首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Toxoplasma gondii is an obligate intracellular parasite that actively invades a wide variety of vertebrate cells, although the basis of its pervasive cell invasion is not completely understood. Here, we demonstrate, using several independent assays, that Toxoplasma invasion of host cells is tightly coupled to the release of proteins stored within apical secretory granules called micronemes. Both microneme secretion and cell invasion were highly temperature dependent, and partial depletion of microneme resulted in a transient loss of infectivity. Chelation of parasite intracellular calcium strongly inhibited both microneme release and invasion of host cells, and this effect was partially reversed by raising intracellular calcium using the ionophore A23187. We also provide evidence that a staurosporine-sensitive kinase activity regulates microneme discharge and is required for parasite invasion of host cells. Additionally, we demonstrate that, during apical attachment to the host cell, the micronemal protein MIC2 is released at the junction between the parasite and the host cell. During invasion, MIC2 is successively translocated towards the posterior end of the parasite and is shed before entry of the parasite into the vacuole. Furthermore, we show that the full-length cellular form of MIC2, but not the proteolytically modified secreted form of MIC2, binds specifically to host cells. Collectively, these observations strongly imply that micronemal proteins play a role in Toxoplasma invasion of host cells.  相似文献   

2.
Calcium-mediated microneme secretion in Toxoplasma gondii is stimulated by contact with host cells, resulting in the discharge of adhesins that mediate attachment. The intracellular source of calcium and the signaling pathway(s) triggering release have not been characterized, prompting our search for mediators of calcium signaling and microneme secretion in T. gondii. We identified two stimuli of microneme secretion, ryanodine and caffeine, which enhanced release of calcium from parasite intracellular stores. Ethanol, a previously characterized trigger of microneme secretion, stimulated an increase in parasite inositol 1,4,5-triphosphate, implying that this second messenger may mediate intracellular calcium release. Consistent with this observation, xestospongin C, an inositol 1,4,5-triphosphate receptor antagonist, inhibited microneme secretion and blocked parasite attachment and invasion of host cells. Collectively, these results suggest that T. gondii possess an intracellular calcium release channel with properties of the inositol 1,4,5-triphosphate/ryanodine receptor superfamily. Intracellular calcium channels, previously studied almost exclusively in multicellular animals, appear to also be critical to the control of parasite calcium during the initial steps of host cell entry.  相似文献   

3.
The association of PRP1, a Paramecium parafusin orthologue, with Toxoplasma gondii micronemes, now confirmed by immunoelectron microscopy, has here been studied in relation to exocytosis and cell invasion. PRP1 becomes labelled in vivo by inorganic 32P and is dephosphorylated when ethanol is used to stimulate Ca2+-dependent exocytosis of the micronemes. The ethanol Ca2+-stimulated exocytosis is accompanied by translocation of PRP1 and microneme content protein (MIC3) from the apical end of the parasite. Immunoblotting showed that PRP1 is redistributed inside the parasite, while microneme content is secreted. To study whether similar changes occur during cell invasion, quantitative microscopy was performed during secretion, invasion and exit (egress) from the host cell. Time-course experiments showed that fluorescence intensities of PRP1 and MIC3 immediately after invasion were reduced 10-fold compared to preinvasion levels, indicating that PRP1 translocation and microneme secretion accompanies invasion. MIC3 regained fluorescence intensity and apical distribution after 15 min, while PRP1 recovered after 1 h. Intensity of both proteins then increased throughout the parasite division period until host cell lysis, suggesting the need to secrete microneme proteins to egress. These studies suggest that PRP1 associated with the secretory vesicle scaffold serves an important role in Ca2+-regulated exocytosis and cell invasion.  相似文献   

4.
Host cell invasion by apicomplexan parasites is accompanied by the rapid, polarized secretion of parasite proteins that are involved in cell attachment. The Toxoplasma gondii micronemal protein MIC2 contains several extracellular adhesive domains, a transmembrane domain, and a short cytoplasmic tail. Following apical secretion, MIC2 is transiently present on the parasite surface before being translocated backward and released by proteolytic cleavage. Mutations in the extracellular domain of MIC2, directly upstream of the transmembrane domain, prevented processing and release of the soluble protein into the supernatant. A conserved basic residue in MIC2 was essential for cleavage, and basic residues are similarly positioned in other microneme proteins. Following the induction of secretion, MIC2 processing mutants were stably expressed on the surface of the parasite. Surface MIC2-expressing mutants showed increased adhesion to host cells, yet were impaired in their capacity to invade. These data demonstrate that proteolysis is essential for releasing cell surface adhesins prior to cell entry by apicomplexan parasites.  相似文献   

