首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nicotinic acetylcholine (ACh) receptors (nAChRs) are ligand-gated ion channels which mediate fast cholinergic synaptic transmission in insect and vertebrate nervous systems. The nAChR agonist-binding site is formed by loops A–C present in α subunits together with loops D–F present in either non-α subunits or homomer-forming α subunits. A new non-α subunit was cloned from Nilaparvata lugens, a major rice pest in many parts of Asia, showing very high amino acid identity to other insect β1 subunits, and was denoted as N. lugens β1 (Nlβ1). Six A-to-I RNA editing sites were found in Nlβ1 N-terminal domain, in which only one site was previously reported in Drosophila melanogaster Dβ1 and the other five were newly identified. Among the six editing sites, four caused amino acid changes, in which the site 2 (E2) and site 5 (E5) caused an N to D change in loop D (N73D) and loop E (N133D) respectively. E2 frequency was high in Sus (susceptible) strain and E5 frequency was high in Res (resistant) strain. By expressing in Xenopus oocytes, N73D editing was found to reduce the agonist potency of both ACh and imidacloprid, and the influence on ACh was more significant than on imidacloprid. By contrast, N133D editing only affected imidacloprid potency. These results indicated, although E2 and E5 editings both caused an N to D change in important loops, their roles in neonicotinoid insensitivity might be different.  相似文献   

2.
Neonicotinoid insecticides are potent selective agonists of insect nicotinic acetylcholine receptors (nAChRs). Since their introduction in 1991, resistance to neonicotinoids has been slow to develop, but it is now established in some insect field populations such as the planthopper, Nilaparvata lugens, a major rice pest in many parts of Asia. We have reported recently the identification of a target-site mutation (Y151S) within two nAChR subunits (Nlalpha1 and Nlalpha3) from a laboratory-selected field population of N. lugens. In the present study, we have examined the influence of this mutation upon the functional properties of recombinant nAChRs expressed in Xenopus oocytes (as hybrid nAChRs, co-expressed with a rat beta2 subunit). The agonist potency of several nicotinic agonists has been examined, including all of the neonicotinoid insecticides that are currently licensed for either crop protection or animal health applications (acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam). The Y151S mutation was found to have no significant effect on the maximal current (I(max)) observed with the endogenous agonist, acetylcholine. In contrast, a significant reduction in I(max) was observed for all neonicotinoids (the I(max) for mutant nAChRs ranged from 13 to 81% of that observed on wild-type receptors). In addition, nAChRs containing the Y151S mutation caused a significant rightward shift in agonist dose-response curves for all neonicotinoids, but of varying magnitude (shifts in EC(50) values ranged from 1.3 to 3.6-fold). The relationship between neonicotinoid structure and their potency on nAChRs containing the Y151S target-site mutation is discussed.  相似文献   

3.
One nicotinic acetylcholine receptor non-α subunit was cloned from the pond wolf spider, Pardosa pseudoannulata, an important predatory enemy of some insect pests with agricultural importance, such as the green peach aphid Myzus persicae. The subunit shows high amino acid identities to insect β1 subunits (74–78%), and was denoted as Ppβ1. Although high identities are found between Ppβ1 and insect β1 subunits, amino acid differences are found within loops D, E and F, important segments contributing to ligand binding. The effects of amino acid differences within these loops were evaluated by introducing loops of insect or spider β1 subunits into rat β2 subunit and co-expressing with insect α subunit. The corresponding regions of rat β2 chimera β2Mpβ1 (β2 with loops D, E and F from M. persicae β1 subunit Mpβ1) were replaced by loops D, E and F of Ppβ1 singly or together to construct different chimeras. When these chimeras were co-expressed with insect Nlα1, it was found that the replacement of loops D, E and F of β2Mpβ1 by that of Ppβ1 resulted in a right-ward shift of the imidacloprid dose–response curves, reflecting increases in EC50, compared to Nlα1/β2Mpβ1. By contrast, the influences on ACh potency were minimal. The further study showed that R81Q, N137G and F190W differences, within loops D, E and F respectively, contributed mainly to these sensitivity changes. This study contributes to our understanding of the molecular mechanism underlying selectivity of neonicotinoids against insects over spiders.  相似文献   

