首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D J Haleem 《Life sciences》1990,47(11):971-979
In previous studies, long term treatment with ethanol has been shown to enhance brain 5-hydroxytryptamine 5-(HT) metabolism by increasing the activity of the regulatory enzyme tryptophan hydroxylase and or availability of circulating tryptophan secondarily to an inhibition of hepatic tryptophan pyrrolase. In the present study ethanol treatment given for two weeks decreased hepatic apo-tryptophan pyrrolase but not total tryptophan pyrrolase activity in rats. Tryptophan levels in plasma and brain did not increase significantly. But there was a marked increase of 5-HT but not 5-hydroxyindoleacetic acid (5-HIAA) concentration in brain, suggesting a possible increase in the activity of tryptophan hydroxylase. The effect of a tryptophan load on brain 5-HT metabolism was therefore compared in controls and ethanol treated rats. One hour after tryptophan injection (50 mg/kg i.p.) plasma concentrations of total and free tryptophan were identical in controls and ethanol treated rats, but the increases of brain tryptophan 5-HT and 5-HIAA were considerably greater in the latter group. The results are consistent with long term ethanol treatment enhancing brain serotonin metabolism and show that brain uptake/utilization of exogenous tryptophan is increased in ethanol treated rats and may be useful to understand the role and possible mechanism of tryptophan/serotonin involvement in mood regulation.  相似文献   

2.
D J Haleem 《Life sciences》1990,47(11):971-979
In previous studies, long term treatment with ethanol has been shown to enhance brain 5-hydroxytryptamine 5-(HT) metabolism by increasing the activity of the regulatory enzyme tryptophan hydroxylase and or availability of circulating tryptophan secondarily to an inhibition of hepatic tryptophan pyrrolase. In the present study ethanol treatment given for two weeks decreased hepatic apo-tryptophan pyrrolase but not total tryptophan pyrrolase activity in rats. Tryptophan levels in plasma and brain did not increase significantly. But there was a marked increase of 5-HT but not 5-hydroxyindoleacetic acid (5-HIAA) concentration in brain, suggesting a possible increase in the activity of tryptophan hydroxylase. The effect of a tryptophan load on brain 5-HT metabolism was therefore compared in controls and ethanol treated rats. One hour after tryptophan injection (50 mg/kg i.p.) plasma concentrations of total and free tryptophan were identical in controls and ethanol treated rats, but the increases of brain tryptophan 5-HT and 5-HIAA were considerably greater in the latter group. The results are consistent with long term ethanol treatment enhancing brain serotonin metabolism and show that brain uptake/utilization of exogenous tryptophan is increased in ethanol treated rats and may be useful to understand the role and possible mechanism of tryptophan/serotonin involvement in mood regulation.  相似文献   

3.
Serum, liver and brain tryptophan concentrations and brain Na+K+-ATPase activity were studied in streptozotocin diabetic rats after an acute tryptophan load. Results show that tryptophan administration in the experimental diabetic group produces a generalized fall in tryptophan uptake in all the brain regions studied, though it does not increase serum and hepatic tryptophan concentrations. These parameters are normalized in insulin-treated diabetic rats. With regard to Na+K+-ATPase, diabetic animals showed a diminished and unchanged activity; whereas, the other two experimental groups showed a gradual decrease and a negative correlation with brain tryptophan uptake.  相似文献   

4.
In rats subjected to 400 revolutions in Noble-Collip drums, hepatic tryptophan pyrrolase activity increases and plasma tryptophan level decreases. After bilateral adrenalectomy, the alterations of plasma tryptophan are even more pronounced and liver tryptophan increases in contrast to tryptophan pyrrolase activity which remains unchanged after injury. The possible significance of the posttraumatic increase of tryptophan pyrrolase in intact animals for brain serotonin metabolism and hepatic gluconeogenesis is underlined. The activity of tyrosine aminotransferase in liver, brain, adrenal, kidney and muscle tissue of rats was determined with special reference to the possible effect of the before-mentioned stress procedure. Organ homogenates were centrifuged at 15000 x g and both supernatants and pellets were investigated for enzyme activity with the exception of the liver, where only the supernatant fraction was used. Tyrosine aminotransferase activity in the liver supernatant considerably exceeded the corresponding values in both supernatant and pellet of the remaining organs, in which a prevalence of the mitochondrial enzyme was obvious. In contrast to the clear-cut increase of the hepatic enzyme during stress, essentially no changes were noted in the brain, the adrenals, kidney or muscle under similar conditions...  相似文献   

