)). The 6-azido-Q10C10 would accept electrons from the primary electron-accepting quinone, Q, thus allowing electron transport through PS II to the plastoquinone pool in thylakoids. The synthetic azidoquinone also competes with the PS II herbicides ioxynil and atrazine for binding. This observation strongly favors the hypothesis that PS II herbicides block electron transport by replacing the native quinone which acts as the second electron carrier on the reducing side of PS II (termed B). Covalent linkage of 6-azido-Q0C10 to its binding environment by ultraviolet irradiation greatly reduces herbicide-binding affinity but does not lead to a loss in herbicide-binding sites. We take this as evidence that covalent attachment of 6-azido-Q0C10 allows some freedom of quinone head-group movement such that the herbicides can enter the binding site. This indicates that the protein determinants which regulate quinone and herbicide binding are very closely related, but not identical. A compound somewhat related to 6-azido-Q0C10 is 2-azido-3-methoxy-5-geranyl-6-methyl-p-benzoquinone (2-azido-Q2). This compound was found to be an ineffective competitor with respect to herbicide binding. Thus, interactions with protein-binding determinants are highly dependent on the molecular structure of quinones. The 2-azido-Q2 was an inhibitor of electron flow in the intersystem portion of the chain. 相似文献
18.
Chloroplast membranes have been shown previously to undergo a change in radioactive labeling by chemical modification reagents that is dependent on electron transport and protolytic events in Photosystem II. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis has been used to show that a low molecular weight chloroplast polypeptide (7.2 Kilodaltons) undergoes the most change in acetic anhydride labeling upon Photosystem II electron transport. A similar polypeptide has been identified by other workers as a component of the hydrophobic trans-membrane proton channel in chloroplasts. Photosystem I electron transport does not give the change in level of incorporation of acetic anhydride into this membrane protein. These results suggest that protons liberated from Photosystem II interact with a hydrophobic portion of the chloroplast membrane, perhaps with the trans-membrane proton channel. 相似文献
19.
We report on a class of Escherichia coli SecY mutants that impair membrane protein folding. The mutants also up-regulate the Cpx/sigma(E) stress response pathways. Similar stress induction was also observed in response to a YidC defect in membrane protein biogenesis but not in response to the signal recognition particle-targeting defect or in response to a simple reduction in the abundance of the translocon. Together with the previous contention that the Cpx system senses a protein abnormality not only at periplasmic and outer membrane locations but also at the plasma membrane, abnormal states of membrane proteins are postulated to be generated in these secY mutants. In support of this notion, in vitro translation, membrane integration, and folding of LacY reveal that mutant membrane vesicles allow the insertion of LacY but not subsequent folding into a normal conformation recognizable by conformation-specific antibodies. The results demonstrate that normal SecY function is required for the folding of membrane proteins after their insertion into the translocon. 相似文献
20.
The manganese-stabilizing protein (MSP) of Photosystem II was purified from spinach photosynthetic membranes. The MSP was crystallized in the presence of calcium. Despite the apparent purity of the isolated protein, the crystals grew to only about 0.05 mm in their largest dimension. The MSP was analyzed to identify possible sources of protein heterogeneity that could hinder crystal growth. Tandem reverse-phase HPLC/ electronspray ionization mass spectrometry analysis of the MSP showed a major peak and four smaller peaks. All five peaks had molecular masses of 26 535, as expected for mature MSP, indicating the absence of heterogeneities due to covalent modifications. MALDI mass spectroscopy was utilized to identify heterogeneities in the MSP oligomeric state. These measurements showed that purified MSP in solution is a mixture of monomers and dimers, while solubilized MSP crystals contained only dimers. Size-exclusion chromatography and dynamic light scattering were used to probe the effect of the crystallization conditions on the MSP. Size-exclusion chromatography of concentrated MSP showed the presence of aggregates and monomers, while dilute MSP contained monomers. Dynamic light scattering experiments in the absence, or in the presence of 10–50 mM or 100 mM calcium, yielded calculated molecular mass values of 34 kDa, 48 kDa and 68 kDa, respectively. These changes in the observed molecular mass of the MSP could have been caused by the formation of dimers and higher oligomers and/or significant conformational changes. Based on the results reported in this study, a model is presented which details the effect of oligomeric heterogeneity on the inhibition of MSP crystal growth. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献