4.
The low mammalian toxicity of neonicotinoid insecticides has been shown to be attributable, at least in part, to their selective actions on insect nicotinic acetylcholine receptors (nAChRs). There are multiple nAChRs in insects and a wealth of neonicotinoid chemicals. Studies to date have discribed a wide range of effects on nAChRs, notably partial agonist, super agonist and antagonist actions. Both the diversity of the neonicotinoid actions and their selectivity for insect over vertebrate nAChRs are the result of physicochemical and steric interactions at their molecular targets (nAChRs). In such interactions, the formation and breakage of hydrogen bond (HB) networks plays a key role. Therefore the loss or gain of even a single HB resulting from either structural changes in neonicotinoids, or the amino acid sequence of a particular nAChR subunit, could result in a drastic modification of neonicotinoid actions. In addition to the amino acid residues, the backbone carbonyl of nAChRs may also be involved in the formation of HB networks with neonicotinoids.  相似文献   

5.
Abstract  Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels, which mediate fast cholinergic synaptic transmission in insect and vertebrate nervous systems. The nAChR agonist-binding site is present at the interface of adjacent subunits and is formed by loops A–C present in α subunits together with loops D–F present in either non-α subunits or homomer-forming α subunits. Although Y151 in loop B has been identified as important in agonist binding, various residues at the 151-site are found among vertebrate and invertebrate nAChR α subunits, such as F151. In Xenopus oocytes expressing Nlα1 or Nlα1Y151F plus rat β2, Y151F mutation was found to significantly change the rate of receptor desensitization and altered the pharmacological properties of acetylcholine, but not imidacloprid, including the decrease of I max, the increase of EC50 (the concentration causing 50% of the maximum response) and the fast time-constant of decay (τf). By comparisons of residue structure, the hydroxyl group in the side chain of Y151 was thought to be important in the interaction between Nlα1/β2 nAChRs and acetylcholine, and the phenyl group to be important between Nlα1/β2 nAChRs and imidacloprid.  相似文献   

6.
Liu Z  Han Z  Liu S  Zhang Y  Song F  Yao X  Gu J 《Journal of neurochemistry》2008,106(1):224-230
Nicotinic acetylcholine (ACh) receptors (nAChRs) are the targets of several kinds of insecticides. Based on the mutagenesis studies of Torpedo californica nAChRs and solved structure of a molluscan, glial-derived soluble ACh-binding protein, a model of the agonist site was constructed with contributing amino acids from three distinct loops (A, B, and C) of the α subunits and another three loops (D, E, and F) of the non-α subunits. According to this model, most insect nAChR subunits can form the functional heteromeric or homomeric receptors. Actually, insect subunits themselves did not form any functional receptor at various combinations as yet, and only part of them can form the functional receptors with vertebrate non-α subunits. These findings suggested that the agonist binding for insect nAChRs was not only contributed by those key amino acids in six loops, but also some unidentified amino acids from other regions. In our previous studies on nAChRs for Nilaparvata lugens , a target-site mutation (Y151S) was found within two α subunits (Nlα1 and Nlα3). In Drosophila S2 cells and Xenopus oocytes, Nlα1 can form functional receptors with rat β2 subunit. However, the same thing was not observed in Nlα3. In the present paper, by exchanging the corresponding regions between Nlα1 and Nlα3 to generate different chimeras, amino acid residues or residue clusters in the regions outside the six loops were found to play essential roles in agonist binding, especially for the amino acid clusters between loop B and C. This result indicated that the residues in the six loops could be necessary, but not enough for the activity of agonist binding.  相似文献   

7.
Nicotinic acetylcholine receptors (nAChRs) are present in high density in insect nervous tissue and are targeted by neonicotinoid insecticides. Improved understanding of the actions of these insecticides will assist in the development of new compounds. Here, we have used whole-cell patch-clamp recording of cholinergic neurons cultured from the central nervous system of 3rd instar Drosophila larvae to examine the actions of acetylcholine (ACh) and nicotine, as well as the neonicotinoids imidacloprid, clothianidin and P-CH-clothianidin on native nAChRs of these neurons. Dose-response data yield an EC(50) value for ACh of 19 microm. Both nicotine and imidacloprid act as low efficacy agonists at native nAChRs, evoking maximal current amplitudes 10-14% of those observed for ACh. Conversely, clothianidin and P-CH-clothianidin evoke maximal current amplitudes up to 56% greater than those evoked by 100 microm ACh in the same neurons. This is the first demonstration of 'super' agonist actions of an insecticide on native insect nAChRs. Cell-attached recordings indicate that super agonism results from more frequent openings at the largest (63.5 pS) conductance state observed.  相似文献   

