首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Heterogeneity in host susceptibility and transmissibility to parasite attack allows a lower transmission rate to sustain an epidemic than is required in homogeneous host populations. However, this heterogeneity can leave some hosts with little susceptibility to disease, and at high transmission rates, epidemic size can be smaller than for diseases where the host population is homogeneous. In a heterogeneous host population, we model natural selection in a parasite population where host heterogeneity is exploited by different strains to varying degrees. This partitioning of the host population allows coexistence of competing parasite strains, with the heterogeneity-exploiting strains infecting the more susceptible hosts, in the absence of physiological tradeoffs and spatial heterogeneity, and even for markedly different transmission rates. In our model, intermediate-strategy parasites were selected against: should coexistence occur, an equilibrium is reached where strains occupied only the extreme ends of trait space, under appropriate conditions selecting for lower R0.  相似文献   

2.
Myxomatosis is a leporipoxvirus that infects the european rabbit, inducing a high mortality rate. Observations lead us to hypothesize that a rabbit carrying maternal antibodies (or having recovered) can be infected (or re-infected) upon being exposed (or re-exposed) to the virus. Infection will lead to mild disease, boosting host immune protection. Using a modelling approach we show that this phenomenon may lead to a difference of impact of myxomatosis according to its transmission rate. Young are exposed when they still carry maternal antibodies and develop a mild disease in high transmission populations. Our results show that the impact of myxomatosis is generally higher in epidemic situations compared to populations where the virus circulates all the year. As a consequence, waning of acquired immunity and the continuous supply of newborn along the year may reduce the impact of the disease.  相似文献   

3.
4.
We have developed a new strategy for immunization of wild rabbit populations against myxomatosis and rabbit hemorrhagic disease (RHD) that uses recombinant viruses based on a naturally attenuated field strain of myxoma virus (MV). The recombinant viruses expressed the RHDV major capsid protein (VP60) including a linear epitope tag from the transmissible gastroenteritis virus (TGEV) nucleoprotein. Following inoculation, the recombinant viruses induced specific antibody responses against MV, RHDV, and the TGEV tag. Immunization of wild rabbits by the subcutaneous and oral routes conferred protection against virulent RHDV and MV challenges. The recombinant viruses showed a limited horizontal transmission capacity, either by direct contact or in a flea-mediated process, promoting immunization of contact uninoculated animals.  相似文献   

5.
The poxvirus, myxoma virus, encodes within its genome at least eleven different proteins that compromise, skew, or disable the innate and adaptive responses of its hosts. In the laboratory rabbit, Oryctolagus cuniculus, these effects result in myxomatosis, a fatal condition characterized by skin lesions and systemic immunosuppression. Interestingly, while myxoma infection also causes skin lesions in its natural host and in natural populations of O. cuniculus in Australia where this novel host and the virus have co-evolved, the condition of myxomatosis does not ensue and infection is not fatal. In this review I discuss the biochemical properties of the characterized immunomodulatory proteins of myxoma virus, and their pathogenic effects in laboratory rabbits. Disruption of any one myxoma immunomodulatory gene diminishes the severity of the infection without compromising infectivity. Thus, the characterized immunomodulatory genes appear not to be required for a productive infection in vivo. The differences in the severity of their effects in laboratory-bred versus wild O. cuniculus suggest that the outcome of myxoma infection is a consequence of the interplay between the viral immunomodulatory gene products and the cells and molecules of the host immune system.  相似文献   

