首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphoinositide 3-kinases (PI3Ks) are dual specificity lipid and protein kinases. While the lipid-dependent PI3K downstream signaling is well characterized, little is known about PI3K protein kinase signaling and structural determinants of lipid substrate specificity across the various PI3K classes. Here we show that sequences C-terminal to the PI3K ATP-binding site determine the lipid substrate specificity of the class IA PI3Kalpha (p85/p110alpha). Transfer of such activation loop sequences from class II PI3Ks, class III PI3Ks, and a related mammalian target of rapamycin (FRAP) into p110alpha turns the lipid substrate specificity of the resulting hybrid protein into that of the donor protein, while leaving the protein kinase activity unaffected. All resulting hybrids lacked the ability to produce phosphatidylinositol 3,4,5-trisphosphate in intact cells. Amino acid substitutions and structure modeling showed that two conserved positively charged (Lys and Arg) residues in the activation loop are crucial for the functionality of class I PI3Ks as phosphatidylinositol 4,5-bisphosphate kinases. By transient transfecion of 293 cells, we show that p110alpha hybrids, although unable to support lipid-dependent PI3K signaling, such as activation of protein kinase B/Akt and p70(S6k), retain the capability to associate with and phosphorylate insulin receptor substrate-1, with the same specificity and higher efficacy than wild type PI3Kalpha. Our data lay the basis for the understanding of the class I PI3K substrate selectivity and for the use of PI3Kalpha hybrids to dissect PI3Kalpha function as lipid and protein kinase.  相似文献   

2.
Phosphoinositide 3-kinases (PI3Ks) are lipid kinases which also possess an in vitro protein kinase activity towards themselves or their adaptor proteins. The physiological relevance of these phosphorylations is unclear at present. Here, the protein kinase activity of the tyrosine kinase-linked PI3K, p110delta, is characterized and its functional impact assessed. In vitro autophosphorylation of p110delta completely down-regulates its lipid kinase activity. The single site of autophosphorylation was mapped to Ser1039 at the C-terminus of p110delta. Antisera specific for phospho-Ser1039 revealed a very low level of phosphorylation of this residue in cell lines. However, p110delta that is recruited to activated receptors (such as CD28 in T cells) shows a time-dependent increase in Ser1039 phosphorylation and a concomitant decrease in associated lipid kinase activity. Treatment of cells with okadaic acid, an inhibitor of Ser/Thr phosphatases, also dramatically increases the level of Ser1039-phosphorylated p110delta. LY294002 and wortmannin blocked these in vivo increases in Ser1039 phosphorylation, consistent with the notion that PI3Ks, and possibly p110delta itself, are involved in the in vivo phosphorylation of p110delta. In summary, we show that PI3Ks are subject to regulatory phosphorylations in vivo similar to those identified under in vitro conditions, identifying a new level of control of these signalling molecules.  相似文献   

3.
A series of 4-morpholino-2-phenylquinazolines and related derivatives were prepared and evaluated as inhibitors of PI3 kinase p110alpha. In this series, the thieno[3,2-d]pyrimidine derivative 15e showed the strongest inhibitory activity against p110alpha, with an IC(50) value of 2.0 nM, and inhibited proliferation of A375 melanoma cells with an IC(50) value of 0.58 microM. Moreover, 15e was found to be selective for p110alpha over other PI3K isoforms and protein kinases, making it the first example of a selective PI3K p110alpha inhibitor.  相似文献   