8.
Neonicotinoid insecticides, which act selectively on insect nicotinic acetylcholine receptors (nAChRs), are used worldwide for insect pest management. Studies that span chemistry, biochemistry, molecular biology, and electrophysiology have contributed to our current understanding of the important physicochemical and structural properties essential for neonicotinoid actions as well as key receptor residues contributing to the high affinity of neonicotinoids for insect nAChRs. Research to date suggests that electrostatic interactions and possibly hydrogen bond formation between neonicotinoids and nAChRs contribute to the selectivity of these chemicals. A rich diversity of neonicotinoid-nAChR interactions has been demonstrated using voltage-clamp electrophysiology. Computational modeling of nAChR-imidacloprid interaction has assisted in the interpretation of these results.  相似文献   

9.
Neonicotinoid insecticides, which act selectively on insect nicotinic acetylcholine receptors (nAChRs), are used worldwide for insect pest management. Studies that span chemistry, biochemistry, molecular biology, and electrophysiology have contributed to our current understanding of the important physicochemical and structural properties essential for neonicotinoid actions as well as key receptor residues contributing to the high affinity of neonicotinoids for insect nAChRs. Research to date suggests that electrostatic interactions and possibly hydrogen bond formation between neonicotinoids and nAChRs contribute to the selectivity of these chemicals. A rich diversity of neonicotinoid-nAChR interactions has been demonstrated using voltage-clamp electrophysiology. Computational modeling of nAChR-imidacloprid interaction has assisted in the interpretation of these results.  相似文献   

10.
Cation-pi interaction, a prominent feature in agonist recognition by neurotransmitter-gated ion channels, does not apply to the anomalous action of neonicotinoids at the insect nicotinic acetylcholine receptor (nAChR). Insect-selective neonicotinoids have an electronegative pharmacophore (tip) in place of the ammonium or iminium cation of the vertebrate-selective nicotinoids, suggesting topological divergence of the agonist-binding sites in insect and vertebrate nAChRs. This study defines the molecular and electronic basis for the potent and selective interaction of the neonicotinoid electronegative pharmacophore with a unique subsite of the Drosophila but not of the vertebrate alpha4beta2 nAChR. Target site potency and selectivity are retained when the usual neonicotinoid N-nitroimine (=NNO(2)) electronegative tip is replaced with N-nitrosoimine (=NNO) or N-(trifluoroacetyl)imine (=NCOCF(3)) in combination with an imidazolidine, imidazoline, thiazolidine, or thiazoline heterocycle. X-ray crystallography establishes coplanarity between the heterocyclic and imine planes, including the electronegative substituent in the trans configuration. The functional tip is the coplanar oxygen atom of the N-nitrosoimine or the equivalent oxygen of the N-nitroimine. Quantum mechanics in the gas and aqueous phases fully support the conserved coplanarity and projection of the strongly electronegative tip. Further, a bicyclic analogue with a nitro tip in the cis configuration but retaining coplanarity has a high potency, whereas the N-trifluoromethanesulfonylimine (=NSO(2)CF(3)) moiety lacking coplanarity confers very low activity. The coplanar system between the electronegative tip and guanidine-amidine moiety extends the conjugation and facilitates negative charge (delta(-)) flow toward the tip, thereby enhancing interaction with the proposed cationic subsite such as lysine or arginine in the Drosophila nAChR.  相似文献   

11.
Nicotinic acetylcholine receptors (nAChRs) are targets for insect-selective neonicotinoid insecticides exemplified by imidacloprid (IMI) and mammalian-selective nicotinoids including nicotine and epibatidine (EPI). Despite their importance, insect nAChRs are poorly understood compared with their vertebrate counterparts. This study characterizes the [(3)H]IMI, [(3)H]EPI, and [(3)H]alpha-bungarotoxin (alpha-BGT) binding sites in hybrid nAChRs consisting of Drosophila melanogaster (fruit fly) or Myzus persicae (peach-potato aphid) alpha2 coassembled with rat beta2 subunits (Dalpha2/Rbeta2 and Mpalpha2/Rbeta2) and compares them with native insect and vertebrate alpha4beta2nAChRs. [(3)H]IMI and [(3)H]EPI bind to Dalpha2/Rbeta2 and Mpalpha2/Rbeta2 hybrids but [(3)H]alpha-BGT does not. In native Drosophila receptors, [(3)H]EPI has a single high-affinity binding site that is independent from that for [(3)H]IMI and, interestingly, overlaps the [(3)H]alpha-BGT site. In the Mpalpha2/Rbeta2 hybrid, [(3)H]IMI and [(3)H]EPI bind to the same site and have similar pharmacological profiles. On considering both neonicotinoids and nicotinoids, the Dalpha2/Rbeta2 and Mpalpha2/Rbeta2 receptors display intermediate pharmacological profiles between those of native insect and vertebrate alpha4beta2 receptors, limiting the use of these hybrid receptors for predictive toxicology. These findings are consistent with the agonist binding site being located at the nAChR subunit interface and indicate that both alpha and beta subunits influence the pharmacological properties of insect nAChRs.  相似文献   

