首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Genome-wide association studies (GWAS) have identified over 70 loci associated with type 2 diabetes (T2D). Most genetic variants associated with T2D are common variants with modest effects on T2D and are shared with major ancestry groups. To what extent the genetic component of T2D can be explained by common variants relies upon the shape of the genetic architecture of T2D. Fine mapping utilizing populations with different patterns of linkage disequilibrium and functional annotation derived from experiments in relevant tissues are mandatory to track down causal variants responsible for the pathogenesis of T2D.  相似文献   

3.

Type 2 diabetes (T2D) and its secondary complications result from the complex interplay of genetic and environmental factors. To understand the role of these factors on disease susceptibility, the present study was conducted to assess the association of eNOS and MCP-1 variants with T2D and diabetic nephropathy (DN) in two ethnically and geographically different cohorts from North India. A total of 1313 subjects from two cohorts were genotyped for eNOS (rs2070744, rs869109213 and rs1799983) and MCP-1 (rs1024611 and rs3917887) variants. Cohort-I (Punjab) comprised 461 T2D cases (204 T2D with DN and 257 T2D without DN) and 315 healthy controls. Cohort-II (Jammu and Kashmir) included 337 T2D (150 T2D with DN and 187 T2D without DN) and 200 controls. Allele, genotype and haplotype frequencies were compared among the studied participants, and phenotype–genotype interactions were determined. Meta-analysis was performed to investigate the association between the selected variants and disease susceptibility. All three eNOS variants were associated with 1.5–4.0-fold risk of DN in both cohorts. MCP-1 rs1024611 conferred twofold risk towards DN progression in cohort-II, while rs3917887 provided twofold risk for both T2D and DN in both cohorts. eNOS and MCP-1 haplotypes conferred risk for T2D and DN susceptibility. Phenotype–genotype interactions showed significant associations between the studied variants and anthropometric and biochemical parameters. In meta-analysis, all eNOS variants conferred risk towards DN progression, whereas no significant association was observed for MCP-1 rs1024611. We show evidences for an association of eNOS and MCP-1 variants with T2D and DN susceptibility.

  相似文献   

4.
The repurposing of biomedical data is inhibited by its fragmented and multi-formatted nature that requires redundant investment of time and resources by data scientists. This is particularly true for Type 1 Diabetes (T1D), one of the most intensely studied common childhood diseases. Intense investigation of the contribution of pancreatic β-islet and T-lymphocytes in T1D has been made. However, genetic contributions from B-lymphocytes, which are known to play a role in a subset of T1D patients, remain relatively understudied. We have addressed this issue through the creation of Biomedical Data Commons (BMDC), a knowledge graph that integrates data from multiple sources into a single queryable format. This increases the speed of analysis by multiple orders of magnitude. We develop a pipeline using B-lymphocyte multi-dimensional epigenome and connectome data and deploy BMDC to assess genetic variants in the context of Type 1 Diabetes (T1D). Pipeline-identified variants are primarily common, non-coding, poorly conserved, and are of unknown clinical significance. While variants and their chromatin connectivity are cell-type specific, they are associated with well-studied disease genes in T-lymphocytes. Candidates include established variants in the HLA-DQB1 and HLA-DRB1 and IL2RA loci that have previously been demonstrated to protect against T1D in humans and mice providing validation for this method. Others are included in the well-established T1D GRS2 genetic risk scoring method. More intriguingly, other prioritized variants are completely novel and form the basis for future mechanistic and clinical validation studies The BMDC community-based platform can be expanded and repurposed to increase the accessibility, reproducibility, and productivity of biomedical information for diverse applications including the prioritization of cell type-specific disease alleles from complex phenotypes.  相似文献   