5.
Abstract: Quinolinic acid is an excitatory, neurotoxic tryptophan metabolite proposed to play a role in the pathogenesis of hepatic encephalopathy. This involvement was investigated in rat and rabbit models of fulminant hepatic failure at different stages of hepatic encephalopathy. Although plasma and brain tryptophan levels were significantly increased in all stages of hepatic encephalopathy, quinolinic acid levels increased three- to sevenfold only in the plasma, CSF, and brain regions of animals in stage IV hepatic encephalopathy. Plasma-CSF and plasma-brain quinolinic acid levels in rats and rabbits with fulminant hepatic failure were strongly correlated, with CSF and brain concentrations ∼10% those of plasma levels. Moreover, there was no significant regional difference in brain quinolinic acid concentrations in either model. Extrahepatic indoleamine-2,3-dioxygenase activity was not altered in rats in stage IV hepatic encephalopathy, but hepatic l -tryptophan-2,3-dioxygenase activity was increased. These results suggest that quinolinic acid synthesized in the liver enters the plasma and then accumulates in the CNS after crossing a permeabilized blood-brain barrier in the end stages of liver failure. Furthermore, the observation of low brain concentrations of quinolinic acid only in stage IV encephalopathy suggests that the contribution of quinolinic acid to the pathogenesis of hepatic encephalopathy in these animal models is minor.  相似文献   

6.
1. Chronic ethanol administration enhances rat brain 5-hydroxytryptamine synthesis by increasing the availability of circulating tryptophan to the brain. This increased availability is not insulin-mediated or lipolysis-dependent. 2. Under these conditions, tryptophan accumulates in the liver and apo-(tryptophan pyrrolase) activity is completely abolished, but could be restored by administration of regenerators of liver NAD+ and/or NADP+. 3. All four regenerators used (fructose, Methylene Blue, phenazine methosulphate and sodium pyruvate) prevented the ethanol-induced increase in liver tryptophan concentration and the increased availability of tryptophan to the brain. 4. It is suggested that the enhancement of brain tryptophan metabolism by chronic ethanol administration is caused by the decreased hepatic tryptophan pyrrolase activity. The results are briefly discussed in relation to previous work with ethanol. 5. Fructose enhances the conversion of tryptophan into 5-hydroxyindol-3-ylacetic acid in brains of ethanol-treated rats, whereas Methylene Blue inhibits this conversion in both control and ethanol-treated animals.  相似文献   

7.
Abstract: Liver failure, or shunting of intestinal blood around the liver, results in hyperammonemia and cerebral dysfunction. Recently it was shown that ammonia caused some of the metabolic signs of hepatic encephalopathy only after it was metabolized by glutamine synthetase in the brain. In the present study, small doses of methionine sulfoximine, an inhibitor of cerebral glutamine synthetase, were given to rats either at the time of portacaval shunting or 3–4 weeks later. The effects on several characteristic cerebral metabolic abnormalities produced by portacaval shunting were measured 1–3 days after injection of the inhibitor. All untreated portacaval-shunted rats had elevated plasma and brain ammonia concentrations, increased brain glutamine and tryptophan content, decreased brain glucose consumption, and increased permeability of the blood–brain barrier to tryptophan. All treated rats had high ammonia concentrations, but the brain glutamine content was normal, indicating inhibition of glutamine synthesis. One day after shunting and methionine sulfoximine administration, glucose consumption, tryptophan transport, and tryptophan brain content remained near control values. In the 3–4-week-shunted rats, which were studied 1–3 days after methionine sulfoximine administration, the effect was less pronounced. Brain glucose consumption and tryptophan content were partially normalized, but tryptophan transport was unaffected. The results agree with our earlier conclusion that glutamine synthesis is an essential step in the development of cerebral metabolic abnormalities in hyperammonemic states.  相似文献   

