首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the action of cholera toxin on the intracellular ionized calcium [Ca2+]i increase induced by anti-CD2 and anti-CD3 monoclonal antibodies in the leukemic human T-cell line Jurkat. Cholera toxin inhibits in a dose-dependent manner these two pathways of human T-lymphocyte activation but with different half maximal inhibition doses (75 ng/ml for CD3, 30 ng/ml for CD2). This effect cannot be accounted for only by the increase in cAMP induced by cholera toxin because forskolin, which raises cellular cyclic adenosine monophosphate (cAMP) to the same levels, induced only a small inhibition of the [Ca2+]i increase in similar conditions. Cholera toxin induced a decrease in the surface expression of the CD3 molecule, suggesting a down-regulation of the CD3 molecules. On the other hand, the expression of CD2 remained unchanged. Cell surface disappearance of the CD3 molecule cannot account for all the inhibitory effects of cholera toxin because CD2 molecule expression was not affected (no modifications in the half maximal binding of anti-CD2 monoclonal antibodies). All together, these results suggest that cholera toxin acts on substrates, possibly G proteins, that could regulate the [Ca2+]i increase induced by anti-CD2 and anti-CD3 mAbs in Jurkat cells. In addition, the present study demonstrated that the rise in cellular cAMP partially inhibits the [Ca2+]i increase induced by anti-CD2 and anti-CD3 mAbs.  相似文献   

2.
CD5 antibodies increase intracellular ionized calcium concentration in T cells   总被引:11,自引:0,他引:11  
The binding of a variety of monoclonal antibodies to the CD5 (T, gp67) pan T cell differentiation antigen has been shown to potentiate T cell proliferation. In this paper we show that CD5 monoclonal antibodies cause increased intracellular free calcium concentration ([Ca2+]i) in T cells. An increase in [Ca2+]i occurred within 1 min in indo-1-loaded PBMC after the addition of CD5 monoclonal antibodies and cross-linking with a second step anti-mouse kappa light chain antibody. Cross-linking of CD5 was effective when done directly on the cell surface or by the administration of preformed soluble complexes that contained CD5 antibodies. Calcium mobilization induced by suboptimal concentrations of CD3 antibodies was specifically augmented and sustained by CD5 antibodies, although the enhancement was modest in magnitude. When cell surface phenotype was correlated with calcium mobilization, it was found that the CD5 response was restricted to CD5+/CD3+ cells, and that approximately 90% of CD5+ cells had responded. CD5-induced calcium mobilization was found to differ from CD3 stimulation in that EGTA entirely ablated the CD5 response, whereas the CD3 response was resistant to EGTA, indicating that the CD5-induced increased [Ca2+]i is derived primarily or entirely from extracellular calcium. CD5-stimulated calcium mobilization also differed from CD3 in that the CD5 response was inhibited by pretreatment with phorbol myristate acetate, whereas the CD3 response was not, suggesting that depletion of protein kinase C causes an uncoupling of signal transduction between CD5 and calcium channels. Finally, experiments were done with T cells after antigenic modulation of the CD3 or CD5 molecules. Unexpectedly, both the CD5 and the CD3 responses were ablated on CD3-modulated cells, whereas only the CD5 response was ablated on CD5-modulated cells. In addition, several Cd5+/CD3- T cell leukemia lines also failed to respond to CD5 stimulation, providing further evidence which indicates that the CD5 response depends on the cell surface expression of CD3 or a CD3-associated structure. These findings suggest that one mechanism for CD5-induced augmentation of mitogen-stimulated T cell proliferation involves increased [Ca2+]i which is distinct from but interdependent with that induced by stimulation of the CD3 molecule.  相似文献   