5.
Multiple sclerosis (MS) and type 1 diabetes (T1D) are organ-specific autoimmune disorders with significant heritability, part of which is conferred by shared alleles. For decades, the Human Leukocyte Antigen (HLA) complex was the only known susceptibility locus for both T1D and MS, but loci outside the HLA complex harboring risk alleles have been discovered and fully replicated. A genome-wide association scan for MS risk genes and candidate gene association studies have previously described the IL2RA gene region as a shared autoimmune locus. In order to investigate whether autoimmunity risk at IL2RA was due to distinct or shared alleles, we performed a genetic association study of three IL2RA variants in a DNA collection of up to 9,407 healthy controls, 2,420 MS, and 6,425 T1D subjects as well as 1,303 MS parent/child trios. Here, we report “allelic heterogeneity” at the IL2RA region between MS and T1D. We observe an allele associated with susceptibility to one disease and risk to the other, an allele that confers susceptibility to both diseases, and an allele that may only confer susceptibility to T1D. In addition, we tested the levels of soluble interleukin-2 receptor (sIL-2RA) in the serum from up to 69 healthy control subjects, 285 MS, and 1,317 T1D subjects. We demonstrate that multiple variants independently correlate with sIL-2RA levels.  相似文献   

6.
Development of autoreactive CD4 T cells contributing to type 1 diabetes (T1D) in both humans and nonobese diabetic (NOD) mice is either promoted or dominantly inhibited by particular MHC class II variants. In addition, it is now clear that when co-expressed with other susceptibility genes, some common MHC class I variants aberrantly mediate autoreactive CD8 T cell responses also essential to T1D development. However, it was unknown whether the development of diabetogenic CD8 T cells could also be dominantly inhibited by particular MHC variants. We addressed this issue by crossing NOD mice transgenically expressing the TCR from the diabetogenic CD8 T cell clone AI4 with NOD stocks congenic for MHC haplotypes that dominantly inhibit T1D. High numbers of functional AI4 T cells only developed in controls homozygously expressing NOD-derived H2(g7) molecules. In contrast, heterozygous expression of some MHC haplotypes conferring T1D resistance anergized AI4 T cells through decreased TCR (H2(b)) or CD8 expression (H2(q)). Most interestingly, while AI4 T cells exert a class I-restricted effector function, H2(nb1) MHC class II molecules can contribute to their negative selection. These findings provide insights to how particular MHC class I and class II variants interactively regulate the development of diabetogenic T cells and the TCR promiscuity of such autoreactive effectors.  相似文献   

7.
Diabetes mellitus is an incurable progressive disease, characterized by elevated blood glucose levels, which lead to the development of micro- and macrovascular complications. Although the etiopathology of the disease remains unclear, it seems to be multifactorial, with an important interaction between genetics and environmental causes. Currently, the genetics of type 2 diabetes (T2D) is poorly understood. The recent advance of the genetic technologies and with a better understanding of genetics, more than 120 distinct genetic loci, with more than 150 variants, have been identified that may be involved in the pathogenesis of T2D. However, as these variants can account for only approximately 20% of the heritability of T2D, there is an obvious need for additional approaches to identify susceptibility genes or genetic mechanisms involved in the development of this disease. There is a growing number of genes found to be related to T2D; however, their individual impact on the pathogenesis of the disease appears to be low, while silencing of protective genes may also contribute to the development of this disease. The present review attempts to summarize our current knowledge in the field of genetics of T2D, highlighting the possible practical applications for each approach.  相似文献   

8.

Background

There is considerable interest in the hypothesis that low frequency, intermediate penetrance variants contribute to the proportion of Type 2 Diabetes (T2D) susceptibility not attributable to the common variants uncovered through genome-wide association approaches. Genes previously implicated in monogenic and multifactorial forms of diabetes are obvious candidates in this respect. In this study, we focussed on exons 8–10 of the HNF1A gene since rare, penetrant mutations in these exons (which are only transcribed in selected HNF1A isoforms) are associated with a later age of diagnosis of Maturity onset diabetes of the young (MODY) than mutations in exons 1–7. The age of diagnosis in the subgroup of HNF1A-MODY individuals with exon 8–10 mutations overlaps with that of early multifactorial T2D, and we set out to test the hypothesis that these exons might also harbour low-frequency coding variants of intermediate penetrance that contribute to risk of multifactorial T2D.

Methodology and Principal Findings

We performed targeted capillary resequencing of HNF1A exons 8–10 in 591 European T2D subjects enriched for genetic aetiology on the basis of an early age of diagnosis (≤45 years) and/or family history of T2D (≥1 affected sibling). PCR products were sequenced and compared to the published HNF1A sequence. We identified several variants (rs735396 [IVS9−24T>C], rs1169304 [IVS8+29T>C], c.1768+44C>T [IVS9+44C>T] and rs61953349 [c.1545G>A, p.T515T] but no novel non-synonymous coding variants were detected.