4.
Phosphoinositide 3'-kinases (PI3Ks) constitute a family of lipid kinases implicated in signal transduction through tyrosine kinase receptors and heterotrimeric G protein-linked receptors. PI3Ks are heterodimers made up of four different 110-kDa catalytic subunits (p110alpha, p110beta, p110gamma, and p110delta) and a smaller regulatory subunit. Despite a clear implication of PI3Ks in survival signaling, the contribution of the individual PI3K isoforms has not been elucidated. To address this issue, we generated Rat1 fibroblasts that co-express c-Myc and membrane targeted derivates of the different p110 isoforms. Here we present data for the first time showing that activation of PI3-kinase signaling through membrane localization of p110beta, p110gamma, and p110delta protects c-Myc overexpressing Rat1 fibroblasts from apoptosis caused by serum deprivation like it has been described for p110alpha. Expression of each p110 isoform reduces significantly caspase-3 like activity in this apoptosis model. Decreased caspase-3 activity correlates with the increase in Akt phosphorylation in cells that contain one of the myristoylated p110 isoforms. p110 isoform-mediated protection from cell death was abrogated upon expression of a kinase-negative version of Akt.  相似文献   

5.
The PIK3CA gene, encoding the p110alpha catalytic subunit of Class IA PI3Ks (phosphoinositide 3-kinases), is frequently mutated in many human tumours. The three most common tumour-derived alleles of p110alpha, H1047R, E542K and E545K, were shown to potently activate PI3K signalling in human epithelial cells. In the present study, we examine the biochemical activity of the recombinantly purified PI3K oncogenic mutants. The kinetic characterizations of the wt (wild-type) and the three 'hot spot' PI3K mutants show that the mutants all have approx. 2-fold increase in lipid kinase activities. Interestingly, the phosphorylated IRS-1 (insulin receptor substrate-1) protein shows activation of the lipid kinase activity for the wt and H1047R but not E542K and E545K PI3Kalpha, suggesting that these mutations represent different mechanisms of lipid kinase activation and hence transforming activity in cancer cells.  相似文献   

6.
Recent genetic knock-in and pharmacological approaches have suggested that, of class IA PI3Ks (phosphatidylinositol 3-kinases), it is the p110alpha isoform (PIK3CA) that plays the predominant role in insulin signalling. We have used isoform-selective inhibitors of class IA PI3K to dissect further the roles of individual p110 isoforms in insulin signalling. These include a p110alpha-specific inhibitor (PIK-75), a p110alpha-selective inhibitor (PI-103), a p110beta-specific inhibitor (TGX-221) and a p110delta-specific inhibitor (IC87114). Although we find that p110alpha is necessary for insulin-stimulated phosphorylation of PKB (protein kinase B) in several cell lines, we find that this is not the case in HepG2 hepatoma cells. Inhibition of p110beta or p110delta alone was also not sufficient to block insulin signalling to PKB in these cells, but, when added in combination with p110alpha inhibitors, they are able to significantly attenuate insulin signalling. Surprisingly, in J774.2 macrophage cells, insulin signalling to PKB was inhibited to a similar extent by inhibitors of p110alpha, p110beta or p110delta. These results provide evidence that p110beta and p110delta can play a role in insulin signalling and also provide the first evidence that there can be functional redundancy between p110 isoforms. Further, our results indicate that the degree of functional redundancy is linked to the relative levels of expression of each isoform in the target cells.  相似文献   

7.
Class I of phosphoinositide 3-kinases (PI3Ks) is characterized as a group of intracellular signal proteins possessing both protein and lipid kinase activities. Recent studies implicate class I of PI3Ks acts as indispensable mediators in early development of mouse embryos, but the molecular mechanisms are poorly defined. In this paper, mouse one-cell embryos were used to investigate a possible contribution of the catalytic subunit of PI3K, p110 alpha, to cell cycle progression. The expression level of p110 alpha was determined in four phases of one-cell embryos. Silencing of p110 alpha by microinjection of p110 alpha shRNA into one-cell embryos resulted in a G2/M arrest and prevented the activation of Akt and M-phase promoting factor (MPF). Further, microinjection of the synthesized mRNA coding for a constitutively active p110 alpha into one-cell embryos induced cell cleavage more effectively than microinjection of wild-type p110 alpha mRNA, whereas microinjection of mRNA of kinase-deficient p110 alpha delayed the first mitotic cleavage. Taken together, this study demonstrates that p110 alpha is significant for G2/M transition of mouse one-cell embryos and further emphasizes the importance of Akt in PI3K pathway.  相似文献   