8.
Regulation of hepatic tyrosine aminotransferase in genetically obese rats   总被引:1,自引:0,他引:1  
The activities of hepatic tyrosine aminotransferase, tryptophan oxygenase and serine dehydratase were increased in obese rats shortly after weaning. Immunotitration experiments showed that the increase in tyrosine aminotransferase activity resulted from an increase in enzyme protein in obese rats. No increase in hepatic tyrosine aminotransferase was observed in suckling pre-obese rats. The post-weaning increase in hepatic tyrosine aminotransferase of obese rats was only observed during the light phase of the diurnal cycle, but was prevented by pair-feeding and by starvation. Tryptophan increased hepatic tyrosine aminotransferase of lean rats to obese levels but had no effect in obese rats until tyrosine aminotransferase levels were reduced by starvation or adrenalectomy. Adrenalectomy abolished the increase in hepatic tyrosine aminotransferase activity in obese rats although serum corticosterone was normal in these animals. Hepatic and brain tyrosine concentrations were decreased in obese rats but normalized after adrenalectomy. The results suggest that the corticosteroid-dependent increase in food and tryptophan intake may be the primary cause of the increased hepatic amino acid catabolism of obese rats.  相似文献   

9.
This study was designed to investigate the susceptibility of liver and brain tissues, as insulin-independent tissues, of normal adult male rats to the oxidative challenge of subchronic supplementation with chromium picolinate (CrPic) at low (human equivalent) and high doses (2.90 and 13.20 μg Cr kg−1 day−1, respectively). Also, the modulative effect of CrPic administration on the enhanced oxidative stress in the liver and brain tissues of alloxan-diabetic rats was studied. Fasting serum glucose level was not modified in normal rats but significantly reduced in diabetic rats that had received CrPic supplement. A mild oxidative stress was observed in the liver and brain of CrPic-supplemented normal rats confirmed by the dose-dependent reductions in the levels of hepatic and cerebral free fatty acids, superoxide dismutase and glutathione peroxidase activities, and in contrast increased tissue malondialdehyde concentration. On the other hand, hepatic and cerebral catalase activity was reduced in the high dose group only. CrPic supplementation did not act as a peroxisome proliferator confirmed by the significant reductions in liver and brain peroxisomal palmitoyl CoA oxidase activity. The non significant alterations in liver protein/DNA and RNA/DNA ratios indicate that CrPic did not affect protein synthesis per cell, and that mild elevations in hepatic total protein and RNA concentrations might be due to block or decrease in the export rate of synthesized proteins from the liver to the plasma. In diabetic rats, elevated levels of hepatic and cerebral free fatty acids and malondialdehyde, and in contrast the overwhelmed antioxidant enzymes, were significantly modulated in the low dose group and near-normalized in the high dose group. The significant increases observed in liver total protein and RNA concentrations, as well as protein/DNA and RNA/DNA ratios in diabetic rats supplemented with the high dose of Cr, compared to untreated diabetics, may be related to the improvement in the glycemic status of the diabetic animals rather than the direct effect of CrPic on protein anabolism.  相似文献   

10.
Diabetes mellitus and its complications are associated with elevated oxidative stress, leading to much interest in antioxidant compounds as possible therapeutic agents. Two new classes of antioxidant compounds, the pyrrolopyrimidines and the 21-aminosteroids, are known to inhibit lipid peroxidation and other biomolecular oxidation. We hypothesized that in the presence of excess oxidants or the impaired antioxidant defense seen in diabetes mellitus, administration of antioxidants such as these may reverse the effects of diabetes on antioxidant parameters. This study measured the effects of subchronic (14 day) treatment with a pyrrolopyrimidine (PNU-104067F) or a 21-aminosteroid (PNU-74389G) in normal and diabetic Sprague-Dawley rats. Activity levels of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase, concentrations of oxidized and reduced glutathione, and lipid peroxidation were used as measures of antioxidant defense in liver, kidney, heart, and brain tissue. In normal rats, the only effect was a 43% increase in cardiac lipid peroxidation after treatment with PNU-104067F. In diabetic rats, the only reversals of the effects of diabetes were a 30% decrease in hepatic glutathione peroxidase activity after PNU-74389G treatment and a 33% increase in cardiac glutathione disulfide concentration after PNU-104067F treatment. In contrast to these effects, increased cardiac glutathione peroxidase and catalase activities, increased brain glutathione peroxidase activity, increased hepatic lipid peroxidation, decreased hepatic glutathione content, and decreased hepatic catalase activity were seen in diabetic rats, reflecting an exacerbation of the effects of diabetes.  相似文献   