Conclusions and Significance

We conclude that low frequency, nonsynonymous coding variants in the terminal exons of HNF1A are unlikely to contribute to T2D-susceptibility in European samples. Nevertheless, the rationale for seeking low-frequency causal variants in genes known to contain rare, penetrant mutations remains strong and should motivate efforts to screen other genes in a similar fashion.  相似文献   

9.
10.
DNA variants underlying the inheritance of risk for common diseases are expected to have a wide range of population allele frequencies. The detection and scoring of the rare alleles (at frequencies of <0.01) presents significant practical problems, including the requirement for large sample sizes and the limitations inherent in current methodologies for allele discrimination. In the present report, we have applied mutational spectrometry based on constant denaturing capillary electrophoresis (CDCE) to DNA pools from large populations in order to improve the prospects of testing the role of rare variants in common diseases on a large scale. We conducted a pilot study of the cytotoxic T lymphocyte-associated antigen-4 gene (CTLA4) in type 1 diabetes (T1D). A total of 1228 bp, comprising 98% of the CTLA4 coding sequence, all adjacent intronic mRNA splice sites, and a 3′ UTR sequence were scanned for unknown point mutations in pools of genomic DNA from a control population of 10,464 young American adults and two T1D populations, one American (1799 individuals) and one from the United Kingdom (2102 individuals). The data suggest that it is unlikely that rare variants in the scanned regions of CTLA4 represent a significant proportion of T1D risk and illustrate that CDCE-based mutational spectrometry of DNA pools offers a feasible and cost-effective means of testing the role of rare variants in susceptibility to common diseases.  相似文献   

11.
The "thrifty genotype" hypothesis proposes that the high prevalence of type 2 diabetes (T2D) in Native Americans and admixed Latin Americans has a genetic basis and reflects an evolutionary adaptation to a past low calorie/high exercise lifestyle. However, identification of the gene variants underpinning this hypothesis remains elusive. Here we assessed the role of Native American ancestry, socioeconomic status (SES) and 21 candidate gene loci in susceptibility to T2D in a sample of 876 T2D cases and 399 controls from Antioquia (Colombia). Although mean Native American ancestry is significantly higher in T2D cases than in controls (32% v 29%), this difference is confounded by the correlation of ancestry with SES, which is a stronger predictor of disease status. Nominally significant association (P<0.05) was observed for markers in: TCF7L2, RBMS1, CDKAL1, ZNF239, KCNQ1 and TCF1 and a significant bias (P<0.05) towards OR>1 was observed for markers selected from previous T2D genome-wide association studies, consistent with a role for Old World variants in susceptibility to T2D in Latin Americans. No association was found to the only known Native American-specific gene variant previously associated with T2D in a Mexican sample (rs9282541 in ABCA1). An admixture mapping scan with 1,536 ancestry informative markers (AIMs) did not identify genome regions with significant deviation of ancestry in Antioquia. Exclusion analysis indicates that this scan rules out ~95% of the genome as harboring loci with ancestry risk ratios >1.22 (at P < 0.05).  相似文献   

12.
BRCA1 and BRCA2 are the most well-known breast cancer susceptibility genes. Additional genes involved in DNA repair have been identified as predisposing to breast cancer. One such gene, RAD51C, is essential for homologous recombination repair. Several likely pathogenic RAD51C mutations have been identified in BRCA1- and BRCA2-negative breast and ovarian cancer families. We performed complete sequencing of RAD51C in germline DNA of 286 female breast and/or ovarian cancer cases with a family history of breast and ovarian cancers, who had previously tested negative for mutations in BRCA1 and BRCA2. We screened 133 breast cancer cases, 119 ovarian cancer cases, and 34 with both breast and ovarian cancers. Fifteen DNA sequence variants were identified; including four intronic, one 5' UTR, one promoter, three synonymous, and six non-synonymous variants. None were truncating. The in-silico SIFT and Polyphen programs were used to predict possible pathogenicity of the six non-synonomous variants based on sequence conservation. G153D and T287A were predicted to be likely pathogenic. Two additional variants, A126T and R214C alter amino acids in important domains of the protein such that they could be pathogenic. Two-hybrid screening and immunoblot analyses were performed to assess the functionality of these four non-synonomous variants in yeast. The RAD51C-G153D protein displayed no detectable interaction with either XRCC3 or RAD51B, and RAD51C-R214C displayed significantly decreased interaction with both XRCC3 and RAD51B (p<0.001). Immunoblots of RAD51C-Gal4 activation domain fusion peptides showed protein levels of RAD51C-G153D and RAD51C-R214C that were 50% and 60% of the wild-type, respectively. Based on these data, the RAD51C-G153D variant is likely to be pathogenic, while the RAD51C- R214C variant is hypomorphic of uncertain pathogenicity. These results provide further support that RAD51C is a rare breast and ovarian cancer susceptibility gene.  相似文献   

