首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Opportunities for synthetic plant chimeral breeding: Past and future   总被引:6,自引:0,他引:6  
Many plant periclinal chimeras are selected by horticulturalists due to their distinctive, valuable phenotypes, and because they are relatively stable. Most of these have arisen by induced or spontaneous mutation. Interspecific chimeras have been accidentally produced from graft unions of plants from a wide range of families. Early last century Winkler developed a technique to produce interspecific chimeras from graft unions (graft chimeras). More recently in vitro techniques have been developed to synthesize interspecific and intervarietal chimeras. However, these techniques have only been successful for species in the families Solanaceae and Cruciferae, and rarely assessed on plants in other families. Research is required to improve these techniques or develop new approaches so that the efficiency of chimeral shoot production is improved and the techniques are applicable to plants in a wide range of families. The unique characteristics of interspecific or intervarietal chimeras show the potential of chimeral breeding to produce new cultivars. If chimeral breeding techniques were improved, they could become a standard breeding approach for some horticultural crops.  相似文献   

3.
4.
The delimitation of Bignoniaceae and Scrophulariaceae has long been a taxonomic problem. Several genera, including Paulownia, Schlegelia, Gibsoniothamnus, and Synapsis, have been variously placed in one or the other family. Differences between these two families have been noted with regard to the presence of endosperm, embryo and seed morphology, and placentation; however, the lack of comprehensive data on the distribution of such characters within these two families left the delimitation problem unsolved. A comprehensive study of floral anatomy confirmed a basic difference in the placentation of these two families, as well as a basic difference in gynoecial vascularization. Paulownia has a floral anatomy, embryo morphology, and seed morphology consistent with placement in Scrophulariaceae. While reminiscent of Bignoniaceae, Paulownia is not an intermediate genus linking the two families. Schlegelia and Gibsoniothamnus have a floral anatomy consistent with placement in Scrophulariaceae. Schlegelia also has a scrophulariaceous seed morphology. Considered anomalous in the Bignoniaceae, the Schlegelieae similarly are distinct in the Scrophulariaceae.  相似文献   

5.
Exceptional longevity (EL) is a rare phenotype that can cluster in families, and co‐segregation of genetic variation in these families may point to candidate genes that could contribute to extended lifespan. In this study, for the first time, we have sequenced a total of seven exomes from exceptionally long‐lived siblings (probands ≥ 103 years and at least one sibling ≥ 97 years) that come from three separate families. We have focused on rare functional variants (RFVs) which have ≤ 1% minor allele frequency according to databases and that are likely to alter gene product function. Based on this, we have identified one candidate longevity gene carrying RFVs in all three families, APOB. Interestingly, APOB is a component of lipoprotein particles together with APOE, and variants in the genes encoding these two proteins have been previously associated with human longevity. Analysis of nonfamilial EL cases showed a trend, without reaching statistical significance, toward enrichment of APOB RFVs. We have also identified candidate longevity genes shared between two families (5–13) or within individual families (66–156 genes). Some of these genes have been previously linked to longevity in model organisms, such as PPARGC1A, NRG1, RAD52, RAD51, NCOR1, and ADCY5 genes. This work provides an initial catalog of genes that could contribute to exceptional familial longevity.  相似文献   

6.
The families Rhyacophilidae and Glossosomatidae (Trichoptera) are considered to be the most primitive ones within the order. We examined the spermatozoa of members of these families to see whether their ultrastructure is consistent with an ancestral position. Axonemal structures, after fixation with a tannic acid-containing fixative, have been shown to be particularly useful as taxonomical indicators. It was found that 4 members of Rhyacophilidae, representing 3 subgenera (Rhyacophila, Pararhyacophila, and Hyporhyacophila) all have motile spermatozoa, with a 9 + 9 + 2 axoneme in which inner (but no outer) dynein arms are present. The accessory tubules have a wall consisting of 17 protofilaments, decreasing to 16 near the distal end, whereas the examined member of Glossosomatidae, Catagapetus nigrans, has accessory tubules with 18 protofilaments and a 9 + 9 + 2 axoneme with inner dynein arms and with motility similar to the Rhyacophilidae. Sperm motility is consistent with the inclusion of these 2 families within the suborder Integripalpia, and the axonemal pattern 9 + 9 + 2 indicates that the families indeed occupy a primitive position within Trichoptera.  相似文献   