11.
The concentrations of free and total (free plus albumin bound) tryptophan were measured in plasma of blood taken from the portal vein, hepatic vein and abdominal aorta of male rats, fed, and starved for one and three days. Liver and brain tryptophan concentrations were measured in similar groups of rats.On starvation, there was an increase in arterial plasma free tryptophan concentration which took place peripherally and was paralleled by an increase in brain tryptophan. In both the fed and starved rats, the portal vein concentrations of free tryptophan were high and as the blood flowed through the liver they were reduced to relatively low levels not directly related to the arterial values. All these changes were due to alterations in degree of binding of tryptophan to plasma albumin.The measurements of plasma total tryptophan concentrations showed that postabsorptively and during starvation there was a net uptake of tryptophan by the peripheral tissues (which included brain), but no overall fall in plasma concentration. At the same time, there was a net release from the liver, and to a lesser extent from the portal-drained tissues. The released tryptophan largely entered the albumin bound plasma pool. Accompanying the hepatic output was a fall in tryptophan concentration in the liver which was apparently caused by altered cell membrane transport.The results suggest (1) that the liver protects the brain from the high free tryptophan level in portal blood, (2) that the availability of tryptophan to the brain is maintained postabsorptively and during starvation by hepatic output into the albumin bound pool and (3) that this release of tryptophan from the liver and the fall in intracellular tryptophan concentration are initiated by altered membrane transport. The pattern of changes is consistent with a role for tryptophan in the mediation of changes in liver protein synthesis and gluconeogenesis and cerebral serotonin turnover on starvation.  相似文献   

12.
Effects of the intraperitoneal injection of quercetin in streptozocin-induced diabetic and normal rats were investigated and compared. Although quercetin had no effect on plasma glucose level of normal animals, it significantly and dose-dependently decreased the plasma glucose level of streptozocin-induced diabetic rats. Glucose tolerance tests of the diabetic animals approached those of normal rats, their plasma cholesterol and triglycerides were reduced significantly, while their hepatic glucokinase activity was significantly increased upon quercetin treatment. In normal rats, quercetin did not affect the glucose tolerance test, but resulted in an increase of plasma cholesterol and triglycerides and a decrease in hepatic glucokinase activity. No significant pathologic changes were noted in hepatocytes or kidney tubules and glomeruli, while the number of pancreatic islets significantly increased in both treated normal and diabetic groups. It is concluded that quercetin, a flavonoid with antioxidant properties brings about the regeneration of the pancreatic islets and probably increases insulin release in streptozocin-induced diabetic rats; thus exerting its beneficial antidiabetic effects. However, it may be of little value in normoglycemic animals.  相似文献   

13.
The brain concentration of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) increased in rats maintained on restricted volume of low-protein or normal-protein diet, whereas these two agents decreased in rats fed low-protein diet ad libitum. In these two food-restricted groups brain 5-HT and 5-HIAA concentrations were not correlated with brain tryptophan hydroxylase activity, but the concentrations correlated closely with cerebral tryptophan concentrations. The cerebral tryptophan concentration in the two food-restricted groups was not consistent with the total or free tryptophan concentration in plasma. In these restricted rats cerebral tryptophan concentration was elevated, and, unlike the plasma tryptophan, it showed no diurnal variation. These results suggested that tryptophan uptake into the brain from plasma was enhanced by limiting food volume intake. Tryptophan uptake was increased by glucagon injection without changing the plasma tryptophan level, but injection of hydrocortisone or insulin had little or no effect on tryptophan concentration in either the plasma or brain.d-Glucose injection elevated plasma tryptophan concentration but decreased brain tryptophan concentration.  相似文献   

14.
《Biotechnic & histochemistry》2013,88(3-4):194-201
Abstract

Diabetes and insulin resistance frequently cause liver damage. Diabetes also causes reduction in liver and blood IGF-1 levels. We investigated the relation between liver damage and IGF-1 levels in diabetic rats. Fourteen Wistar albino rats were divided into control and diabetic groups. Diabetes was induced by streptozotocin. Rats were sacrificed for biochemical and histologic examinations 2 weeks after streptozotocin injection. Serum and liver IGF-1 levels were decreased, liver malondialdehyde (MDA) levels were increased, glutathione peroxidase (GPx) enzymes activities were decreased and serum alanine aminotransferase (ALT) levels were increased in diabetic group. Microscopic examination of liver revealed that normal tissue organization was disrupted in streptozotocin-induced diabetic rats. There was a strongly positive correlation between blood glucose levels and liver injury, and blood and liver IGF-1 levels. There was a strongly negative correlation between blood IGF-1 levels and hepatic injury. Our results suggest that reduction of blood IGF-1 levels correlates with hepatic injury and circulating IGF-1 levels may have predictive value for determining hepatic damage that results from diabetes. In addition, circulating IGF-1 levels are correlated with glutathione levels and the oxidative stress status of diabetic rat liver.  相似文献   