5.
Proteomic analysis of calcium-dependent secretion in Toxoplasma gondii   总被引:3,自引:0,他引:3  
Kawase O  Nishikawa Y  Bannai H  Zhang H  Zhang G  Jin S  Lee EG  Xuan X 《Proteomics》2007,7(20):3718-3725
Toxoplasma gondii is an intracellular protozoan parasite that invades a wide range of nucleated cells. In the course of intracellular parasitism, the parasite releases a large variety of proteins from three secretory organelles, namely, micronemes, rhoptries and dense granules. Elevation of intracellular Ca(2+) in the parasite causes microneme discharge, and microneme secretion is essential for the invasion. In this study, we performed a proteomic analysis of the Ca(2+)-dependent secretion to evaluate the protein repertoire. We found that Ca(2+)-mobilising agents, such as thapsigargin, NH(4)Cl, ethanol and a Ca(2+) ionophore, A23187, promoted the secretion of the parasite proteins. The proteins, artificially secreted by A23187, were used in a comparative proteomic analysis by 2-DE followed by PMF analysis and/or N-terminal sequencing. Major known microneme proteins (MICs), such as MIC2, MIC4, MIC6 and MIC10 and apical membrane antigen 1 (AMA1), were identified, indicating that the proteomic analysis worked accurately. Interestingly, new members of secretory proteins, namely rhoptry protein 9 (ROP9) and Toxoplasma SPATR (TgSPATR), which was a homologue of a Plasmodium secreted protein with an altered thrombospondin repeat (SPATR), were detected in Ca(2+)-dependent secretion. Thus, we succeeded in detecting Ca(2+)-dependent secretory proteins in T. gondii, which contained novel secretory proteins.  相似文献   

6.
The invasion of erythrocytes by Plasmodium merozoites requires specific interactions between host receptors and parasite ligands. Parasite proteins that bind erythrocyte receptors during invasion are localized in apical organelles called micronemes and rhoptries. The regulated secretion of microneme and rhoptry proteins to the merozoite surface to enable receptor binding is a critical step in the invasion process. The sequence of these secretion events and the external signals that trigger release are not known. We have used time-lapse video microscopy to study changes in intracellular calcium levels in Plasmodium falciparum merozoites during erythrocyte invasion. In addition, we have developed flow cytometry based methods to measure relative levels of cytosolic calcium and study surface expression of apical organelle proteins in P. falciparum merozoites in response to different external signals. We demonstrate that exposure of P. falciparum merozoites to low potassium ion concentrations as found in blood plasma leads to a rise in cytosolic calcium levels through a phospholipase C mediated pathway. Rise in cytosolic calcium triggers secretion of microneme proteins such as the 175 kD erythrocyte binding antigen (EBA175) and apical membrane antigen-1 (AMA-1) to the merozoite surface. Subsequently, interaction of EBA175 with glycophorin A (glyA), its receptor on erythrocytes, restores basal cytosolic calcium levels and triggers release of rhoptry proteins. Our results identify for the first time the external signals responsible for the sequential release of microneme and rhoptry proteins during erythrocyte invasion and provide a starting point for the dissection of signal transduction pathways involved in regulated exocytosis of these key apical organelles. Signaling pathway components involved in apical organelle discharge may serve as novel targets for drug development since inhibition of microneme and rhoptry secretion can block invasion and limit blood-stage parasite growth.  相似文献   