7.
Generalized vitiligo is an autoimmune disorder in which acquired white patches of skin and overlying hair result from autoimmune loss of melanocytes from involved areas. Although usually sporadic, family clustering of vitiligo may occur, in a non-Mendelian pattern typical of multifactorial, polygenic inheritance. Sporadic vitiligo is associated with autoimmune thyroid disease, pernicious anemia, Addison's disease, and lupus; these same disorders occur at increased frequency in patients' first-degree relatives. Here, we studied 133 'multiplex' generalized vitiligo families, with multiple affected family members. The age of onset of vitiligo is earlier in these 'multiplex' families than in patients with sporadic vitiligo. Affected members of the multiplex vitiligo families have elevated frequencies of autoimmune thyroid disease, rheumatoid arthritis, psoriasis, adult-onset insulin-dependent diabetes mellitus, pernicious anemia, and Addison's disease. Probands' unaffected siblings have elevated frequencies of most of these same autoimmune diseases, particularly if the proband had non-vitiligo autoimmune disease. Familial generalized vitiligo is thus characterized by earlier disease onset and a broader repertoire of associated autoimmune diseases than sporadic vitiligo. This mostly likely reflects a greater inherited genetic component of autoimmune susceptibility in these families. These findings have important implications for autoimmune disease surveillance in families in which multiple members are affected with vitiligo.  相似文献   

8.
Knowledge of lipase mechanisms has increased significantly during the past year. The structural characterization of the opening mechanism of the active site of lipases, as first described for Rhizomucor miehei lipase, has now been extended to the pancreatic lipase-colipase system, and to the Geotrichum candidum/Candida rugosa lipases. In the latter two lipase families, lid opening is far more complicated than for R. miehei lipase. Resolution of the structure of cutinase, an esterase with lipase activity, and determination of the sequence of guinea pig pancreatic lipase showed that these lipases have no lid. The fact that both enzymes are not activated at the interface shows the importance of the lid in the latter phenomenon. On the basis of sequence analysis, cellulases have been divided into different families. Structural determinations of some members of a few of these families confirm that they have different folds. The active sites of these cellulases always seem to contain acidic catalytic groups. The relative spatial position of these groups and their accessibility varies considerably among the cellulases for which structural determinations have been made.  相似文献   

9.
Four of the five major repetitious human DNA families, have been mapped by the in situ hybridization technique at their TOPT values. Two of the lighter density DNA families have autoradiographic grain patterns over heterochromatic chromosomal regions that resemble those of known satellite DNAs. The two heaviest density DNA families have autoradiographic grain patterns of middle repetitious DNAs, with all chromosomes showing labelling. Some evidence suggests that one of these DNA families is concentrated in certain chromosomal regions. Both DNA families exhibit biphasic TOPT curves. The presence of two thermal stability classes of hybrids suggests sequence interspersion. By co-enrichment studies in Ag+-Cs2SO4 gradients, evidence suggests the origin of the three lightest density renaturated human DNA families to be satellites I, II and III.  相似文献   