15.
Rats fed a galactose-rich diet have been used for several years as a model for diabetes to study, particularly in the eye, the effects of excess blood hexoses. This study sought to determine the utility of galactosemia as a model for oxidative stress in extraocular tissues by examining biomarkers of oxidative stress in galactose-fed rats and experimentally-induced diabetic rats. Sprague-Dawley rats were divided into four groups: experimental control; streptozotocin-induced diabetic; insulin-treated diabetic; and galactose-fed. The rats were maintained on these regimens for 30 days, at which point the activities of catalase, glutathione peroxidase, glutathione reductase, and superoxide dismutase, as well as levels of lipid peroxidation and reduced and oxidized glutathione were determined in heart, liver, and kidney. This study indicates that while there are some similarities between galactosemic and diabetic rats in these measured indices of oxidative stress (hepatic catalase activity levels and hepatic and renal levels of oxidized glutathione in both diabetic and galactosemic rats were significantly decreased when compared to normal), overall the galactosemic rat model is not closely parallel to the diabetic rat model in extra-ocular tissues. In addition, several effects of diabetes (increased hepatic glutathione peroxidase activity, increased superoxide dismutase activity in kidney and heart, decreased renal and increased cardiac catalase activity) were not mimicked in galactosemic rats, and glutathione concentration in both liver and heart was affected in opposite ways in diabetic rats and galactose- fed rats. Insulin treatment reversed/prevented the activity changes in renal and cardiac superoxide dismutase, renal and cardiac catalase, and hepatic glutathione peroxidase as well as the hepatic changes in lipid peroxidation and reduced and oxidized glutathione, and the increase in cardiac glutathione. Thus, prudence should be exercised in the use of experimentally galactosemic rats as a model for diabetes until the correspondence of the models has been more fully characterized.  相似文献   

16.
Because some complications of diabetes mellitus may result from oxidative damage, we investigated the effects of subacute treatment (10mg/kg/day, intraperitoneal [ip], for 14 days) with the antioxidant isoeugenol on the oxidant defense system in normal and 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione content, and activities of the free radical-detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Treatment with isoeugenol reversed diabetic effects on hepatic glutathione peroxidase activity and on oxidized glutathione concentration in brain. Treatment with the lipophilic compound isoeugenol also decreased lipid peroxidation in both liver and heart of normal animals and decreased hepatic oxidized glutathione content in both normal and diabetic rats. Some effects of isoeugenol treatment, such as decreased activity of hepatic superoxide dismutase and glutathione reductase in diabetic rats, were unrelated to the oxidative effects of diabetes. In heart of diabetic animals, isoeugenol treatment resulted in an exacerbation of already elevated activities of catalase. These results indicate that isoeugenol therapy may not reverse diabetic oxidative stress in an overall sense.  相似文献   

17.
1. The metabolism of L-tryptophan by liver cells prepared from fed normal, adrenalectomized and streptozotocin-diabetic rats was studied. 2. At physiological concentrations (0.1 mM), the rate of oxidation of tryptophan by tryptophan 2,3-dioxygenase was 3-fold greater in liver cells from diabetic rats than in those from fed rats. In liver cells from diabetic rats, oxidation of tryptophan to CO2 and metabolites of the glutarate pathway was increased 7-fold. Quinolinate synthesis was decreased by 50%. These findings are consistent with an increase in picolinate carboxylase activity. 3. Rates of metabolism of 0.1 mM-tryptophan by hepatocytes from fed and adrenalectomized rats were similar. 4. In all three types of cell preparation, fluxes through tryptophan 2,3-dioxygenase with 2.5 mM-tryptophan were 7-fold greater than those obtained with 0.1 mM-tryptophan. Tryptophan 2,3-dioxygenase and kynureninase fluxes in hepatocytes from fed and adrenalectomized rats were comparable, whereas those in liver cells from diabetic rats were increased 2.5-fold and 3.3-fold respectively. Picolinate carboxylase activities of liver cells from diabetic rats were 15-fold greater than those of cells from fed rats, but rates of quinolinate synthesis were unchanged. 5. It is concluded that: (i) adrenal corticosteroids are not required for the maintenance of basal activities of the kynurenine pathway, whereas (ii) chronic insulin deficiency produces changes in both the rate of oxidation and metabolic fate of tryptophan carbon.  相似文献   