3.
The influence of aging on T-cell activation and proliferation was examined in lymphocytes derived from peripheral blood, spleen, and lymph nodes of WBB6F1 C57B1/6J x WB/Re) mice. Following activation with anti-CD3 monoclonal antibodies, the greatest age-related changes were seen in CD4+ cells derived from spleens of 27- to 30-month-old mice. These CD4+ lymphocytes showed reduced [Ca2+]i signaling and decreased proliferation in the presence of exogenous interleukin 2. CD8+ cells from spleens of old animals showed reduced [Ca2+]i but not altered proliferation. Both CD4+ and CD8+ cells derived from peripheral blood of old mice showed decreased peak [Ca2+]i, but no defect in cell proliferation. In contrast, age-related deficits in either [Ca2+]i or proliferation were not observed in CD4+ and CD8+ cells from lymph nodes. Additionally, the percentage of CD4+ cells was decreased in all lymphoid organs from old mice, while the percentage of CD8+ cells was similar in lymphoid organs of old and young mice. Old mice had a significant increase in expression of Pgp-1 in CD4+ cells from spleen and peripheral blood and CD8+ cells derived from lymph node. Our studies indicate that there are differential effects of aging in T lymphocytes derived from different lymphoid organs in mice. Among the cell sources and subsets examined, the age-related changes noted in CD4+ cells from mouse peripheral blood were the most similar to those previously observed in the corresponding peripheral blood lymphocyte subset in humans.  相似文献   

4.
This study reports early B and T cell signaling events during cognate interactions between a human B cell line pulsed with peptide and an Ag-specific T cell clone. As has been previously reported, peptide in the context of the appropriate class II molecule stimulated a rise in intracellular calcium [Ca2+]i in the Ag-specific T cell clone. The activation of the T cell clone was associated with a reciprocal rise in [Ca2+]i in the B cells. Engagement of receptors on the B cell surface by the T cell also was associated with inositol phospholipid turnover comparable to that elicited by stimulation through sIg. Early signaling events in B cells can therefore be stimulated in cognate interactions with Ag-specific T cells, without the direct engagement of Ig receptors. A class II deficient B lymphoblastoid mutant, 6.1.6, which was incapable of presenting peptide to the T cell clone, could be stimulated to produce a rise in [Ca2+]i if the T cell clone was activated by monoclonal antibodies to CD3. Therefore, the interaction of class II molecules on the B cell with the TCR and/or the CD4 accessory molecule was not essential for T-dependent B cell activation. However, T-dependent signalling of B cells was profoundly inhibited by mAb to CD18 (beta-chain of LFA-1) on the T cell or CD54 (ICAM-1) on the B cell, demonstrating the importance of this pair of adhesion molecules in early T-B cell interactions.  相似文献   

5.
Exposure of T94, a CD4+ V beta 8-expressing murine Th cell clone, or immediately ex vivo CD4+ T cells to deaggregated, bivalent antibodies specific for either the TCR or CD3 failed to induce an increase in [Ca2+]i, or activation of phosphatidylinositol hydrolysis unless cross-linked with a secondary anti-Ig antibody. In contrast, we show that a combination of two mAb directed against different components of the TCR/CD3 complex (145.2C11, anti-CD3 epsilon and F23.1, anti-V beta 8) successfully induce second messenger formation, that is, without any requirement for a secondary antibody. This requirement for either a secondary antibody or two independent bivalent antibodies to activate second messenger production in T cells suggested that the signal transduction apparatus may be activated by multiple TCR/CD3 complexes being brought together on the T cell surface. This was supported by the observation that conditions inducing increased T cell [Ca2+]i through the TCR/CD3 complex also resulted in aggregation of the TCR/CD3 complex on the T cell surface. Conversely, binding of anti-TCR/CD3 antibodies to the T cell under conditions that did not induce increased [Ca2+]i also failed to induce surface TCR/CD3 redistribution. Cross-linking of the CD4 accessory molecule on T94 also resulted in increased [Ca2+]i, with kinetics similar to those observed after TCR/CD3 oligomerization. CD4 is involved in the recognition of invariant regions of MHC class II during Ag presentation and has been proposed to be associated with TCR/CD3 in the absence of Ag. Aggregation of TCR/CD3 and subsequent second messenger formation was achieved by combinations of mAb to distinct determinants within the complex due to the stable association of these determinants within the T cell membrane. We therefore assessed the functional association of CD4 with the TCR/CD3 complex by examining whether a combination of mAb directed against CD4 and CD3 or TCR induced second messenger formation. We found that anti-CD4 in combination with F23.1 or with 145.2C11 failed to induce increases in [Ca2+]i. Furthermore, mAb to CD4 failed to inhibit the increase in [Ca2+]i observed with the combination of 145.2C11 and F23.1. We therefore conclude that CD4 is not stably associated with TCR or CD3 in the absence of Ag/MHC class II composites.  相似文献   