12.
Neonicotinoid insecticides, such as imidacloprid, are selective agonists of insect nicotinic acetylcholine receptors (nAChRs) and are used extensively to control a variety of insect pest species. Previously, we have identified a nAChR point mutation (Y151S) associated with insecticide resistance in the brown planthopper Nilaparvata lugens . Although this mutation has been identified in two different N. lugens nAChR subunits (Nlα1 and Nlα3) because of difficulties in heterologous expression of Nlα3; its influence on agonist potency has been examined only in Nlα1-containing nAChRs. Here we describe the cloning of a novel nAChR subunit from N. lugens (Nlα8), together with evidence for its co-assembly with Nlα3 in native and recombinant nAChRs. This has, for the first time, enabled the functional effects of the Nlα3Y151S mutation to be examined. The Nlα3Y151S mutation has little effect on agonist potency of acetylcholine but has a dramatic effect on neonicotinoid insecticides (reducing I max values and increasing EC50 values). The apparent affinity of neonicotinoids was higher and the effect of the Y151S mutation on neonicotinoid agonist potency was more profound in Nlα3-containing, rather than Nlα1-containing nAChR. We conclude that Nlα3- and Nlα1-containing nAChRs may be representative of two distinct insect nAChR populations.  相似文献   

13.
Nicotinic acetylcholine receptors (nAChRs) are the binding sites for nicotinoid drugs, such as nicotine and epibatidine, and are the molecular targets of the selectively insecticidal neonicotinoids. In this study we report the full length cDNA cloning of the three Ctenocephalides (C.) felis (cat flea) nAChR α subunits Cfα1, Cfα2, and Cfα3. When expressed in Xenopus oocytes as hybrid receptors with the Gallus gallus (chicken) β2 (Ggβ2) subunit, these cat flea α subunits formed acetylcholine-responsive ion channels. Acetylcholine-evoked currents of Cfα2/Ggβ2 were resistant to α-bungarotoxin, while those of Cfα1/Ggβ2 were sensitive to this snake toxin. The pharmacological profiles of Cfα1/Ggβ2, Cfα2/Ggβ2 and the chicken neuronal receptor Ggα4/Ggβ2 for acetylcholine, two nicotinoids and 6 insecticidal neonicotinoids were determined and compared. Particularly remarkable was the finding that Cfα1/Ggβ2 was far more sensitive to acetylcholine, nicotine and neonicotinoid agonists than either Cfα2/Ggβ2 or Ggα4/Ggβ2: for the anti flea neonicotinoid market compound imidacloprid the respective EC??s were 0.02 μM, 1.31 μM and 10 μM. These results were confirmed for another insect species, Drosophila melanogaster, where the pharmacological profile of the Dmα1 and Dmα2 subunits as hybrid receptors with Ggβ2 in Xenopus oocyte expressions resulted in a similar sensitivity pattern as those identified for the C. felis orthologs. Our results show that at least in a Ggβ2 hybrid receptor setting, insect α1 subunits confer higher sensitivity to neonicotinoids than α2 subunits, which may contribute in vivo to the insect-selective action of this pesticide class.  相似文献   

14.
Nicotinic acetylcholine receptors (nAChRs) have vital functions in processes of neurotransmission that underpin key behaviors. These pentameric ligand-gated ion channels have been used as targets for insecticides that constitutively activate them, causing the death of insect pests. In examining a knockout of the Dα1 nAChR subunit gene, our study linked this one subunit with multiple traits. We were able to confirm previous work that had identified Dα1 as a target of the neonicotinoid class of insecticides. Further, we uncovered roles for the gene in influencing mating behavior and patterns of sleep. The knockout mutant was also observed to have a significant reduction in longevity. This study highlighted the severe fitness costs that appear to be associated with the loss of function of this gene in natural populations in the absence of insecticides targeting the Dα1 subunit. Such a fitness cost could explain why target site resistances to neonicotinoids in pest insect populations have been associated specific amino acid replacement mutations in nAChR subunits, rather than loss of function. That mutant phenotypes were observed for the two behaviors examined indicates that the functions of Dα1, and other nAChR subunits, need to be explored more broadly. It also remains to be established whether these phenotypes were due to loss of the Dα1 receptor and/or to compensatory changes in the expression levels of other nAChR subunits.  相似文献   