6.
Genetic variation in pathogen populations may be an important factor driving heterogeneity in disease dynamics within their host populations. However, to date, we understand poorly how genetic diversity in diseases impact on epidemiological dynamics because data and tools required to answer this questions are lacking. Here, we combine pathogen genetic data with epidemiological monitoring of disease progression, and introduce a statistical exploratory method to investigate differences among pathogen strains in their performance in the field. The method exploits epidemiological data providing a measure of disease progress in time and space, and genetic data indicating the relative spatial patterns of the sampled pathogen strains. Applying this method allows to assign ranks to the pathogen strains with respect to their contributions to natural epidemics and to assess the significance of the ranking. This method was first tested on simulated data, including data obtained from an original, stochastic, multi-strain epidemic model. It was then applied to epidemiological and genetic data collected during one natural epidemic of powdery mildew occurring in its wild host population. Based on the simulation study, we conclude that the method can achieve its aim of ranking pathogen strains if the sampling effort is sufficient. For powdery mildew data, the method indicated that one of the sampled strains tends to have a higher fitness than the four other sampled strains, highlighting the importance of strain diversity for disease dynamics. Our approach allowing the comparison of pathogen strains in natural epidemic is complementary to the classical practice of using experimental infections in controlled conditions to estimate fitness of different pathogen strains. Our statistical tool, implemented in the R package StrainRanking, is mainly based on regression and does not rely on mechanistic assumptions on the pathogen dynamics. Thus, the method can be applied to a wide range of pathogens.  相似文献   

7.
《新西兰生态学杂志》2011,30(1):103-120
Models were developed to examine the efficacy of immunocontraception as an alternative control method for pest rabbits. The models simulated the dynamics of rabbit populations structured by age and sex, and helped identify the benefits of an integrated pest management strategy that includes immunocontraception and lethal control. Virally vectored immunocontraception (VVIC) using a sterilising myxoma virus reduced the long-term density of rabbits. However, our models indicated that the efficacy of VVIC is much less than using lethal methods of management currently available (e.g. poison baiting). Nevertheless, in areas where lethal control cannot be used, a sterilising strain of myxoma may be a useful tool for rabbit management, but competition between sterilising and non-sterilising strains will reduce the overall efficacy of VVIC. Regardless of how effective poisoning is at reducing rabbit numbers, the benefits in terms of increased pasture availability and wool growth may not outweigh the costs incurred by a poisoning campaign. In our analysis the most cost-effective control remains natural epizootics of myxomatosis since they do not incur a cost to the landholder. There is likely to be some small additional benefit to releasing a sterilising strain of myxoma, and landholders may need to supplement this with baiting under some circumstances (e.g. above average breeding season or areas where myxomatosis occur infrequently).  相似文献   

8.
Since its introduction to control overabundant invasive European rabbits (Oryctolagus cuniculus), the highly virulent rabbit haemorrhagic disease virus (RHDV) has caused regular annual disease outbreaks in Australian rabbit populations. Although initially reducing rabbit abundance by 60%, continent‐wide, experimental evidence has since indicated increased genetic resistance in wild rabbits that have experienced RHDV‐driven selection. To identify genetic adaptations, which explain the increased resistance to this biocontrol virus, we investigated genome‐wide SNP (single nucleotide polymorphism) allele frequency changes in a South Australian rabbit population that was sampled in 1996 (pre‐RHD genomes) and after 16 years of RHDV outbreaks. We identified several SNPs with changed allele frequencies within or close to genes potentially important for increased RHD resistance. The identified genes are known to be involved in virus infections and immune reactions or had previously been identified as being differentially expressed in healthy versus acutely RHDV‐infected rabbits. Furthermore, we show in a simulation study that the allele/genotype frequency changes cannot be explained by drift alone and that several candidate genes had also been identified as being associated with surviving RHD in a different Australian rabbit population. Our unique data set allowed us to identify candidate genes for RHDV resistance that have evolved under natural conditions, and over a time span that would not have been feasible in an experimental setting. Moreover, it provides a rare example of host genetic adaptations to virus‐driven selection in response to a suddenly emerging infectious disease.  相似文献   