6.
The Bordetella adenylate cyclase toxin-hemolysin (CyaA) targets phagocytes expressing the alpha(M)beta2 integrin (CD11b/CD18), permeabilizes their membranes by forming small cation-selective pores, and delivers into cells a calmodulin-activated adenylate cyclase (AC) enzyme that dissipates cytosolic ATP into cAMP. We describe here a third activity of CyaA that yields elevation of cytosolic calcium concentration ([Ca2+]i) in target cells. The CyaA-mediated [Ca2+]i increase in CD11b+ J774A.1 monocytes was inhibited by extracellular La3+ ions but not by nifedipine, SK&F 96365, flunarizine, 2-aminoethyl diphenylborinate, or thapsigargin, suggesting that influx of Ca2+ into cells was not because of receptor signaling or opening of conventional calcium channels by cAMP. Compared with intact CyaA, a CyaA-AC- toxoid unable to generate cAMP promoted a faster, albeit transient, elevation of [Ca2+]i. This was not because of cell permeabilization by the CyaA hemolysin pores, because a mutant exhibiting a strongly enhanced pore-forming activity (CyaA-E509K/E516K), but unable to deliver the AC domain into cells, was also unable to elicit a [Ca2+]i increase. Further mutations interfering with AC translocation into cells, such as proline substitutions of glutamate residues 509 or 570 or deletion of the AC domain as such, reduced or ablated the [Ca2+]i-elevating capacity of CyaA. Moreover, structural alterations within the AC domain, because of insertion of various oligopeptides, differently modulated the kinetics and extent of Ca2+ influx elicited by the respective AC- toxoids. Hence, the translocating AC polypeptide itself appears to participate in formation of a novel type of membrane path for calcium ions, contributing to action of CyaA in an unexpected manner.  相似文献   

7.
Flow cytometry was used to investigate two functional parameters of human natural-killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC): (i) the frequency of NK cells which formed conjugates (NKC) with autologous monoclonal antibody (mAb)-coated lymphocyte target cells, a measure of the avidity of CD16-dependent cell-cell adhesion, and (ii) the rise in the intracellular concentration of ionized calcium ([Ca2+]i) elicited in NKC by contact with target cells, a measure of CD16-dependent NK cell activation. For each of four rat IgG2b mAb directed against target cell antigens CDw52, CD5, CD45, and class I HLA, there existed quantitatively similar relationships between ADCC and rise in NKC[Ca2+]i but significant inter-mAb differences with respect to the ADCC vs the NKC frequency relationship. Cytolytic efficiencies of mAb appeared to be determined at the level of the NK cell, dependent upon CD16 and LFA-1, but restricted with respect to quantitative levels of NKC[Ca2+]i. In concert with this notion, targets coated with an IgG1 isotype-switch variant alpha CDw52 mAb promoted significant conjugate formation but failed to elicit a rise in NKC[Ca2+]i or ADCC. Thus, Fc regions of antibodies make contacts with NK cell CD16 which may strengthen cell-cell adhesion without eliciting an activation stimulus, a finding which supports a complexity of CD16 functional regulation of probable significance in the clinical consequences of antibody responses or therapeutic mAb manipulations.  相似文献   

8.
CD43 is a constitutively phosphorylated 115-kDa sialoglycoprotein expressed on a variety of blood cells including lymphocytes and monocytes. L10, a mAb directed against CD43, triggers T cell activation and enhances hydrogen peroxide production in monocytes. Activation of mononuclear cells by L10 initiates phosphoinositides hydrolysis, C2+ mobilization, and protein kinase C (PKC) activation. In turn, activated PKC hyperphosphorylates CD43, suggesting a potential role for PKC in the regulation of signaling via CD43. To address this issue, we have analyzed the effect of PKC activation by the tumor promoter PMA on L10-triggered rise in intracellular free Ca2+ concentrations ([Ca2+]i). Treatment of mononuclear cells with PMA profoundly inhibited the increase in [Ca2+]i induced by L10. The inhibition of CD43-mediated signaling by PMA was due, in part, to uncoupling of CD43 from the signal-transducing G protein. This was evidenced by the comparatively modest inhibition by PMA of the increase in [Ca2+]i induced by the direct G protein activator AlF4-. PMA treatment did not affect the surface expression of CD43. However, it induced the hyperphosphorylation of CD43, the extent of which correlated with the inhibition of CD43-mediated increase in [Ca2+]i. Staurosporine, a potent inhibitor of PKC, abrogated the hyperphosphorylation of CD43 and normalized CD43-mediated signaling in PMA-treated cells. Significantly, in the absence of PMA, staurosporine enhanced the rise in [Ca2+]i triggered by L10, suggesting that engagement of CD43 by activating ligands results in feedback inhibition by PKC. It is concluded that activation of PKC inhibits signaling via CD43 by mechanisms involving phosphorylation and uncoupling of CD43 from the signal-transducing apparatus and by distal, post-receptor events.  相似文献   