8.
The modulation of phosphoinositide 3-kinase (PI3K) activity influences the quality of cellular responses triggered by various receptor tyrosine kinases. Protein kinase C (PKC) has been reported to phosphorylate signalling molecules upstream of PI3K and thereby it may affect the activation of PI3K. Here, we provide the first evidence for a direct effect of a PKC isoenzyme on the activity of PI3K. PKCalpha but not PKCepsilon phosphorylated the catalytic subunit of the p110alpha/p85alpha PI3K in vitro in a manner inhibited by the PKC inhibitor bisindolylmaleimide I (BIM I). The incubation of PI3K with active PKCalpha resulted in a significant decrease in its lipid kinase activity and this effect was also attenuated by BIM I. We conclude that PKCalpha is able to modulate negatively the lipid kinase activity of the p110alpha/p85alpha PI3K through the phosphorylation of the catalytic subunit.  相似文献   

9.
The Class I phosphoinositide 3-kinases (PI3Ks) are lipid kinases that phosphorylate the 3-hydroxyl group of the inositol ring of phosphatidylinositides. Although closely related, experimental evidence suggests that the four Class I PI3Ks may be functionally distinct. To further study their unique biochemical properties, the three human Class Ia PI3K (alpha, beta, and delta) p110 catalytic domains were cloned and co-expressed with the p85alpha regulatory domain in Sf9 cells. None of the p110 subunits were successfully expressed in the absence of p85alpha. Successful expression and purification of each p85alpha/p110 protein required using an excess of the p110 vector over the p85 vector during co-infection of Sf9 cells. Proteins were purified as the p85alpha/p110 complex by nickel affinity chromatography through an N-terminal His-tag on the p110 subunit using an imidazole gradient. The purification yields were high using the optimized ratio of p85/p110 vector and small culture volumes, with 24mg/L cell culture media for p85alpha/p110alpha, 17.5mg/L for p85alpha/p110delta, and 3.5mg/L for p85alpha/p110beta. The identity of each purified isoform was confirmed by mass spectral analysis and immunoblotting. The activities of the three p85alpha/p110 proteins and the Class Ib p110gamma catalytic domain were investigated using phosphatidylinositol 4,5-bisphosphate (PIP2) as the substrate in a PIP2/phosphatidylserine (PS) liposome. All four enzymes exhibited reaction velocities that were dependent on the surface concentration of PIP2. The surface concentrations that gave maximal activity for each human isoform with 0.5mM PIP2 were 2.5mol% PIP2 for p110gamma, 7.5mol% for p85alpha/p110beta, and 10mol% PIP2 for p85alpha/p110alpha and p85alpha/p110delta. The specific activity of p85alpha/p110alpha was three to five times higher than that of the other human isoforms. These kinetic differences may contribute to the unique roles of these isoforms in cells.  相似文献   

10.
Class I phosphoinositide 3-kinases (PI3Ks) are bifunctional enzymes possessing lipid kinase activity and the capacity to phosphorylate their catalytic and/or regulatory subunits. In this study, in vitro autophosphorylation of the G protein-sensitive p85-coupled class I(A) PI3K beta and p101-coupled class I(B) PI3K gamma was examined. Autophosphorylation sites of both PI3K isoforms were mapped to C-terminal serine residues of the catalytic p110 subunit (i.e. serine 1070 of p110 beta and serine 1101 of p110 gamma). Like other class I(A) PI3K isoforms, autophosphorylation of p110 beta resulted in down-regulated PI3K beta lipid kinase activity. However, no inhibitory effect of p110 gamma autophosphorylation on PI3K gamma lipid kinase activity was observed. Moreover, PI3K beta and PI3K gamma differed in the regulation of their autophosphorylation. Whereas p110 beta autophosphorylation was stimulated neither by G beta gamma complexes nor by a phosphotyrosyl peptide derived from the platelet-derived growth factor receptor, autophosphorylation of p110 gamma was significantly enhanced by G beta gamma in a time- and concentration-dependent manner. In summary, we show that autophosphorylation of both PI3K beta and PI3K gamma occurs in a C-terminal region of the catalytic p110 subunit but differs in its regulation and possible functional consequences, suggesting distinct roles of autophosphorylation of PI3K beta and PI3K gamma.  相似文献   

