首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Transposon mutagenesis with the Enterococcus faecalis transposon Tn917 is a genetic approach frequently used to identify genes related with specific phenotypes in gram-positive bacteria. We established an arbitrary PCR for the rapid and easy identification of Tn917 insertion sites in Staphylococcus epidermidis with six independent, well-characterized biofilm-negative Tn917 transposon mutants, which were clustered in the icaADBC gene locus or harbor Tn917 in the regulatory gene rsbU. For all six of these mutants, short chromosomal DNA fragments flanking both transposon ends could be amplified. All fragments were sufficient to correctly identify the Tn917 insertion sites in the published S. epidermidis genomes. By using this technique, the Tn917 insertion sites of three not-yet-characterized biofilm-negative or nonmucoid mutants were identified. In the biofilm-negative and nonmucoid mutant M12, Tn917 is inserted into a gene homologous to the regulatory gene purR of Bacillus subtilis and Staphylococcus aureus. The Tn917 insertions of the nonmucoid but biofilm-positive mutants M16 and M20 are located in genes homologous to components of the phosphoenolpyruvate-sugar phosphotransferase system (PTS) of B. subtilis, S. aureus, and Staphylococcus carnosus, indicating an influence of the PTS on the mucoid phenotype in S. epidermidis.  相似文献   

2.
Staphylococcus epidermidis is a common pathogen in medical device-associated infections. Its major pathogenetic factor is the ability to form adherent biofilms. The polysaccharide intercellular adhesin (PIA), which is synthesized by the products of the icaADBC gene cluster, is essential for biofilm accumulation. In the present study, we characterized the gene locus inactivated by Tn917 insertions of two isogenic, icaADBC-independent, biofilm-negative mutants, M15 and M19, of the biofilm-producing bacterium S. epidermidis 1457. The insertion site was the same in both of the mutants and was located in the first gene, rsbU, of an operon highly homologous to the sigB operons of Staphylococcus aureus and Bacillus subtilis. Supplementation of Trypticase soy broth with NaCl (TSB(NaCl)) or ethanol (TSB(EtOH)), both of which are known activators of sigB, led to increased biofilm formation and PIA synthesis by S. epidermidis 1457. Insertion of Tn917 into rsbU, a positive regulator of alternative sigma factor sigma(B), led to a biofilm-negative phenotype and almost undetectable PIA production. Interestingly, in TSB(EtOH), the mutants were enabled to form a biofilm again with phenotypes similar to those of the wild type. In TSB(NaCl), the mutants still displayed a biofilm-negative phenotype. No difference in primary attachment between the mutants and the wild type was observed. Similar phenotypic changes were observed after transfer of the Tn917 insertion of mutant M15 to the independent and biofilm-producing strain S. epidermidis 8400. In 11 clinical S. epidermidis strains, a restriction fragment length polymorphism of the sigB operon was detected which was independent of the presence of the icaADBC locus and a biofilm-positive phenotype. Obviously, different mechanisms are operative in the regulation of PIA expression in stationary phase and under stress induced by salt or ethanol.  相似文献   

3.
Biofilm formation of Staphylococcus epidermidis on smooth polymer surfaces has been shown to be mediated by the ica operon. Upon activation of this operon, a polysaccharide intercellular adhesin (PIA) is synthesized that supports bacterial cell-to-cell contacts and triggers the production of thick, multilayered biofilms. Thus, the ica gene cluster represents a genetic determinant that significantly contributes to the virulence of specific Staphylococcus epidermidis strains. PIA synthesis has been reported recently to undergo a phase variation process. In this study, biofilm-forming Staphylococcus epidermidis strains and their PIA-negative phase variants were analysed genetically to investigate the molecular mechanisms of phase variation. We have characterized biofilm-negative variants by Southern hybridization with ica-specific probes, polymerase chain reaction and nucleotide sequencing. The data obtained in these analyses suggested that in approximately 30% of the variants the missing biofilm formation was due to the inactivation of either the icaA or the icaC gene by the insertion of the insertion sequence element IS256. Furthermore, it was shown that the transposition of IS256 into the ica operon is a reversible process. After repeated passages of the PIA-negative insertional mutants, the biofilm-forming phenotype could be restored. Nucleotide sequence analyses of the revertants confirmed the complete excision of IS256, including the initially duplicated 8 bp target sites. These results elucidate, for the first time, a molecular mechanism mediating phase variation in staphylcocci, and they demonstrate that a naturally occurring insertion sequence element is actively involved in the modulation of expression of a Staphylococcus virulence factor.  相似文献   