9.
The monoclonal antibodies against the T3 complex on human T lymphocytes, anti-Leu-4, OKT3, and T3, induced an accumulation of inositol phosphates in a human T cell leukemia line, JURKAT, in the presence of LiCl. The monoclonal antibodies also induced an increase in the cytosolic free Ca2+-concentration ([Ca2+]i) in JURKAT. The accumulation of inositol phosphates and the increase in [Ca2+]i were specifically induced by the monoclonal antibodies against the T3 complex. Other monoclonal antibodies against differentiation antigens on human T lymphocytes were not active in inducing these responses in JURKAT. Stimulation of JURKAT by anti-Leu-4 induced a rapid and immediate decrease in phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] and an increase in the 32P-labeling of phosphatidic acid, which occurred after a short lag period. An analysis of inositol phosphates formed in the anti-Leu-4-stimulated JURKAT indicated the formation of inositol trisphosphate. These results strongly suggested that the T3 complex or T3/antigen receptor (Ti) complex functions as a receptor which transduces antigen signal, presented by either antigen-presenting cells or target cells, into the hydrolysis of PtdIns(4,5)P2. Fetal bovine serum at a dose of 1-20 microliters/ml induced a marked and transient [Ca2+]i increase in JURKAT immediately after addition. However, the level of formation of inositol phosphates was very small in cells stimulated by fetal bovine serum. Fetal bovine serum induced an immediate increase in the 32P-labeling of phosphatidic acid in JURKAT. These and other results suggested that serum increased [Ca2+]i in JURKAT by a mechanism different from that for the anti-Leu-4-induced [Ca2+]i response.  相似文献   

10.
H Takemura  H Ohshika 《Life sciences》1999,64(17):1493-1500
Capacitative Ca2+ entry exists in rat glioma C6 cells; however, how the information of depletion of Ca2+ in intracellular stores transmits to the plasma membrane is unknown. In the present study, we examined whether Ca2+ influx factor (CIF) causes capacitative Ca2+ entry in C6 cells. CIF was extracted from non-treated (Non-CIF), bombesin-treated (BBS-CIF) and thapsigargin-treated (TG-CIF) C6 cells by a reverse-phase silica cartridge. The addition of BBS-CIF and TG-CIF gradually increased cytoplasmic Ca2+ concentration ([Ca2+]i) but Non-CIF did not increase [Ca2+]i. Neither BBS-CIF nor TG-CIF elevated [Ca2+]i in the absence of extracellular Ca2+. Gd3+ inhibited the increase in [Ca2+]i induced by BBS-CIF and TG-CIF. Genistein abolished an elevation of [Ca2+]i induced by BBS-CIF and TG-CIF. BBS-CIF and TG-CIF did not increase inositol 1,4,5-trisphosphate accumulation. The results suggest that capacitative Ca2+ entry is caused by CIF in rat glioma C6 cells.  相似文献   