9.
Abstract Virulence is thought to be a driving force in host–pathogen coevolution. Theoretical models suggest that virulence is an unavoidable consequence of pathogens evolving towards a high rate of intrahost reproduction. These models predict a positive correlation between the reproductive fitness of a pathogen and its level of virulence. Theoretical models also suggest that the demography and genetic structure of a host population can influence the evolution of virulence. If evolution occurs faster in pathogen populations than in host populations, the predicted result is local adaptation of the pathogen population. In our studies, we used a combination of molecular and physiological markers to test these hypotheses in an agricultural system. We isolated five strains of the fungal pathogen Mycosphaerella graminicola from each of two wheat cultivars that differed in their level of resistance to this pathogen. Each of the 10 fungal strains had distinct genotypes as indicated by different DNA fingerprints. These fungal strains were re‐inoculated onto the same two host cultivars in a field experiment and their genotype frequencies were monitored over several generations of asexual reproduction. We also measured the virulence of these 10 fungal strains and correlated it to the reproductive fitness of each fungal strain. We found that host genotypes had a strong impact on the dynamics of the pathogen populations. The pathogen population collected from the moderately resistant cultivar Madsen showed greater stability, higher genotype diversity, and smaller selection coefficients than the pathogen populations collected from the susceptible cultivar Stephens or a mixture of the two host cultivars. The pathogen collection from the mixed host population was midway between the two pure lines for most parameters measured. Our results also revealed that the measures of reproductive fitness and virulence of a pathogen strain were not always correlated. The pathogen strains varied in their patterns of local adaptation, ranging from locally adapted to locally maladapted.  相似文献   

10.
We tested experimentally the effects of genetic variation in host population on the host-parasitoid system persistence. The experimental systems consisted of one parasitoid wasp species (Heterospilus prosopidis), one bean weevil species (Callosobruchus chinensis), and one bean species, of which only the host species (bean weevil) was genetically manipulated. As control treatments with low genetic heterogeneity in the host population, we used two bean weevil strains (Kyoto and Niigata strains) which have several contrasting ecological traits. For the high genetic heterogeneity treatment, hybrid bean weevils which were generated by crossbreeding the strains Kyoto and Niigata were used. In the multiple-generation experiments, all three treatments had different patterns of extinction. The control treatment with the Niigata strain was very prone to system extinction, whereas the treatment with hybrids showed coexistence of constituent species in almost all replicates and also showed stabilized population dynamics. The other control treatment, using the Kyoto strain, showed intermediate proneness. To interpret the results of multiple-generation experiments, we conducted several short-term experiments. The different persistence patterns between the two control treatments were explained by the shapes of the host-finding abilities of wasps and the growth rate of the bean weevils. The mean values of many ecological traits of hybrid lines were not different from those of the Kyoto strain, but their variability increased. These outcomes corresponded well to the prediction of models by Doebeli [J Theor Biol (1997) 188:109–120]. We discuss the mechanisms in which the variability in host species population was effective for the prolonged system persistence.  相似文献   

11.
Most mathematical models of disease assume that transmission is linearly dependent on the densities of host and pathogen. Recent data for animal diseases, however, have cast doubt on this assumption, without assessing the usefulness of alternative models. In this article, we use a combination of laboratory dose-response experiments, field transmission experiments, and observations of naturally occurring populations to show that virus transmission in gypsy moths is a nonlinear function of virus density, apparently because of heterogeneity among individual gypsy moth larvae in their susceptibility to the virus. Dose-response experiments showed that larvae from a laboratory colony of gypsy moths are substantially less heterogeneous in their susceptibility to the virus than are larvae from feral populations, and field experiments showed that there is a more strongly nonlinear relationship between transmission and virus density for feral larvae than for lab larvae. This nonlinearity in transmission changes the dynamics of the virus in natural populations so that a model incorporating host heterogeneity in susceptibility to the virus gives a much better fit to data on virus dynamics from large-scale field plots than does a classical model that ignores host heterogeneity. Our results suggest that heterogeneity among individuals has important effects on the dynamics of disease in insects at several spatial and temporal scales and that heterogeneity in susceptibility may be of general importance in the ecology of disease.  相似文献   