7.
Plasmodium falciparum invades host erythrocytes by multiple invasion pathways. The invasion of erythrocytes by P. falciparum merozoites is a complex process that requires multiple interactions between host receptors and parasite ligands. A number of parasite proteins that mediate interaction with host receptors during invasion are localized to membrane‐bound apical organelles referred to as micronemes and rhoptries. The timely release of these proteins to the merozoite surface is crucial for receptor engagement and invasion. It has been demonstrated previously that exposure of merozoites to a low potassium (K+) ionic environment as found in blood plasma leads to a rise in cytosolic calcium (Ca2+), which triggers microneme secretion. The signalling pathways that regulate microneme discharge in response to rise in cytosolic Ca2+ are not completely understood. Here, we show that a P. falciparum Ca2+‐dependent protein phosphatase, calcineurin (PfCN), is an essential regulator of Ca2+‐dependent microneme exocytosis. An increase in PfCN activity was observed in merozoites following exposure to a low K+ environment. Treatment of merozoites with calcineurin inhibitors such as FK506 and cyclosporin A prior to transfer to a low K+ environment resulted in inhibition of secretion of microneme protein apical merozoite antigen‐1 (PfAMA‐1). Inhibition of PfCN was shown to result in reduced dephosphorylation and depolymerization of apical actin, which appears to be criticalfor microneme secretion. PfCN thus serves as an effector of Ca2+‐dependent microneme exocytosis by regulating depolymerization of apical actin. Inhibitors that target PfCN block microneme exocytosis and limit growth of P. falciparum blood‐stage parasites providing a novel approach towards development of new therapeutic strategies against malaria.  相似文献   

8.
Toxoplasma gondii is an obligate intracellular protozoan parasite that invades a wide range of host cells. The parasite releases a large variety of proteins from a secretory organelle, microneme, and the secretion is essential for the parasite invasion. We cloned a secreted protein with an altered thrombospondin repeat of Toxoplasma gondii (TgSPATR), which was the homologue of Plasmodium SPATRs. Immunofluorescence double staining experiment revealed that TgSPATR was co-localized with a microneme protein, MIC2, and immuno-electron microscopic (IEM) analysis detected TgSPATR in the microneme-like structure. TgSPATR secretion was induced by ethanol, while an intracellular Ca2+ chelator, 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid, tetraacetoxymethyl ester (BAPTA-AM), suppressed the ethanol-induced secretion, suggesting the secretion was Ca2+-dependent, similarly to known microneme proteins. Furthermore, TgSPATR, existed on outer surface of the parasites, was detected by incomplete membrane permeabilization by saponin and immunofluorescent antibody test (IFAT). Both TgSPATR and MIC2 were detected on outer surface of extracellular parasites, but not of intracellular single parasites, suggesting they were similarly secreted during early stages of parasite invasion. Therefore, TgSPATR is probably new member of microneme protein and maybe involved in parasite invasion.  相似文献   

9.
A role for coccidian cGMP-dependent protein kinase in motility and invasion   总被引:9,自引:0,他引:9  
The coccidian parasite cGMP-dependent protein kinase is the primary target of a novel coccidiostat, the trisubstituted pyrrole 4-[2-(4-fluorophenyl)-5-(1-methylpiperidine-4-yl)-1H-pyrrol-3-yl] pyridine (compound 1), which effectively controls the proliferation of Eimeria tenella and Toxoplasma gondii parasites in animal models. The efficacy of compound 1 in parasite-specific metabolic assays of infected host cell monolayers is critically dependent on the timing of compound addition. Simultaneous addition of compound with extracellular E. tenella sporozoites or T. gondii tachyzoites inhibited [3H]-uracil uptake in a dose-dependent manner, while minimal efficacy was observed if compound addition was delayed, suggesting a block in host cell invasion. Immunofluorescence assays confirmed that compound 1 blocks the attachment of Eimeria sporozoites or Toxoplasma tachyzoites to host cells and inhibits parasite invasion and gliding motility. Compound 1 also inhibits the secretion of micronemal adhesins (E. tenella MIC1, MIC2 and T. gondii MIC2), an activity closely linked to invasion and motility in apicomplexan parasites. The inhibition of T. gondii MIC2 adhesin secretion by compound 1 was not reversed by treatment with calcium ionophores or by ethanol (a microneme secretagogue), suggesting a block downstream of calcium-dependent events commonly associated with the discharge of the microneme organelle in tachyzoites. Transgenic Toxoplasma strains expressing cGMP-dependent protein kinase mutant alleles that are refractory to compound 1 (including cGMP-dependent protein kinase knock-out lines complemented by such mutants) were used as tools to validate the potential role of cGMP-dependent protein kinase in invasion and motility. In these strains, parasite adhesin secretion, gliding motility, host cell attachment and invasion displayed a reduced sensitivity to compound 1. These data clearly demonstrate that cGMP-dependent protein kinase performs an important role in the host-parasite interaction.  相似文献   