11.
Binding of the anti-cluster of differentiation (CD) 2 monoclonal antibody 9-1 causes an increase in the concentration of cytoplasmic-free calcium ([Ca2+]i) in cultured CD3-/CD16+ natural killer (NK) cells. This response did not occur in cultured CD3+/CD16- cytotoxic T lymphocytes (CTL). Anti-CD16 antibodies could partially block the calcium response when NK cells were stimulated with intact antibody 9-1, and antigen-binding fragment F(ab')2 of antibody 9-1 did not produce a calcium response. Thus an interaction of the 9-1 antibody with CD16 Fc receptors was required for the functional effect. The dual interaction of antibody 9-1 with both CD2 and CD16 was demonstrated by comodulation experiments. The cytolytic activity of cultured NK cells was increased by antibody 9-1 but not by F(ab')2 fragments of antibody 9-1. The enhanced lytic activity was blocked by anti-CD16 antibody, anti-CD18 antibody, and anti-CD2 antibodies that do not block the binding of antibody 9-1. This pattern was distinct from antibody-dependent cell-mediated cytotoxicity which was blocked only by the anti-CD16 antibody. Thus antibody 9-1 enhanced cytotoxicity by activating effector cells. There was no enhancement of lytic activity when F(ab')2 of antibody 9-1 were cross-linked with a polyclonal antiglobulin, even though [Ca2+]i was increased. These results show that induction of a [Ca2+]i response is not sufficient to enhance lytic activity in NK cells, and suggest that signals delivered through CD16 are necessary.  相似文献   

12.
Monoclonal antibodies (mAb) against the CD3/T cell receptor (TcR) complex were analyzed for their ability to activate human thymocytes. In addition to mAb detecting epitopes on the CD3 complex (OKT3, BMA 030) the activation potential of recently developed mAb against common epitopes on the alpha/beta T-cell receptor (anti-TcR mAb: BMA 031, BMA 032) was evaluated. Several differences were observed between the two types of mAb: (a) Binding of the tested anti-CD3 mAb to thymocytes resulted in a rapid increase in the level of cytoplasmic free calcium ions [Ca2+]i, whereas no significant changes in [Ca2+]i were detected in thymocytes stimulated with BMA 031 or BMA 032. (b) Induction of effective proliferation induced by mAb OKT3 depended on exogenous IL-2 and in addition on the presence of accessory cells or phorbol-ester. Proliferation induced by BMA 031 only required exogenous IL-2. (c) OKT3 but not BMA 031 inhibited proliferation of thymocytes induced via the CD2 molecule. These studies indicate that anti-CD3 and anti-TcR mAb transduce different signals in thymocytes. Since the two types of mAb are directed to the same molecular complex the observed differences also support the idea that there are functionally different compartments in the CD3/TcR complex which may activate different signaling pathways.  相似文献   

13.
Basal and receptor-regulated changes in cytoplasmic calcium concentration ([Ca2+]i) were monitored by fluorescence analysis in individual rat pituitary gonadotrophs loaded with the calcium-sensitive dye indo-1. Most gonadotrophs exhibited low amplitude spontaneous oscillations in basal [Ca2+]i that were interspersed by quiescent periods and abolished by removal of extracellular Ca2+ or addition of calcium channel blockers. Such random fluctuations in [Ca2+]i, which reflect the operation of a plasma membrane oscillator, were not coupled to basal gonadotropin secretion. The physiological agonist GnRH induced high amplitude [Ca2+]i oscillations; when a threshold [Ca2+]i level was reached, a cytoplasmic oscillator began to generate extremely regular Ca2+ transients. The time required to reach the threshold [Ca2+]i level was inversely correlated with agonist dose; the frequency, but not the amplitude, of agonist-induced Ca2+ spiking increased with agonist concentration. The duration of the latent period decreased and the frequency of Ca2+ spiking increased with the increase in ambient temperature. At high GnRH concentrations, the calcium transients merged into biphasic responses similar to those observed in cell suspensions at all GnRH concentrations. The presence of spontaneous fluctuations in basal [Ca2+]i did not significantly change the patterns of agonist-induced [Ca2+]i responses. Also, removal of extracellular Ca2+ did not interfere with the frequency or amplitude of Ca2+ spikes, but caused the loss of the plateau phase. Blockade of intracellular Ca(2+)-ATPase pumps by thapsigargin was usually accompanied by a subthreshold increase in [Ca2+]i. In such cells the agonist-induced oscillatory pattern was transformed into the biphasic response. In about 10% of the cells, however, high thapsigargin concentrations induced coarse [Ca2+]i oscillations; subsequent stimulation of such cells with GnRH was ineffective. The cytoplasmic oscillatory and biphasic responses may represent a mechanism for differential activation of Ca(2+)-dependent enzymes and their dependent cellular processes, including hormone secretion. The membrane oscillator is probably responsible for refilling of agonist-sensitive pools during and after agonist stimulation.  相似文献   