12.
The complex structure of virus populations has been the object of intensive study in bacteria, animals, and plants for over a decade. While it is clear that tremendous genetic diversity is rapidly generated during viral replication, the distribution of this diversity within a single host remains an obscure area in this field of science. Among animal viruses, only Human immunodeficiency virus and Hepatitis C virus populations have recently been thoroughly investigated at an intrahost level, where they are structured as metapopulations, demonstrating that the host cannot be considered simply as a "bag" containing a homogeneous or unstructured swarm of mutant viral genomes. In plants, a few reports suggested a possible heterogeneous distribution of virus variants at different locations within the host but provided no clues as to how this heterogeneity is structured. Here, we report the most exhaustive study of the structure and evolution of a virus population ever reported at the intrahost level through the analysis of a Prunus tree infected by Plum pox virus for over 13 years following a single inoculation event and by using analysis of molecular variance at different hierarchical levels combined with nested clade analysis. We demonstrate that, following systemic invasion of the host, the virus population differentiates into several distinct populations that are isolated in different branches, where they evolve independently through contiguous range expansion while colonizing newly formed organs. Moreover, we present and discuss evidence that the tree harbors a huge "bank" of viral clones, each isolated in one of the myriad leaves.  相似文献   

13.
The stability of populations of hosts and micro-parasites is investigated where each consists of n varieties that are equal in every respect except that each strain of parasites can infect only one specific strain of hosts and none of the others. Collectively the host strains are limited by a carrying capacity and through this limitation the host populations interact with each other. Hosts are assumed to reproduce asexually or such that different strains do not mate or are not fertile if they do. When the excess death rate caused by the pathogenic parasites is sufficiently large, then the host population is regulated to an equilibrium below the carrying capacity of the environment. This polymorphic equilibrium is shown to be locally asymptotically stable. When one of the parasite strains is absent, then all the other strains die out asymptotically. However, if host resistance to all infectious strains of parasites is achieved at the cost of a lower birthrate of the resistant host strain, then, if a certain condition for the various parameters is satisfied, stable coexistence between infected and resistant hosts is possible. There are many examples where susceptibility and resistance of hosts depends upon the conformation of specific proteins that are involved in host-parasite interactions and hence upon alleles at genetic loci that code for these proteins. We propose that polymorphism in wildtype populations which has been the subject of much theorizing in mathematical genetics may be due to host-pathogen interactions. Our model suggests how a polymorphic population, once established, can remain polymorphic indefinitely.  相似文献   

14.
Metapopulation persistence in fragmented landscapes depends on habitat patches that can support resilient local populations and sufficient connectivity between patches. Yet epidemiological theory for metapopulations has largely overlooked the capacity of particular patches to act as refuges from disease, and has suggested that connectivity can undermine persistence. Here, we show that relatively warm and saline wetlands are environmental refuges from chytridiomycosis for an endangered Australian frog, and act jointly with connectivity to sustain frog metapopulations. We coupled models of microclimate and infection probability to map chytrid prevalence, and demonstrate a strong negative relationship between chytrid prevalence and the persistence of frog populations. Simulations confirm that frog metapopulations are likely to go extinct when they lack environmental refuges from disease and lose connectivity between patches. This study demonstrates that environmental heterogeneity can mediate host–pathogen interactions in fragmented landscapes, and provides evidence that connectivity principally supports host metapopulations afflicted by facultative pathogens.  相似文献   

15.
Tolerance to maize streak virus (MSV) was found and rapidly incorporated into high yielding maize populations for the tropics. Methods were developed for vector propagation and rapid accurate screening of many accessions for virus tolerance in large screenhouses. Tolerance was found in only two accessions and at low frequencies. Further refinements enabled field evaluation for virus tolerance to be combined with high agronomic performance. The tolerance found is simply inherited and was fixed rapidly in breeding. Non-strain specific tolerance was sought by collecting vectors and different indigenous host grasses from a wide area. The tolerance developed was sufficiently high hardly to affect yield of infected plants. It provided epidemiological or field resistance by reducing disease incidence to insignificance under natural conditions. This tolerance and field resistance has proved effective in several countries of East, West and southern Africa. Varieties derived from this work are now being promoted in Nigeria, and they have potential application elsewhere in the lowland tropics.  相似文献   