10.
Host cell invasion by Toxoplasma gondii is critically dependent upon adhesive proteins secreted from the micronemes. Proteolytic trimming of microneme contents occurs rapidly after their secretion onto the parasite surface and is proposed to regulate adhesive complex activation to enhance binding to host cell receptors. However, the proteases responsible and their exact function are still unknown. In this report, we show that T. gondii tachyzoites lacking the microneme subtilisin protease TgSUB1 have a profound defect in surface processing of secreted microneme proteins. Notably parasites lack protease activity responsible for proteolytic trimming of MIC2, MIC4 and M2AP after release onto the parasite surface. Although complementation with full‐length TgSUB1 restores processing, complementation of Δsub1 parasites with TgSUB1 lacking the GPI anchor (Δsub1::ΔGPISUB1) only partially restores microneme protein processing. Loss of TgSUB1 decreases cell attachment and in vitro gliding efficiency leading to lower initial rates of invasion. Δsub1 and Δsub1::ΔGPISUB1 parasites are also less virulent in mice. Thus TgSUB1 is involved in micronemal protein processing and regulation of adhesive properties of macromolecular adhesive complexes involved in host cell invasion.  相似文献   

11.
Toxosplasma gondii is the model parasite of the phylum Apicomplexa, which contains numerous obligate intracellular parasites of medical and veterinary importance, including Eimeria, Sarcocystis, Cryptosporidium, Cyclospora, and Plasmodium species. Members of this phylum actively enter host cells by a multistep process with the help of microneme protein (MIC) complexes that play important roles in motility, host cell attachment, moving junction formation, and invasion. T. gondii (Tg)MIC1-4-6 complex is the most extensively investigated microneme complex, which contributes to host cell recognition and attachment via the action of TgMIC1, a sialic acid-binding adhesin. Here, we report the structure of TgMIC4 and reveal its carbohydrate-binding specificity to a variety of galactose-containing carbohydrate ligands. The lectin is composed of six apple domains in which the fifth domain displays a potent galactose-binding activity, and which is cleaved from the complex during parasite invasion. We propose that galactose recognition by TgMIC4 may compromise host protection from galectin-mediated activation of the host immune system.  相似文献   

12.
Toxoplasma gondii is an obligate intracellular parasite and an important human pathogen. Relatively little is known about the proteins that orchestrate host cell invasion by T. gondii or related apicomplexan parasites (including Plasmodium spp., which cause malaria), due to the difficulty of studying essential genes in these organisms. We have used a recently developed regulatable promoter to create a conditional knockout of T. gondii apical membrane antigen-1 (TgAMA1). TgAMA1 is a transmembrane protein that localizes to the parasite's micronemes, secretory organelles that discharge during invasion. AMA1 proteins are conserved among apicomplexan parasites and are of intense interest as malaria vaccine candidates. We show here that T. gondii tachyzoites depleted of TgAMA1 are severely compromised in their ability to invade host cells, providing direct genetic evidence that AMA1 functions during invasion. The TgAMA1 deficiency has no effect on microneme secretion or initial attachment of the parasite to the host cell, but it does inhibit secretion of the rhoptries, organelles whose discharge is coupled to active host cell penetration. The data suggest a model in which attachment of the parasite to the host cell occurs in two distinct stages, the second of which requires TgAMA1 and is involved in regulating rhoptry secretion.  相似文献   

13.
Host cell invasion is a key step in the life cycle of the intracellular parasite Toxoplasma gondii, the causative agent of toxoplasmosis. Attachment and invasion by this parasite is dependent on secretion of proteins from the micronemes, cigar-shaped organelles found in the apical end of the parasite. Although many of these proteins contain adhesive motifs suggestive of a role in parasite attachment, a growing subset of microneme proteins (MICs) do not possess adhesive sequences implying that they have alternative roles. We have identified a novel 16 kDa microneme protein, TgMIC11, that is conserved among several coccidian parasites. As it traffics through the secretory system, TgMIC11 is modified by two successive proteolytic events to remove an internal propeptide, resulting in the mature protein that consists of an alpha-chain and beta-chain tethered by a single disulfide bond. Dual staining immunofluorescence confirmed that TgMIC11 localises to the apical micronemes and, like other micronemal proteins, it is also secreted in a calcium dependent manner. This is the first microneme protein characterised to date in the phylum Apicomplexa that possesses this unique structure and undergoes maturation by removal of an internal propeptide.  相似文献   