14.
Agonist-evoked [Ca2+]i oscillations have been considered a biophysical phenomenon reflecting the regulation of the IP3 receptor by [Ca2+]i. Here we show that [Ca2+]i oscillations are a biochemical phenomenon emanating from regulation of Ca2+ signaling by the regulators of G protein signaling (RGS) proteins. [Ca2+]i oscillations evoked by G protein-coupled receptors require the action of RGS proteins. Inhibition of endogenous RGS protein action disrupted agonist-evoked [Ca2+]i oscillations by a stepwise conversion to a sustained response. Based on these findings and the effect of mutant RGS proteins and anti-RGS protein antibodies on Ca2+ signaling, we propose that RGS proteins within the G protein-coupled receptor complexes provide a biochemical control of [Ca2+]i oscillations.  相似文献   

15.
To investigate the initial stages of recognition of the self idiotype (Id) by T cells, we examined the early increase in cytoplasmic free calcium ([Ca2+]i) occurring in murine CD4+ T cells specific for a model Id, Id315, following their interaction with the Id. The changes in [Ca2+]i were monitored with stopped-flow fluorometry by loading T cells with fura 2, a Ca(2+)-binding fluorescent dye. An increase of [Ca2+]i in the Id-specific T cell line was dependent on the presence of both antigen-presenting cells (APC) and Id315. When T cells were mixed with APC pulsed with M315 for 90 min at 37 C, a significant increase in T cell [Ca2+]i was observed within one second. A pronounced elevation in [Ca2+]i was also observed in T cells after their interaction with APC which had been pulsed for 90 min with VL-315 Id-containing proteins (such as VL-315, L315, Fv-315 or Fab'-315 fragments). In contrast, pulsing APC for 5 min with the VL fragment produced little or no change in the [Ca2+]i. These results suggest that VL must be further processed by APC before it can be recognized by T cells. Indeed, a synthetic VL region peptide (positions 91-108, designated as P18) produced an elevation in T cell [Ca2+]i when mixed with APC without pulsing.  相似文献   

16.
Elevation in cytoplasmic free Ca2+ concentration ([Ca2+]i) is a common mechanism in signaling events. An increased [Ca2+]i induced by GH, has been observed in relation to different cellular events. Little is known about the mechanism underlying the GH effect on Ca2+ handling. We have studied the molecular mechanisms underlying GH-induced rise in [Ca2+]i in BRIN-BD11 insulin-secreting cells. GH (500 ng/ml, 22 nm) induced a sustained increase in [Ca2+]i. The effect of GH on [Ca2+]i was prevented in the absence of extracellular Ca2+ and was inhibited by the ATP-sensitive K(+)-channel opener diazoxide and the voltage-dependent Ca(2+)-channel inhibitor nifedipine. However, GH failed to induce any changes in Ca2+ current and membrane potential, evaluated by patch-clamp recordings and by using voltage-sensitive dyes. When the intracellular Ca2+ pools had been depleted using the Ca(2+)-ATPase inhibitor thapsigargin, the effect of GH was inhibited. In addition, GH-stimulated rise in [Ca2+]i was completely abolished by ruthenium red, an inhibitor of mitochondrial Ca2+ transport, and caffeine. GH induced tyrosine phosphorylation of ryanodine receptors. The effect of GH on [Ca2+]i was completely blocked by the tyrosine kinase inhibitors genistein and lavendustin A. Interestingly, treatment of the cells with GH significantly enhanced K(+)-induced rise in [Ca2+]i. Hence, GH-stimulated rise in [Ca2+]i is dependent on extracellular Ca2+ and is mediated by Ca(2+)-induced Ca2+ release. This process is mediated by tyrosine phosphorylation of ryanodine receptors and may play a crucial role in physiological Ca2+ handling in insulin-secreting cells.  相似文献   