16.
We have examined the effects of wall populations on coexistence between strains of Escherichia coli in the liquid phase of mixed (two-strain) chemostats. The wall populations of the two competing strains became established soon after the start of the cultures and, although the relative abundance of the strains in the liquid phase could change over time by several orders of magnitude, the composition of an established wall population did not change markedly. The bacterial strains examined could not displace an established wall population of a competing strain. The presence of a permanent wall population allowed a strain that was less fit in the liquid phase to coexist with a superior strain. The resulting coexistence did not require that the inferior strain attached to the vessel wall better than the superior strain. We believe that the coexistence developed because the inferior strain survived and reproduced on the vessel wall. The progeny from that wall population then provided replacements for the bacteria that the inferior strain lost through a selective disadvantage in the liquid phase of the culture. By replacing the chemostat vessel, hence eliminating the wall populations, we could distinguish between cases where the coexistence depended on the presence of a wall population and where it resulted from some alternative mechanism.  相似文献   

17.
The establishment of myxomatosis, the spread of the disease and its effects on rabbit populations in Australia and in Britain are briefly reviewed. Though the disease is endemic, with regular outbreaks in most rabbit populations, its effect is now much less dramatic than previously. Recent epidemiological studies have shown that the rate of spread of infection, the proportion of rabbits infected and the proportion dying from the disease are very much smaller than recorded in earlier outbreaks. The reasons for these changes are discussed, and the epidemiology of the disease in Britain is compared with that in Australia.  相似文献   

18.
The European rabbit (Oryctolagus cuniculus) is one of the most important vertebrate species in the Mediterranean Basin ecosystem. Over the last 60 years, the arrival of two viral diseases, myxomatosis and rabbit haemorrhagic disease, have led to dramatic declines in wild rabbit populations across the Iberian Peninsula. These diseases are currently endemic. Periodic outbreaks occur and have significant impacts on wild populations. Both infection types have diverse physiological effects on their hosts that are rooted in aerobic metabolic processes. To fight off these viruses, rabbits activate their immune systems. However, the production of immune defences generates reactive oxygen species that may consequently damage host tissues. Hypothesising that immune responses increase oxidative stress, we examined whether wild rabbits naturally infected with myxoma virus (MV) and rabbit haemorrhagic disease virus (RHDV) had high oxidative stress. Using blood samples, we measured anti-MV and anti-RHDV antibody concentrations and different oxidative stress markers (i.e., glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase, and malondialdehyde). Our results show that rabbits that were seropositive for both MV and RHDV had high concentrations of malondialdehyde. Age and body condition were also positively related to dual seropositivity. No significant relationships were observed between serostatus and the concentrations of the other oxidative stress markers. Although we expected infection with MV and RHDV to be correlated with oxidative stress, the influence of external sources of oxidative stress (e.g., climatic conditions) likely made it more difficult to detect such relationships in wild rabbits.  相似文献   