18.
Effects of maternal ethanol consumption were investigated on the rates of protein synthehsis by livers of foetal and neonatal rats both in vivo and in vitro, and on the activities of enzymes involved in protein synthesis and degradation. The rates of general protein synthesis by ribosomes in vitro studied by measuring the incorporation of [14C]leucine into ribosomal protein showed that maternal ethanol consumption resulted in an inhibition of the rates of protein synthesis by both foetal and neonatal livers from the ethanol-fed group. The rates of incorporation of intravenously injected [14C]leucine into hepatic proteins were also significantly lower in the foetal, neonatal and adult livers from the ethanol-fed group. Incubation of adult-rat liver slices with ethanol resulted in an inhibition of the incorporation of [14C]leucine into hepatic proteins; however, this effect was not observed in the foetal liver slices. This effect of externally added ethanol was at least partially prevented by the addition of pyrazole to the adult liver slices. Pyrazole addition to foetal liver slices was without significant effect on the rates of protein synthesis. Cross-mixing experiments showed that the capacity of both hepatic ribosomes and pH5 enzyme fractions to synthesize proteins was decreased in the foetal liver from the ethanol-fed group. Maternal ethanol consumption resulted in a decrease in hepatic total RNA content, RNA/DNA ratio and ribosomal protein content in the foetal liver. Foetal hepatic DNA content was not significantly affected. Ethanol consumption resulted in a significant decrease in proteolytic activity and the activity of tryptophan oxygenase in the foetal, neonatal and adult livers. It is possible that the mechanisms of inhibition of protein synthesis observed here in the foetal liver after maternal ethanol consumption may be responsible for at least some of the changes observed in 'foetal alcohol syndrome'.  相似文献   

19.
This study was designed to examine whether the training-induced improvement in the plasma concentration of ketone bodies in experimental diabetes mellitus could be explained by changes in the activity of the hepatic ketone body synthesis pathway and/or the plasma free fatty acid levels. Diabetes mellitus was induced by an intravenous injection of streptozotocin (50 mg/kg), and training was carried out on a treadmill. The plasma concentration of beta-hydroxybutyric acid was increased (P < 0.001) in sedentary diabetic rats, and this was partly reversed by training (P < 0.001). The plasma concentration of free fatty acids was increased (P < 0.001) in sedentary diabetic rats, and this was reversed to normal by training (P < 0.001). Diabetes was also associated with an increased activity of the hepatic ketone body synthesis pathway. When the data are expressed as per total liver, physical training decreased the activity of the hepatic ketone body synthesis pathway by 18% in nondiabetic rats (P < 0.05) and by 22% in diabetic rats (P < 0.01), the activity present in trained diabetic rats being not statistically different from that of sedentary control rats. These data suggest that the beneficial effects of physical training on the plasma beta-hydroxybutyric acid levels in the diabetic state are probably explained in part by a decrease in the activity of the hepatic ketone body synthesis pathway and in part by a decrease in plasma free fatty acid levels.  相似文献   

20.
Carbamoyl-phosphate synthetase II (glutamine-hydrolyzing) (EC 6.3.5.5) (synthetase II), is the first and rate-limiting enzyme in the de novo UMP biosynthetic pathway. The present investigation showed that insulin has a regulatory action on hepatic synthetase II activity. When diabetes was induced with injection of different doses of alloxan the plasma insulin concentrations decreased in a dose-dependent fashion to 72, 38, 31 and 28% and concurrently the liver synthetase II activity decreased to 75, 43, 29 and 22% of the normal values. In diabetic rats dose response studies showed that with insulin injections of 4, 6, 8 or 10 U/day for 48 h the hepatic synthetase II activity increased to 81, 95, 99 and 103% of the control liver values. In the diabetic rats the insulin-induced rise in liver synthetase II activity was prevented by treatment of the rats with actinomycin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号