11.
Eight human isoforms of phosphoinositide 3-kinases (PI3Ks) exist, but their individual functions remain poorly understood. Here, we show that different human small cell lung carcinoma (SCLC) cell lines overexpress distinct subsets of class I(A) and II PI3Ks, which results in striking differences in the signalling cascades activated by stem cell factor (SCF). Over expression of class I(A) p85/p110alpha in SCLC cells increased SCF-stimulated protein kinase B (PKB) activation and cell growth, but did not affect extracellular signal-regulated kinase (Erk) or glycogen synthase kinase-3 (GSK-3). This effect was selective, since it was not observed in SCLC cell lines overexpressing p85/p110beta or p85/p110delta. The SCF receptor associated with both class I(A) p85 and class II PI3KC2beta, and both enzymes contributed to SCF-stimulated PKB activity. A dominant-negative PI3KC2beta blocked both PKB activation and SCLC cell growth in response to SCF. Together our data provide novel insights into the specificity and functional significance of PI3K signalling in human cancer.  相似文献   

12.
ICOS ligation in concert with TCR stimulation results in strong PI3K activation in T lymphocytes. The ICOS cytoplasmic tail contains an YMFM motif that binds the p85alpha subunit of class IA PI3K, similar to the YMNM motif of CD28, suggesting a redundant function of the two receptors in PI3K signaling. However, ICOS costimulation shows greater PI3K activity than CD28 in T cells. We show in this report that ICOS expression in activated T cells triggers the participation of p50alpha, one of the regulatory subunits of class IA PI3Ks. Using different T-APC cell conjugate systems, we report that p50alpha accumulates at the immunological synapse in activated but not in resting T cells. Our results demonstrate that ICOS membrane expression is involved in this process and that p50alpha plasma membrane accumulation requires a functional YMFM Src homology 2 domain-binding motif in ICOS. We also show that ICOS triggering with its ligand, ICOSL, induces the recruitment of p50alpha at the synapse of T cell/APC conjugates. In association with the p110 catalytic subunit, p50alpha is known to carry a stronger lipid kinase activity compared with p85alpha. Accordingly, we observed that ICOS engagement results in a stronger activation of PI3K. Together, these findings provide evidence that p50alpha is likely a determining factor in ICOS-mediated PI3K activity in T cells. These results also suggest that a differential recruitment and activity of class IA PI3K subunits represents a novel mechanism in the control of PI3K signaling by costimulatory molecules.  相似文献   

13.
Phosphoinositide 3-kinases (PI3Ks) play an important role in a variety of cellular functions, including phagocytosis. PI3Ks are activated during phagocytosis induced by several receptors and have been shown to be required for phagocytosis through the use of inhibitors such as wortmannin and LY294002. Mammalian cells have multiple isoforms of PI3K, and the role of the individual isoforms during phagocytosis has not been addressed. The class I PI3Ks consist of a catalytic p110 isoform associated with a regulatory subunit. Mammals have three genes for the class IA p110 subunits encoding p110alpha, p110beta, and p110delta and one gene for the class IB p110 subunit encoding p110gamma. Here we report a specific recruitment of p110beta and p110delta (but not p110alpha) isoforms to the nascent phagosome during apoptotic cell phagocytosis by fibroblasts. By microinjecting inhibitory antibodies specific to class IA p110 subunits, we have shown that p110beta is the major isoform required for apoptotic cell and Fcgamma receptor-mediated phagocytosis by primary mouse macrophages. Macrophages from mice expressing a catalytically inactive form of p110delta showed no defect in the phagocytosis of apoptotic cells and IgG-opsonized particles, confirming the lack of a major role for p110delta in this process. Similarly, p110gamma-deficient macrophages phagocytosed apoptotic cells normally. Our findings demonstrate that p110beta is the major class I catalytic isoform required for apoptotic cell and Fcgamma receptor-mediated phagocytosis by primary macrophages.  相似文献   