4.
Transposon mutagenesis with the Enterococcus faecalis transposon Tn917 is a genetic approach frequently used to identify genes related with specific phenotypes in gram-positive bacteria. We established an arbitrary PCR for the rapid and easy identification of Tn917 insertion sites in Staphylococcus epidermidis with six independent, well-characterized biofilm-negative Tn917 transposon mutants, which were clustered in the icaADBC gene locus or harbor Tn917 in the regulatory gene rsbU. For all six of these mutants, short chromosomal DNA fragments flanking both transposon ends could be amplified. All fragments were sufficient to correctly identify the Tn917 insertion sites in the published S. epidermidis genomes. By using this technique, the Tn917 insertion sites of three not-yet-characterized biofilm-negative or nonmucoid mutants were identified. In the biofilm-negative and nonmucoid mutant M12, Tn917 is inserted into a gene homologous to the regulatory gene purR of Bacillus subtilis and Staphylococcus aureus. The Tn917 insertions of the nonmucoid but biofilm-positive mutants M16 and M20 are located in genes homologous to components of the phosphoenolpyruvate-sugar phosphotransferase system (PTS) of B. subtilis, S. aureus, and Staphylococcus carnosus, indicating an influence of the PTS on the mucoid phenotype in S. epidermidis.  相似文献   

5.
6.
Phenotypic variation of Staphylococcus epidermidis involving the slime related ica operon results in heterogeneity in surface characteristics of individual bacteria in axenic cultures. Five clinical S. epidermidis isolates demonstrated phenotypic variation, i.e. both black and red colonies on Congo Red agar. Black colonies displayed bi-modal electrophoretic mobility distributions at pH 2, but such phenotypic variation was absent in red colonies of the same strain as well as in control strains without phenotypic variation. All red colonies had lost ica and the ability to form biofilms, in contrast to black colonies of the same strain. Real time PCR targeting icaA indicated a reduction in gene copy number within cultures exhibiting phenotypic variation, which correlated with phenotypic variations in biofilm formation and electrophoretic mobility distribution of cells within a culture. Loss of ica was irreversible and independent of the mobile element IS256. Instead, in high frequency switching strains, spontaneous mutations in lexA were found which resulted in deregulation of recA expression, as shown by real time PCR. RecA is involved in genetic deletions and rearrangements and we postulate a model representing a new mechanism of phenotypic variation in clinical isolates of S. epidermidis. This is the first report of S. epidermidis strains irreversibly switching from biofilm-positive to biofilm-negative phenotype by spontaneous deletion of icaADBC.  相似文献   

7.
8.
9.
Cloning and sequencing of the gerD gene of Bacillus subtilis   总被引:5,自引:0,他引:5  
A Tn917 insertion in the same region of the chromosome as gerD gave rise to a mutant (ger-97) with a germination phenotype similar to that of two gerD mutants which germinate abnormally in a range of germinants. The insertion and two gerD mutations were cotransformed with ribosomal protein genes rpoB, rpsE and rpsI. DNA cloned from one side of the insertion carried the 16S end of the ribosomal RNA operon rrnI. These data were consistent with the order rpoB-rpsE-rpsI-gerD/ger-97::Tn917-rrnI. Insertion into the wild-type chromosome of a plasmid carrying DNA adjacent to the insertion permitted the recovery of a 1.8 kb fragment of DNA which complemented ger-97::Tn917 and the gerD mutations. The DNA nucleotide sequence of the region of this fragment at which Tn917 had inserted revealed a 555 bp open reading frame, preceded by a ribosome-binding site and potential sigma E and sigma A promoter regions and encoding a predicted polypeptide of 21,117 Da. This polypeptide was largely hydrophilic but contained a hydrophobic region at the N-terminus resembling a signal peptide.  相似文献   