10.
转座子是真核生物基因组的重要组成成分。为了研究家蚕Bombyx mori长末端重复序列 (long terminal repeat, LTR)逆转录转座子的分类及进化, 本研究采用de novo预测和同源性搜索相结合的方法, 在家蚕基因组中共鉴定出了38个LTR逆转录转座子家族, 序列长度占整个基因组的0.64%, 远小于先前预测的11.8%, 其中有6个家族为本研究的新发现。38个家族中, 26个家族有表达序列标签 (expression sequence tag, EST)证据, 表明这些家族具有潜在的活性。对有EST证据的6个家族和没有EST证据的5个家族用RT-PCR进行了组织表达谱实验, 结果表明这11个家族在一些组织中有表达, 这进一步证实了这些家族具有转录活性, 基于此我们推测家蚕中大部分的LTR逆转录转座子家族很可能具有潜在活性。对转座子的插入时间进行估计, 结果表明绝大部分元件都是最近1百万年内插入到家蚕基因组中的。我们还比较了黑腹果蝇Drosophila melanogaster、 冈比亚按蚊Anopheles gambiae和家蚕B. mori中Ty3/Gypsy超家族分支的差异, 结果表明不同枝在不同昆虫中有着不同的扩张。家蚕中LTR逆转录转座子的鉴定和系统分析有助于我们理解逆转录转座子在昆虫进化中的作用。  相似文献   

11.
Fold designability has been estimated by the number of families contained in that fold. Here, we show that among orthologous proteins, sequence divergence is higher for folds with greater numbers of families. Folds with greater numbers of families also tend to have families that appear more often in the proteome and greater promiscuity (the number of unique “partner” folds that the fold is found with within the same protein). We also find that many disease-related proteins have folds with relatively few families. In particular, a number of these proteins are associated with diseases occurring at high frequency. These results suggest that family counts reflect how certain structures are distributed in nature and is an important characteristic associated with many human diseases.  相似文献   

12.
Familial adenomatous polyposis (FAP) is associated with a number of extraintestinal manifestations, which include osteomas, epidermoid cysts, and desmoid tumors, often referred to as “Gardner syndrome.” Recent studies have suggested that some of the phenotypic features of FAP are dependent on the position of the mutation within the APC gene. In particular, the correlation between congenital hypertrophy of the retinal pigment epithelium (CHRPE) and APC genotype indicates that affected families may be divided into distinct groups. We have investigated the association between the dento-osseous features of GS on dental panoramic radiographs (DPRs) and APC genotype in a regional cohort of FAP families. DPRs were performed on 84 affected individuals from 36 families, and the dento-osseous features of FAP were quantified by a weighted scoring system. Significant DPR abnormalities were present in 69% of affected individuals. The APC gene mutation was identified in 27 of these families, and for statistical analysis these were subdivided into three groups. Group 1 comprised 18 affected individuals from seven families with mutations 5' of exon 9; these families (except one) did not express CHRPE. Groups 2 comprised 38 individuals from 16 families with mutations between exon 9 and codon 1444, all of whom expressed CHRPE. Group 3 comprised 11 individuals from four families with mutations 3' of codon 1444, none of whom expressed CHRPE. Families with mutations 3' of codon 1444 had significantly more lesions on DPRs (P < .001) and appeared to have a higher incidence of desmoid tumors. These results suggest that the severity of some of the features of Gardner syndrome may correlate with genotype in FAP.  相似文献   

13.
Utilising phylogenetic estimates inferred from molecular sequences, the superfamily Lepocreadioidea Odhner, 1905 is re-organised, with the major family, the Lepocreadiidae, split into three separate families, the Lepocreadiidae Odhner, 1905, Aephnidiogenidae Yamaguti, 1934 and Lepidapedidae Yamaguti, 1958. These families have been widely recognised as subfamilies. Also recognised are the families Enenteridae Yamaguti, 1958, Gorgocephalidae Manter, 1966 and Gyliauchenidae Fukui, 1929. The constituent genera of these families are listed, some relying on molecular data and others on morphological similarity to molecularly-typed genera. Nine genera have not been placed in families and are considered incertae sedis.  相似文献   