14.
Phosphoinositide 3-Kinases (PI3-Kinases) are a family of dual specificity enzymes with a unique lipid kinase activity toward the D-3 position of the inositol ring of phosphoinositides and a less well characterized serine/threonine protein kinase activity. Class IA PI3-Kinases comprise a 110-120 kDa catalytic subunit (usually termed p110) and an 85 kDa or 50 to 55 kDa regulatory subunit (often called p85). cDNAs for three mammalian Class IA PI3-Kinase catalytic subunits designated p110alpha, p110beta, and p110delta have been cloned from several species. A YAC clone for the human p110alpha gene has also been cloned and mapped to chromosome 3q26.3. However, structural organization for any of the PI3-Kinase p110alpha genes has not been reported. Here, we report the cloning, structural organization, and chromosomal localization of the mouse PI3-Kinase p110alpha gene. The translated portion of the mouse p110alpha gene is encoded by 19 exons that span at least 24 kb. Dual color fluorescence in situ hybridization (FISH) was performed to determine the chromosomal localization of the mouse PI3-Kinase p110alpha gene. FISH results and DAPI banding demonstrated localization of the p110alpha gene to band B on mouse chromosome 3, a region syntenic with human chromosome 3q26.3.  相似文献   

15.
Despite the established role for PI3Ks in cell migration, the PI3Ks involved in lymphocyte chemotaxis are poorly defined. In this study, we report that p110gamma-deficient T cells, but not B cells, show reduced chemotactic responses to the lymphoid chemokines, CCL19, CCL21, and CXCL12. As B cell and T cell chemotactic responses were both sensitive to the general PI3K inhibitors, wortmannin (WMN) and LY294002, we explored whether B cell responses were affected in mice lacking p110delta, a major PI3K isoform in lymphocytes. B cells deficient in p110delta showed diminished chemotactic responses, especially to CXCL13. Adoptive transfer experiments with WMN-treated wild-type B cells and with p110delta-deficient B cells revealed diminished homing to Peyer's patches and splenic white pulp cords. WMN selectively inhibited CXCR5-dependent B cell homing to Peyer's patches. These observations establish that p110gamma and p110delta function in lymphocyte chemotaxis, and show differential roles for PI3K family members in B and T cell migration.  相似文献   

16.
The expression and function of the 8 distinct catalytic isoforms of PI 3-kinase (PI3K) in the nervous system are unknown. Whereas most PI3Ks have a broad tissue distribution, the tyrosine kinase-linked p110delta isoform has previously been shown to be enriched in leukocytes. Here we report that p110delta is also highly expressed in the nervous system. Inactivation of p110delta in mice did not affect gross neuronal development but led to an increased vulnerability of dorsal root ganglia neurons to exhibit growth cone collapse and decreases in axonal extension. Loss of p110delta activity also dampened axonal regeneration following peripheral nerve injury in adult mice and impaired functional recovery of locomotion. p110delta inactivation resulted in reduced neuronal signaling through the Akt protein kinase, and increased activity of the small GTPase RhoA. Pharmacological inhibition of ROCK, a downstream effector of RhoA, restored axonal extension defects in neurons with inactive p110delta, suggesting a key role of RhoA in p110delta signaling in neurons. Our data identify p110delta as an important signaling component for efficient axonal elongation in the developing and regenerating nervous system.  相似文献   