17.
Immunohistochemical staining of human placenta revealed intense reactivity for amino terminal and midregional parathyroid-hormone-related protein (PTHrp) in the cytotrophoblast cells and weaker staining in the syncytiotrophoblasts. The cytotrophoblasts also displayed conspicuous surface staining with the monoclonal antibodies E11 and G11, which recognize a Ca2+ receptor mechanism regulating hormone release of parathyroid cells. Cytotrophoblasts enriched on Percoll gradients or by linking surface-bound E11 to magnetic beads revealed biphasic elevation of cytoplasmic Ca2+ ([Ca2+]i) upon a stepwise rise of external Ca2+ from 0.5 to 3.0 mM, with a half-maximal effect at 1.75 mM. Individual cytotrophoblasts identified by their E11 reactivity disclosed a temporary increase of [Ca2+]i upon elevation of external Mg2+, while Mn2+ triggered both a [Ca2+]i transient and an influx of itself. These effects were efficiently blocked by the G11 antibody. Depolarization with K+ or addition of the voltage-dependent Ca2+ channel blocker verapamil had only marginal effects on [Ca2+]i. Raised extracellular calcium inhibited release of PTHrp from the cells, and this inhibition was blocked by the G11 antibody. The virtually parathyroid-identical Ca2+ regulation of [Ca2+]i may mediate feedback control of PTHrp release from the cytotrophoblasts and thereby participate in the regulation of placental Ca2+ transport.  相似文献   

18.
The regulation of free cytoplasmic calcium concentration ([Ca2+]i) was studied in bovine pulmonary artery endothelial cells (BPAEC). The cells were seeded on the inner surface of glass cuvettes, grown to confluency and loaded with INDO-1. Using a multiwavelength method for estimation of [Ca2+]i it was shown that in Ca2+ containing medium a rapid rise of [Ca2+]i occurs in response to bradykinin, ATP or thrombin followed by a much slower decrease in free cytoplasmic calcium. Binding of extracellular Ca2+ by EGTA lowered basal [Ca2+]i but had no effect on the rate of agonist-induced [Ca2+]i increase or its absolute amount. In contrast, the kinetics of [Ca2+]i decrease were entirely different. A rapid (less than 0.5 min) decrease in [Ca2+]i to the basal level was observed immediately after the maximum had been achieved. If excess Ca2+ was added to the medium after EGTA, a second [Ca2+]i rise in response to the agonists occurred. The decrease in [Ca2+]i after the second peak was several times slower than the decrease in Ca2+ free medium. It is concluded that Ca2+ entry from the external medium had no effect on the maximal increase in [Ca2+]i but provides a severalfold increase in the duration the endothelial cell responses to the agonists.  相似文献   

19.
Liu SQ  Golan DE 《Biophysical journal》1999,76(3):1679-1692
T lymphocyte activation through the T cell receptor (TCR)/CD3 complex alters the avidity of the cell surface adhesion receptor CD2 for its ligand CD58. Based on the observations that activation-associated increases in intracellular [Ca2+] ([Ca2+]i) strengthen interactions between T cells and antigen-presenting cells, and that the lateral mobility of cell surface adhesion receptors is an important regulator of cellular adhesion strength, we postulated that [Ca2+]i controls CD2 lateral mobility at the T cell surface. Human Jurkat T leukemia cells were stimulated by antibody-mediated cross-linking of the TCR/CD3 complex. CD2 was labeled with a fluorescently conjugated monoclonal antibody. Quantitative fluorescence microscopy techniques were used to measure [Ca2+]i and CD2 lateral mobility. Cross-linking of the TCR/CD3 complex caused an immediate increase in [Ca2+]i and, 10-20 min later, a decrease in the fractional mobility of CD2 from the control value of 68 +/- 1% to 45 +/- 2% (mean +/- SEM). One to two hours after cell stimulation the fractional mobility spontaneously returned to the control level. Under these and other treatment conditions, the fraction of cells with significantly elevated [Ca2+]i was highly correlated with the fraction of cells manifesting significantly reduced CD2 mobility. Pretreatment of cells with a calmodulin inhibitor or a calmodulin-dependent kinase inhibitor prevented Ca2+-mediated CD2 immobilization, and pretreatment of cells with a calcineurin phosphatase inhibitor prevented the spontaneous reversal of CD2 immobilization. These data suggest that T cell activation through the TCR/CD3 complex controls CD2 lateral mobility by a Ca2+/calmodulin-dependent mechanism, and that this mechanism may involve regulated phosphorylation and dephosphorylation of CD2 or a closely associated protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号