14.
The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily (TC #2.A.66) consists of four previously recognized families: (a) the ubiquitous multi-drug and toxin extrusion (MATE) family; (b) the prokaryotic polysaccharide transporter (PST) family; (c) the eukaryotic oligosaccharidyl-lipid flippase (OLF) family and (d) the bacterial mouse virulence factor family (MVF). Of these four families, only members of the MATE family have been shown to function mechanistically as secondary carriers, and no member of the MVF family has been shown to function as a transporter. Establishment of a common origin for the MATE, PST, OLF and MVF families suggests a common mechanism of action as secondary carriers catalyzing substrate/cation antiport. Most protein members of these four families exhibit 12 putative transmembrane alpha-helical segments (TMSs), and several have been shown to have arisen by an internal gene duplication event; topological variation is observed for some members of the superfamily. The PST family is more closely related to the MATE, OLF and MVF families than any of these latter three families are related to each other. This fact leads to the suggestion that primordial proteins most closely related to the PST family were the evolutionary precursors of all members of the MOP superfamily. Here, phylogenetic trees and average hydropathy, similarity and amphipathicity plots for members of the four families are derived and provide detailed evolutionary and structural information about these proteins. We show that each family exhibits unique characteristics. For example, the MATE and PST families are characterized by numerous paralogues within a single organism (58 paralogues of the MATE family are present in Arabidopsis thaliana), while the OLF family consists exclusively of orthologues, and the MVF family consists primarily of orthologues. Only in the PST family has extensive lateral transfer of the encoding genes occurred, and in this family as well as the MVF family, topological variation is a characteristic feature. The results serve to define a large superfamily of transporters that we predict function to export substrates using a monovalent cation antiport mechanism.  相似文献   

15.
Holins are small “hole-forming” transmembrane proteins that mediate bacterial cell lysis during programmed cell death or following phage infection. We have identified fifty two families of established or putative holins and have included representative members of these proteins in the Transporter Classification Database (TCDB; www.tcdb.org). We have identified the organismal sources of members of these families, calculated their average protein sizes, estimated their topologies and determined their relative family sizes. Topological analyses suggest that these proteins can have 1, 2, 3 or 4 transmembrane α-helical segments (TMSs), and members of a single family are frequently, but not always, of a single topology. In one case, proteins of a family proved to have either 2 or 4 TMSs, and the latter arose by intragenic duplication of a primordial 2 TMS protein-encoding gene resembling the former. Using established statistical approaches, some of these families have been shown to be related by common descent. Seven superfamilies, including 21 of the 52 recognized families were identified. Conserved motif and Pfam analyses confirmed most superfamily assignments. These results serve to expand upon the scope of channel-forming bacterial holins.  相似文献   

16.
Linkage of familial Hibernian fever to chromosome 12p13.   总被引:2,自引:0,他引:2  
Autosomal dominant periodic fevers are characterized by intermittent febrile attacks of unknown etiology and by recurrent abdominal pains. The biochemical and molecular bases of all autosomal dominant periodic fevers are unknown, and only familial Hibernian fever (FHF) has been described as a distinct clinical entity. FHF has been reported in three families-the original Irish-Scottish family and two Irish families with similar clinical features. We have undertaken a genomewide search in these families and report significant multipoint LOD scores between the disease and markers on chromosome 12p13. Cumulative multipoint linkage analyses indicate that an FHF gene is likely to be located in an 8-cM interval between D12S77 and D12S356, with a maximum LOD score (Z max) of 3.79. The two-point Z max was 3.11, for D12S77. There was no evidence of genetic heterogeneity in these three families; it is proposed that these markers should be tested in other families, of different background, that have autosomal dominant periodic fever, as a prelude to identification of the FHF-susceptibility gene.  相似文献   

17.
Limb-girdle muscular dystrophy (LGMD) is a diagnostic classification encompassing a broad group of proximal myopathies. A gene for the dominant form of LGMD (LGMD1A) has recently been localized to a 7-cM region of chromosome 5q between D5S178 and IL9. We studied three additional dominant LGMD families for linkage to these two markers and excluded all from localization to this region, providing evidence for locus heterogeneity within the dominant form of LGMD. Although the patterns of muscle weakness were similar in all families studied, the majority of affected family members in the chromosome 5–linked pedigree have a dysarthric speech pattern, which is not present in any of the five unlinked families. The demonstration of heterogeneity within autosomal dominant LGMD is the first step in attempting to subclassify these families with similar clinical phenotypes on a molecular level.  相似文献   