19.
One of the best-studied examples of host-virus coevolution is the release of myxoma virus (MV) for biological control of European rabbits in Australia and Europe. To investigate the genetic basis of MV adaptation to its new host, we sequenced the genome of 6918, an attenuated Spanish field strain, and compared it with that of Lausanne, the strain originally released in Europe in 1952. Although isolated 43 years apart, the genomes were highly conserved (99.95% identical). Only 32 of the 159 MV predicted proteins revealed amino acid changes. Four genes (M009L, M036L, M135R, and M148R) in 6918 were disrupted by frameshift mutations.Myxoma virus (MV), the causative agent of myxomatosis, belongs to the Leporipoxvirus genus of the Poxviridae family (9). Two distinct types of MV have been identified: South American MV, which circulates in Sylvilagus brasiliensis, and Californian MV, which circulates in Sylvilagus bachmani. Each virus is highly adapted to its host, causing a benign cutaneous fibroma at the site of inoculation. Both types of MV infect the European rabbit (Oryctolagus cuniculus), causing myxomatosis. The Californian strain MSW is more virulent for European rabbits than South American strains such as SLS or Lausanne (54). Another leporipoxvirus, Shope fibroma virus (SFV), is found in eastern North America in Sylvilagus floridanus. SFV protects European rabbits against myxomatosis (24), and it is routinely used as a vaccine.One of the best-studied examples of host-virus coevolution is the use of MV for biological control of European rabbits (22, 23, 29). It is particularly unusual because the precise time the virus was released is known, and the original viruses are available for comparison with current strains. MV (the SLS strain) was deliberately released in Australia in 1950 and soon after (1952) in France (the Lausanne strain), whence it rapidly spread across Europe, and it has become endemic since then. For almost 60 years, a complex coevolution of host and virus has occurred, characterized by the emergence of attenuated viral strains and rabbits selected for resistance to MV (11, 12, 30).The MV Lausanne strain and SFV have been completely sequenced (13, 61). MV encodes 171 genes, versus 165 encoded by SFV. The genetic information is highly conserved between the two viruses. Recently, preliminary sequencing of the MSW strain indicated that the major genomic differences with the Lausanne strain localize at the left terminal end of the MSW genome (31). In MSW, the terminal inverted repeats (TIRs) are extended, causing the duplication of five complete open reading frames (ORFs), which are present as a single copy near the right TIR in the Lausanne strain (9). To date, little molecular analysis concerning the adaptation of MV to its new host has been performed. Studies involving Australian field strains found small differences with reference to the SLS and Lausanne strains (49, 50), suggesting that adaptation (and the concomitant attenuation) of MV is not associated with major genetic changes such as large deletions. This finding is in contrast to what has been reported for attenuated poxviruses obtained by extensive cell culture passaging, which usually present substantial genomic deletions or rearrangements (5, 25, 36, 47, 48).Strain 6918 is a naturally attenuated MV isolated in Spain in 1995 (7). It is therefore a descendant of the Lausanne strain recovered after 43 years of continuous evolution in the field. It has been used for the development of a “transmissible vaccine” intended to protect wild-rabbit populations against both myxomatosis and rabbit hemorrhagic disease virus (RHDV) in Spain, where the European rabbit plays a key role in the Mediterranean ecosystems (18). For this purpose, a recombinant virus, 6918VP60-T2, was constructed by inserting the capsid gene of RHDV into the genome of strain 6918 (4, 6, 7, 56, 57). The genomes of 6918 and 6918VP60-T2 have been sequenced. Here we report the results of our comparison of the genomic sequences of Lausanne and 6918. To our knowledge, this is the first comparative genomic analysis involving two poxvirus field strains linked by a clearly recorded lineage, one being fully virulent and the other virtually nonpathogenic. The results provide relevant insights into the mechanisms of MV attenuation that occurred as a consequence of the adaptation of the virus to its new host.  相似文献   

20.
Models of host–parasitoid dynamics often assume constant levels of spatial heterogeneity in parasitoid attack rate, which tends to stabilize the interactions. Recently, authors have questioned this assumption and shown that outcomes of simple host–parasitoid models change if spatial heterogeneity is allowed to vary with parasitoid density. Here, we allow spatial heterogeneity to vary with either parasitoid density or percent parasitism in a model designed to explain specialist parasitoid coexistence on insect hosts with various levels of refuge. By examining this model we can evaluate the effect of varying spatial heterogeneity on a more complex model in which spatial heterogeneity is not considered the primary determinant of persistence. By modeling communities with one host and two parasitoid species, we show that the probability of species persistence for the competitively inferior parasitoid depends on the assumed relationship between spatial heterogeneity and both parasitoid density and percent parasitism. The probability of parasitoid coexistence is generally lower when spatial heterogeneity varies with parasitoid demographics. We conclude that the conditions for which host refuge promote specialist parasitoid coexistence are less common that proposed by the original model. Finally, we compared a model in which spatial heterogeneity varies with percent parasitism to data from laboratory trials and find a reasonable fit. We conclude that the change in spatial heterogeneity strongly influenced the outcome of the laboratory trials, and we suggest more research is necessary before researchers can assume constant spatial heterogeneity in future models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号