13.
Mitochondrial dysfunction has been observed in skeletal muscle of people with diabetes and insulin-resistant individuals. Furthermore, inherited mutations in mitochondrial DNA can cause a rare form of diabetes. However, it is unclear whether mitochondrial dysfunction is a primary cause of the common form of diabetes. To date, common genetic variants robustly associated with type 2 diabetes (T2D) are not known to affect mitochondrial function. One possibility is that multiple mitochondrial genes contain modest genetic effects that collectively influence T2D risk. To test this hypothesis we developed a method named Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA; http://www.broadinstitute.org/mpg/magenta). MAGENTA, in analogy to Gene Set Enrichment Analysis, tests whether sets of functionally related genes are enriched for associations with a polygenic disease or trait. MAGENTA was specifically designed to exploit the statistical power of large genome-wide association (GWA) study meta-analyses whose individual genotypes are not available. This is achieved by combining variant association p-values into gene scores and then correcting for confounders, such as gene size, variant number, and linkage disequilibrium properties. Using simulations, we determined the range of parameters for which MAGENTA can detect associations likely missed by single-marker analysis. We verified MAGENTA''s performance on empirical data by identifying known relevant pathways in lipid and lipoprotein GWA meta-analyses. We then tested our mitochondrial hypothesis by applying MAGENTA to three gene sets: nuclear regulators of mitochondrial genes, oxidative phosphorylation genes, and ∼1,000 nuclear-encoded mitochondrial genes. The analysis was performed using the most recent T2D GWA meta-analysis of 47,117 people and meta-analyses of seven diabetes-related glycemic traits (up to 46,186 non-diabetic individuals). This well-powered analysis found no significant enrichment of associations to T2D or any of the glycemic traits in any of the gene sets tested. These results suggest that common variants affecting nuclear-encoded mitochondrial genes have at most a small genetic contribution to T2D susceptibility.  相似文献   

14.
the sequence of the low activity form of equine erythrocyte carbonic anhydrase has been determined. The most common electrophoretic form, designated D, has been found to have five substitutions. Amino acid exchanges in the electrophoretic variants known as A1, A2, B, and T have been found at six other positions. The data do not permit calculation of the number of polymorphic forms of this enzyme. The equine D isozyme and the analogous human enzyme are quite homologous, 211 of their 260 residues, or 81%, being identical.  相似文献   

15.
Recent large-scale genetic studies have provided robust evidence implicating several novel susceptibility genes for schizophrenia. These include ZNF804A, TCF4 and NRGN, which contain common variants that weakly increase schizophrenia susceptibility, and NRXN1, in which rare copy number variants have a greater impact on schizophrenia risk. Investigation of these and other substantiated susceptibility genes are providing valuable insight into the primary neurobiological mechanisms underlying schizophrenia, which may lead to novel therapeutic interventions for the disorder. In the meantime, several novel pharmacological strategies, including activation of mGluRs, elevation of synaptic glycine and inhibition of phosphodiesterase 10A, have recently shown promise for the treatment of schizophrenia in clinical trials.  相似文献   