14.
Toxoplasma gondii: microneme protein MIC2   总被引:1,自引:0,他引:1  
The phylum Apicomplexa contains parasites responsible for a variety of diseases including malaria, cryptosporidiosis, and toxoplasmosis. One of the common features of these parasites is that they contain a set of apical organelles whose sequential secretion is required for the invasion of host cells. Microneme proteins are the main adhesins involved in the attachment to the host cell surface by apicomplexans. The microneme protein MIC2, produced by Toxoplasma gondii, is conserved in apicomplexans and serves as a model to understand the first steps of invasion by the phylum. New data about the structure-function relationship of MIC2 reinforce the critical role of this protein in the successful invasion of cells by Toxoplasma and reveal potential therapeutic targets that may be used to control toxoplasmosis.  相似文献   

15.
Toxoplasma gondii parasites gain entry into host cells through a process that depends on apically stored adhesins that are strategically released during invasion. One of these adhesins, microneme protein 2 (MIC2), is a type one transmembrane protein that binds to an accessory protein known as MIC2-associated protein (M2AP). Together the MIC2 x M2AP complex participates in host cell attachment and invasion. The short cytoplasmic C-domain of MIC2 is implicated in protein trafficking and mediating an association with the parasite cytoskeleton. To define the role of the cytoplasmic domain of MIC2, proteins lacking the C-domain were expressed in transgenic T. gondii. Surprisingly, protein trafficking and secretion were not affected. We hypothesized that mutant mic2 lacking the C-domain might be escorted to the micronemes by association with endogenous wild-type MIC2 possessing functional transmembrane and cytoplasmic domains. To investigate this interaction, native blue gels and gel filtration were employed to identify a stable macromolecular MIC2 x M2AP complex of approximately 450 kDa. Our findings reveal that MIC2 and M2AP proteins form stable hexamers consisting of three alphabeta dimers. Resolution of this complex has implications for how MIC2 x M2AP associates with host cell receptors and the cytoskeleton to facilitate parasite motility and invasion.  相似文献   

16.
Like other members of the medically important phylum Apicomplexa, Toxoplasma gondii is an obligate intracellular parasite that secretes several classes of proteins involved in the active invasion of target host cells. Proteins in apical secretory organelles known as micronemes have been strongly implicated in parasite attachment to host cells. TgMIC2 is a microneme protein with multiple adhesive domains that bind target cells and is mobilized onto the parasite surface during parasite attachment. Here, we describe a novel parasite protein, TgM2AP, which is physically associated with TgMIC2. TgM2AP complexes with TgMIC2 within 15 min of synthesis and remains associated with TgMIC2 in the micronemes, on the parasite surface during invasion and in the culture medium after release from the parasite plasma membrane. TgM2AP is proteolytically processed initially when its propeptide is removed during transit through the golgi and later while it occupies the parasite surface after discharge from the micronemes. We show that TgM2AP is a member of a protein family expressed by coccidian parasites including Neospora caninum and Eimeria tenella. This phylogenic conservation and association with a key adhesive protein suggest that TgM2AP is a fundamental component of the T. gondii invasion machinery.  相似文献   