18.
There are 10 gene families that have members on both human chromosome 6 (6p21.3, the location of the human major histocompatibility complex [MHC]) and human chromosome 9 (mostly 9q33-34). Six of these families also have members on mouse chromosome 17 (the mouse MHC chromosome) and mouse chromosome 2. In addition, four of these families have members on human chromosome 1 (1q21-25 and 1p13), and two of these have members on mouse chromosome 1. One hypothesis to explain these patterns is that members of the 10 gene families of human chromosomes 6 and 9 were duplicated simultaneously as a result of polyploidization or duplication of a chromosome segment ("block duplication"). A subsequent block duplication has been proposed to account for the presence of representatives of four of these families on human chromosome 1. Phylogenetic analyses of the 9 gene families for which data were available decisively rejected the hypothesis of block duplication as an overall explanation of these patterns. Three to five of the genes on human chromosomes 6 and 9 probably duplicated simultaneously early in vertebrate history, prior to the divergence of jawed and jawless vertebrates, and shortly after that, all four of the genes on chromosomes 1 and 9 probably duplicated as a block. However, the other genes duplicated at different times scattered over at least 1.6 billion years. Since the occurrence of these clusters of related genes cannot be explained by block duplication, one alternative explanation is that they cluster together because of shared functional characteristics relating to expression patterns.   相似文献   

19.
The V regions of channel catfish H chain cDNA clones have been analyzed. Based upon sequence relationships and hybridization analyses, five different groups of VH genes are identified whose definition is consistent with that of five different VH families. Genomic Southern blots indicate that as many as 100 different germ-line VH genes are likely represented by these families. The sequence diversity between identified members of these different families is similar in magnitude to the divergence represented between members of different human or mouse VH families. The FR regions are the most conserved regions when members of different catfish VH families are compared; specific amino acid positions appear to be highly conserved in phylogeny. Equally important is that diversity is represented in complementarity-determining regions CDR1 and CDR2 in members of the different families as well as in members of the same VH family. These results suggest that an extensive repertoire of VH genes can contribute to antibody diversity in this lower vertebrate. Sequence comparisons indicate that one of the catfish VH families shares considerable structural similarity to several higher vertebrate VH gene families--a relationship which suggests that this VH family may be ancestral to some VH gene families of higher vertebrates. Characteristic of the genomic organization of higher vertebrate H chains, catfish appear to have different VH families wherein a VH gene likely undergoes functional recombination with putative DH gene segments and one of apparently several different JH segments. The recombined V region is expressed with the same C region gene. These combined results suggest that bony fishes are the earliest known phylogenetic representatives to have evolved extensive V region gene families.  相似文献   

20.
Molecular phylogenetic analysis of the conjugating green algae (Class Zygnemophyceae) using nuclear (SSU rDNA) and chloroplast (rbcL) gene sequences has resolved hypotheses of relationship at the class, order, and family levels, but several key questions will require data from additional genes. Based on SSU and rbcL sequences, the Zygnemophyceae and Desmidiales are monophyletic, and families of placoderm desmids are distinct clades (Desmidiaceae, Peniaceae, Closteriaceae, and Gonatozygaceae). In contrast, the Zygnemataceae and Mesotaeniaceae are paraphyletic, although whether these two traditional families constitute a clade is uncertain. In addition, relationships of genera within families have proven resistant to resolution with these two oft‐used genes. We have sequenced the coxIII gene from the mitochondrial genome to address some of these ambiguous portions of the phylogeny of conjugating green algae. The coxIII gene is more variable than rbcL or SSU rDNA and offers greater resolving power for relationships of genera. We present preliminary analyses of coxIII sequences from each of the traditional families of Zygnemophyceae and contrast the resulting topologies with those derived from nuclear and chloroplast genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号