15.
Acetylcholine binding proteins (AChBPs) are homologs of extracellular domains of nicotinic acetylcholine receptors (nAChRs) and serve as models for studies on nAChRs. Particularly, studies on invertebrate nAChRs that are limited due to difficulties in their heterologous expression have benefitted from the discovery of AChBPs. Thus far, AChBPs have been characterized only in aquatic mollusks, which have shown low sensitivity to neonicotinoids, the insecticides targeting insect nAChRs. However, AChBPs were also found in spiders based on the sequence and tissue expression analysis. Here, we report five AChBP subunits in Pardosa pseudoannulata, a predator enemy against rice insect pests. Spider AChBP subunits shared higher sequence similarities with nAChR subunits of both insects and mammals compared with mollusk AChBP subunits. The AChBP1 subunit of P. pseudoannulata (Pp-AChBP) was then expressed in Sf9 cells. The Ls-AChBP from Lymnaea stagnalis was also expressed for comparison. In both AChBPs, one ligand site per subunit was present at each interface between two adjacent subunits. Neonicotinoids had higher affinities (7.9–18.4 times based on Kd or Ki values) for Pp-AChBP than for Ls-AChBP, although epibatidine and α-bungarotoxin showed higher affinities for Ls-AChBP. These results indicate that spider AChBP could be used as an alternative model to study the interaction between insect nAChRs and neonicotinoids.  相似文献   

16.
褐飞虱对吡虫啉的抗性机理和靶标分子毒理学   总被引:2,自引:0,他引:2  
褐飞虱Nilaparvata lugens是水稻最重要的害虫之一,长期依赖化学防治导致了该害虫对不同类型杀虫剂抗性的产生,对新烟碱类杀虫剂吡虫啉高水平抗性的产生更是造成了巨大的粮食生产损失。近年来在褐飞虱对吡虫啉抗性机理,以及在抗药性机理研究推动下吡虫啉作用靶标褐飞虱神经系统烟碱型乙酰胆碱受体(nicotinic acetylcholine receptors, nAChRs)毒理学等方面取得了许多研究进展。nAChRs是昆虫神经系统中最重要的神经递质受体,是几类重要杀虫剂的作用靶标,其中以新烟碱类杀虫剂为代表。通过对比敏感品系和室内连续筛选获得的高抗吡虫啉品系,在褐飞虱两个nAChRs亚基Nlα1和Nlα3中均发现了抗性相关点突变Y151S,该突变导致了受体与吡虫啉结合亲和力的显著下降,而对内源神经递质乙酰胆碱的亲和力影响很小。Nlα1与褐飞虱另外两个亚基Nlα2和Nlβ1共聚成一个受体,构成吡虫啉低亲和力结合位点;Nlα3与褐飞虱另外两个亚基Nlα8和Nlβ1共聚成一个受体,构成吡虫啉高亲和力结合位点。不仅褐飞虱nAChRs与吡虫啉抗性相关,某些nAChRs附属蛋白也直接影响褐飞虱对吡虫啉的抗性,如Lynx蛋白。关于褐飞虱nAChRs组成、抗药性相关变异、受体附属蛋白对抗药性的影响等方面的研究,均为国内外前沿报道,不仅有助于对新烟碱类杀虫剂抗性机理的理解,对昆虫nAChRs毒理学同样具有很大的推动作用。  相似文献   

17.
Insect nicotinic acetylcholine receptors (nAChRs) play a central role in mediating neuronal synaptic transmission and are the target sites for the increasingly important group of neonicotinoid insecticides. Six nicotinic acetylcholine receptor (nAChR) subunits (four alpha-type and two beta-type) have been cloned previously from the model insect species Drosophila melanogaster. Despite extensive efforts, it has not been possible to generate functional recombinant nAChRs by heterologous expression of any combination of these six subunits. It has, however, been possible to express functional hybrid receptors when Drosophila alpha subunits are co-expressed with vertebrate beta subunits. This has led to the assumption that successful heterologous expression might require an, as yet, uncloned beta-type insect subunit. Examination of the recently completed Drosophila genomic sequence data has identified a novel putative nAChR beta-type subunit. Here we report the molecular cloning, heterologous expression and characterization of this putative Drosophila nAChR subunit (Dbeta3). Phylogenetic comparisons with other ligand-gated ion channel subunit sequences support its classification as a nAChR subunit but show it to be a distantly related member of this neurotransmitter receptor subunit family. Evidence that the Dbeta3 subunit is able to coassemble with other Drosophila nAChR subunits and contribute to recombinant nAChRs has been obtained by both radioligand binding and coimmunoprecipitation studies in transfected Drosophila S2 cells.  相似文献   