10.
Both Staphylococcus epidermidis and Staphylococcus haemolyticus are important causes of infections associated with catheters and other medical devices. This infections result in significant morbidity, mortality and economic cost. It has recently been shown that not only S. epidermidis but also S. haemolyticus can produce slime and carries the ica operon responsible for and slime production. In the operon, coexpression of icaA and icaD is required for full slime synthesis. This study is focused on detecting icaA and icaD genes in S. haemolyticus and comparison of these two species. It turned out that strain representatives within the same species behave very differently and a single tested strain from each species is unlikely to be representative of the species as a whole. Contrary to S. epidermidis, S. haemolyticus strain appeared to carry no icaA-like and icaD-like genes, but was able to form biofilm in vitro.  相似文献   

11.
12.
13.
The inactivation of a genetic determinant critical for streptolysin S production was accomplished by transfer and insertion of the transposon Tn916 into the DNA of a group A streptococcal strain. The group D strain CG110 was able to efficiently transfer Tn916 into the group A strain CS91 when donor and recipient cells were concentrated and incubated together on membrane filters. Among tetracycline-resistant transconjugants, nonhemolytic mutants that no longer produced streptolysin S and retained the capacity to produce streptolysin O were discovered. Hemolytic revertants from these mutants regained tetracycline sensitivity; other revertants still retained a tetracycline resistance phenotype. Hybridization studies employing Tn916 DNA located Tn916 sequences in EcoRI and HindIII fragments of DNA from mutants devoid of streptolysin S; one carried a single copy of Tn916, and the other two carried multiple copies of the transposon.  相似文献   

14.
15.
16.
17.
From a collection of kanamycin-resistant mutants of Escherichia coli K-12 isolated by transposon Tn5 mutagenesis, we have identified a mutant that lacks functional biodegradative threonine dehydratase (EC 4.2.1.16) by direct enzyme assay and by the loss of cross-reacting material with affinity-purified antibodies against the purified enzyme. Aerobic and anaerobic growth of this strain on various carbon sources failed to reveal a phenotype. Evidence for the insertional inactivation of threonine dehydratase by Tn5 was obtained by cloning the DNA segments flanking the Tn5 insertion site into pBR322 and hybridizing the cloned DNA to a synthetic oligodeoxynucleotide probe complementary to the DNA segment coding for a unique hexapeptide at the amino terminus end of the enzyme; the region of homology to the synthetic cDNA sequence appears to be located within about 500 nucleotides from one end of Tn5. Genetic analysis with the transposon element that caused insertional inactivation located the tdc gene at min 67 on the E. coli chromosome.  相似文献   

18.
The capacity of Listeria monocytogenes to tolerate salt and alkaline stresses is of particular importance, as this pathogen is often exposed to such environments during food processing and food preservation. We screened a library of Tn917-lacZ insertional mutants in order to identify genes involved in salt and/or alkaline tolerance. We isolated six mutants sensitive to salt stress and 12 mutants sensitive to salt and alkaline stresses. The position of the insertion of the transposon was located in 15 of these mutants. In six mutants the transposon was inserted in intergenic regions, and in nine mutants it was inserted in genes. Most of the genes have unknown functions, but sequence comparisons indicated that they encode putative transporters.  相似文献   

19.
Identification of new genes involved in biofilm formation is needed to understand the molecular basis of strain variation and the pathogenic mechanisms implicated in chronic staphylococcal infections. A biofilm-producing Staphylococcus aureus isolate was used to generate biofilm-negative transposon (Tn917) insertion mutants. Two mutants were found with a significant decrease in attachment to inert surfaces (early adherence), intercellular adhesion, and biofilm formation. The transposon was inserted at the same locus in both mutants. This locus (bap [for biofilm associated protein]) encodes a novel cell wall associated protein of 2,276 amino acids (Bap), which shows global organizational similarities to surface proteins of gram-negative (Pseudomonas aeruginosa and Salmonella enterica serovar Typhi) and gram-positive (Enteroccocus faecalis) microorganisms. Bap's core region represents 52% of the protein and consists of 13 successive nearly identical repeats, each containing 86 amino acids. bap was present in a small fraction of bovine mastitis isolates (5% of the 350 S. aureus isolates tested), but it was absent from the 75 clinical human S. aureus isolates analyzed. All staphylococcal isolates harboring bap were highly adherent and strong biofilm producers. In a mouse infection model bap was involved in pathogenesis, causing a persistent infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号