16.
Mitochondrial DNA (mtDNA) is known for its high frequencies of polymorphisms and mutations. The non-coding displacement (D)-loop, especially a mononucleotide repeat (poly-C) between 303 and 315 nucleotides (D310), has been recently identified as a frequent hotspot of mutations in human neoplasia, including breast cancer. To further explore the sequence variations of mitochondrial D-loop region in familial breast cancer and their possible associations with breast cancer risk, PCR-SSCP and direct DNA sequencing methods were used to detect the variants of the mtDNA D-Loop in 23 familial breast cancer patients as well as three high-risk cancer families. Compared to that in sporadic breast tumors (53.3%, 16/30) and healthy blood donors (6.7%, 2/30), we identified a total of 126 sequence alterations in 23/23 (100%) of familial breast cancer patients, including eight novel nucleotide variants. Among these changes, A to G at nt.263, T to C at nt.489, T to C at nt.310, TC insertion at nt.311, CA deletion at nt.522, and C to G at nt.527 were highly frequent ones. In addition, among three high-risk cancer families, we found that individuals affected with breast cancer harbored more mtDNA sequence variants in mtDNA D310 area than other affected family members. Together, our data indicate that sequence variants within the mtDNA D-Loop region are frequent events in Chinese familial breast cancer patients. Some of these nucleotide abnormalities, particularly those in D310 segment, might be involved in the breast carcinogenesis and could be included in a panel of molecular biomarkers for cancer susceptibility early-detection strategy.  相似文献   

17.

Background  

Genome-wide association studies have been successful in finding common variants influencing common traits. However, these associations only account for a fraction of trait heritability. There has been a shift in the field towards studying low frequency and rare variants, which are now widely recognised as putative complex trait determinants. Despite this increasing focus on examining the role of low frequency and rare variants in complex disease susceptibility, there is a lack of user-friendly analytical packages implementing powerful association tests for the analysis of rare variants.  相似文献   

18.
Starting with early crucial discoveries of the role of the major histocompatibility complex, genetic studies have long had a role in understanding the biology of type 1 diabetes (T1D), which is one of the most heritable common diseases. Recent genome-wide association studies (GWASs) have given us a clearer picture of the allelic architecture of genetic susceptibility to T1D. Fine mapping and functional studies are gradually revealing the complex mechanisms whereby immune self-tolerance is lost, involving multiple aspects of adaptive immunity. The triggering of these events by dysregulation of the innate immune system has also been implicated by genetic evidence. Finally, genetic prediction of T1D risk is showing promise of use for preventive strategies.  相似文献   

19.
The appreciation that individual susceptibility to type 2 diabetes (T2D) and related components of the dysmetabolic syndrome has a strong inherited component provides a coherent framework within which to develop a molecular understanding of the pathogenesis of T2D. This review focuses on the main approaches currently adopted by researchers seeking to identify the inherited basis of T2D and the present state of our knowledge. One central theme that emerges is that progress in defining the genetic basis of the common, multifactorial forms of T2D is hindered by etiological heterogeneity: T2D is likely to represent the final common pathway of diverse interacting primary disturbances. Such heterogeneity equally compromises efforts to understand the basis for T2D by use of other approaches, such as cellular biochemistry and classical physiology. Analyses that seek to ally sophisticated physiological characterization with measures of genomic variation are likely to provide powerful tools for redressing the loss of power associated with such heterogeneity.  相似文献   

20.
Variations in the FTO gene and near the TMEM18 gene are risk factors for common form of obesity, but have also been linked with type 2 diabetes (T2D). Our aim was to investigate the contribution of these variants to risk of T2D in a population in Latvia. Four single nucleotide polymorphisms (SNP) in the first and fourth intronic regions of FTO and one close to TMEM18 were genotyped in 987 patients with T2D and 1080 controls selected from the Latvian Genome Data Base (LGDB). We confirmed association of SNPs in the first intron (rs11642015, rs62048402 and rs9939609) of FTO and rs7561317 representing the TMEM18 locus with T2D. Association between SNP in FTO and T2D remained significant after correction for body mass index (BMI). The rs57103849 located in the fourth intron of FTO and rs7561317 in TMEM18 showed BMI independent association with younger age at diagnosis of T2D. Our results add to the evidence that BMI related variants in and near FTO and TMEM18 may increase the risk for T2D not only through secondary effects of obesity. The influence of variants in the fourth intron of the FTO gene on development of T2D may be mediated by mechanisms other than those manifested by SNPs in the first intron of the same gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号