18.
Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission in the insect nervous system and are targets of a major group of insecticides, the neonicotinoids. Analyses of genome sequences have shown that nAChR gene families remain compact in diverse insect species, when compared to their mammalian counterparts. Thus, Drosophila melanogaster and Anopheles gambiae each possess 10 nAChR genes while Apis mellifera has 11. Although these are among the smallest nAChR gene families known, receptor diversity can be considerably increased by alternative splicing and mRNA A-to-I editing, thereby generating species-specific subunit isoforms. In addition, each insect possesses at least one highly divergent nAChR subunit. Species-specific subunit diversification may offer promising targets for future rational design of insecticides that act on particular pests while sparing beneficial insects. Electrophysiological studies on cultured Drosophila cholinergic neurons show partial agonist actions of the neonicotinoid imidacloprid and super-agonist actions of another neonicotinoid, clothianidin, on native nAChRs. Recombinant hybrid heteromeric nAChRs comprising Drosophila Dα2 and a vertebrate β2 subunit have been instructive in mimicking such actions of imidacloprid and clothianidin. Unitary conductance measurements on native nAChRs indicate that more frequent openings of the largest conductance state may offer an explanation for the superagonist actions of clothianidin.  相似文献   

19.
Neonicotinoid insecticides, such as imidacloprid, are selective agonists of insect nicotinic acetylcholine receptors (nAChRs) and are used extensively in areas of crop protection and animal health to control a variety of insect pest species. Here, we describe studies performed with nAChR subunits Nlα1 and Nlα2 cloned from the brown planthopper Nilaparvata  lugens , a major insect pest of rice crops in many parts of Asia. The influence of Nlα1 and Nlα2 subunits upon the functional properties of recombinant nAChRs has been examined by expression in Xenopus oocytes. In addition, the influence of a Nlα1 mutation (Y151S), which has been linked to neonicotinoid lab generated resistance in N. lugens , has been examined. As in previous studies of insect α subunits, functional expression has been achieved by co-expression with the mammalian β2 subunit. This approach has revealed a significantly higher apparent affinity of imidacloprid for Nlα1/β2 than for Nlα2/β2 nAChRs. In addition, evidence has been obtained for the co-assembly of Nlα1 and Nlα2 subunits into 'triplet' nAChRs of subunit composition Nlα1/Nlα2/β2. Evidence has also been obtained which demonstrates that the resistance-associated Y151S mutation has a significantly reduced effect on neonicotinoid agonist activity when Nlα1 is co-assembled with Nlα2 than when expressed as the sole α subunit in a heteromeric nAChR. These findings may be of importance in assessing the likely impact of the target-site mutations such as Y151S upon neonicotinoid insecticide resistance in insect field populations.  相似文献   

20.
Nicotinic acetylcholine receptors (AChRs) mediate rapid excitatory synaptic transmission throughout the peripheral and central nervous systems. They transduce binding of nerve-released ACh into opening of an intrinsic channel, yet the structural basis underlying transduction is not fully understood. Previous studies revealed a principal transduction pathway in which alphaArg 209 of the pre-M1 domain and alphaGlu 45 of the beta1-beta2 loop functionally link the two regions, positioning alphaVal 46 of the beta1-beta2 loop in a cavity formed by alphaPro 272 through alphaSer 269 of the M2-M3 loop. Here we investigate contributions of residues within and proximal to this pathway using single-channel kinetic analysis, site-directed mutagenesis, and thermodynamic mutant cycle analysis. We find that in contributing to channel gating, alphaVal 46 and alphaVal 132 of the signature Cys loop couple energetically to alphaPro 272. Furthermore, these residues are optimized in both their size and hydrophobicity to mediate rapid and efficient channel gating, suggesting naturally occurring substitutions at these positions enable a diverse range of gating rate constants among the Cys-loop receptor superfamily. The overall results indicate that alphaPro 272 functionally couples to flanking Val residues extending from the beta1-beta2 and Cys loops within the ACh binding to channel opening transduction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号