17.
Intracellular calcium controls several crucial cellular events in apicomplexan parasites, including protein secretion, motility, and invasion into and egress from host cells. The plant compound thapsigargin inhibits the sarcoplasmic-endoplasmic reticulum calcium ATPase (SERCA), resulting in elevated calcium and induction of protein secretion in Toxoplasma gondii. Artemisinins are natural products that show potent and selective activity against parasites, making them useful for the treatment of malaria. While the mechanism of action is uncertain, previous studies have suggested that artemisinin may inhibit SERCA, thus disrupting calcium homeostasis. We cloned the single-copy gene encoding SERCA in T. gondii (TgSERCA) and demonstrate that the protein localizes to the endoplasmic reticulum in the parasite. In extracellular parasites, TgSERCA partially relocalized to the apical pole, a highly active site for regulated secretion of micronemes. TgSERCA complemented a calcium ATPase-defective yeast mutant, and this activity was inhibited by either thapsigargin or artemisinin. Treatment of T. gondii with artemisinin triggered calcium-dependent secretion of microneme proteins, similar to the SERCA inhibitor thapsigargin. Artemisinin treatment also altered intracellular calcium in parasites by increasing the periodicity of calcium oscillations and inducing recurrent, strong calcium spikes, as imaged using Fluo-4 labeling. Collectively, these results demonstrate that artemisinin perturbs calcium homeostasis in T. gondii, supporting the idea that Ca2+-ATPases are potential drug targets in parasites.  相似文献   

18.
All pathogenesis and death associated with Plasmodium falciparum malaria is due to parasite-infected erythrocytes. Invasion of erythrocytes by P. falciparum merozoites requires specific interactions between host receptors and parasite ligands that are localized in apical organelles called micronemes. Here, we identify cAMP as a key regulator that triggers the timely secretion of microneme proteins enabling receptor-engagement and invasion. We demonstrate that exposure of merozoites to a low K+ environment, typical of blood plasma, activates a bicarbonate-sensitive cytoplasmic adenylyl cyclase to raise cytosolic cAMP levels and activate protein kinase A, which regulates microneme secretion. We also show that cAMP regulates merozoite cytosolic Ca2+ levels via induction of an Epac pathway and demonstrate that increases in both cAMP and Ca2+ are essential to trigger microneme secretion. Our identification of the different elements in cAMP-dependent signaling pathways that regulate microneme secretion during invasion provides novel targets to inhibit blood stage parasite growth and prevent malaria.  相似文献   

19.
BACKGROUND INFORMATION: Accurate sorting of proteins to the three types of secretory granules in Toxoplasma gondii is crucial for successful cell invasion by this obligate intracellular parasite. As in other eukaryotic systems, propeptide sequences are a common yet poorly understood feature of proteins destined for regulated secretion, which for Toxoplasma occurs through two distinct invasion organelles, rhoptries and micronemes. Microneme discharge during parasite apical attachment plays a pivotal role in cell invasion by delivering adhesive proteins for host receptor engagement. RESULTS: We show here that the small micronemal proprotein MIC5 (microneme protein-5) undergoes proteolytic maturation at a site beyond the Golgi, and only the processed form of MIC5 is secreted via the micronemes. Proper cleavage of the MIC5 propeptide relies on an arginine residue in the P1' position, although P1' mutants are still cleaved to a lesser extent at an alternative site downstream of the primary site. Nonetheless, this aberrantly cleaved species still correctly traffics to the micronemes, indicating that correct cleavage is not necessary for micronemal targeting. In contrast, a deletion mutant lacking the propeptide was retained within the secretory system, principally in the ER (endoplasmic reticulum). The MIC5 propeptide also supported correct trafficking when exchanged for the M2AP propeptide, which was recently shown to also be required for micronemal trafficking of the TgMIC2 (T. gondii MIC2)-M2AP complex [Harper, Huynh, Coppens, Parussini, Moreno and Carruthers (2006) Mol. Biol. Cell 17, 4551-4563]. CONCLUSION: Our results illuminate common and unique features of micronemal propeptides in their role as trafficking facilitators.  相似文献   

20.
Vertebrate cells are highly susceptible to infection by obligate intracellular parasites such as Toxoplasma gondii, yet the mechanism by which these microbes breach the confines of their target cell is poorly understood. While it is thought that Toxoplasma actively invades by secreting adhesive proteins from internal organelles called micronemes, no genetic evidence is available to support this contention. Here, we report successful disruption of M2AP, a microneme protein tightly associated with an adhesive protein called MIC2. M2AP knockout parasites were >80% impaired in host cell entry. This invasion defect was likely due to defective expression of MIC2, which partially accumulated in the parasite endoplasmic reticulum and Golgi. M2AP knockout parasites were also unable to rapidly secrete MIC2, an event that normally accompanies parasite attachment to a target cell. These findings indicate a critical role for the MIC2-M2AP protein complex in parasite invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号