17.
3-{1-[(4-Fluorophenyl)sulfonyl]-1H-pyrazol-3-yl}-2-methylimidazo[1,2-a]pyridine, 2a, was discovered in our chemical library as a novel p110alpha inhibitor with an IC(50) of 0.67microM, through screening in a scintillation proximity assay. Optimization of the substituents of 2a increased the p110alpha inhibitory activity by more than 300-fold (2g: IC(50)=0.0018microM). Further structural modification of 2g afforded thiazole derivative 12, which has potent p110alpha inhibitory activity (IC(50) of 0.0028microM) and is highly selective for p110alpha over other PI3K isoforms. Compound 12 also inhibited serum-induced cell proliferation of A375 and HeLa cells in vitro with IC(50) values of 0.14microM and 0.21microM, respectively, and suppressed tumor growth by 37% in a mouse HeLa xenograft model when dosed intraperitoneally at 25mg/kg. These results suggest that selective p110alpha inhibitors may have potential as cancer therapeutic agents.  相似文献   

18.
Studying mononuclear phagocyte cell biology through genetic manipulation by non-viral transfection methods has been challenging due to the dual problems of low transfection efficiency and the difficulty in obtaining stable transfection. To overcome this problem, we developed a system for mediating RNA interference in monocytic cells. The p110alpha isoform of phosphoinositide 3-kinases (PI3Ks) was silenced using a lentiviral vector expressing short hairpin RNA (shRNA). This resulted in the generation of stable THP-1 and U-937 monocytic cell lines deficient in p110alpha. Notably, p110alpha was silenced without affecting levels of either the other class I(A) PI3K catalytic subunits p110beta and p110delta, or the p85alpha regulatory subunit. The role of p110alpha in mediating cell adherence was examined. Monocyte adherence induced in response to either lipopolysaccharide (LPS) or 1alpha,25-dihydroxycholecalciferol (D(3)) was blocked by the PI3K inhibitor LY294002. However, although adherence induced in response to D(3) was sensitive to silencing of p110alpha, LPS-induced adherence was not. Expression of the monocyte differentiation marker CD11b was also induced by D(3) in a PI3K-dependent manner and gene silencing using shRNA showed that p110alpha was also required for this effect. Taken together, these findings demonstrate that LPS and D(3) use distinct isoforms of class I(A) PI3K to induce functional responses and that lentiviral-mediated delivery of shRNA is a powerful approach to study monocyte biology.  相似文献   

19.
Dose of theophylline and caffeine which do not produce aortic arch anomalies in embryonic chicks have been shown to potentiate catecholamine-induced aortic arch malformations in that experimental animal. Theophylline (2.1 X 10(-5) mole per milliliter isotonic saline solution) potentiated the effective dose of norepinephrine more than 100 times. The greatest potentiation observed with epinephrine (2.5 X) was induced by 2.6 X 10(-5) mole caffeine. This study also demonstrated that both methylxanthines specifically induce aneurysms of the ascending aorta and complete absence (or nearly complete constriction) of the right ductus arteriosus. The incidences of these types of cardiovascular malformations proved to be dose dependent with theophylline a more potent teratogen than caffeine. The mobilization of calcium and/or cyclic nucleotide phosphodiesterase inhibition by the methylxanthines are suggested as significant actions in the potentiation of catecholamine-induced aortic arch anomalies.  相似文献   

20.
The class I(A) phosphoinositide 3-kinases (PI3Ks) consist of a 110-kDa catalytic domain and a regulatory subunit encoded by the p85alpha, p85beta, or p55gamma genes. We have determined the effects of disrupting the p85alpha gene on the responses of mast cells stimulated by the cross-linking of Kit and FcepsilonRI, receptors that reflect innate and adaptive responses, respectively. The absence of p85alpha gene products partially inhibited Kit ligand/stem cell factor-induced secretory granule exocytosis, proliferation, and phosphorylation of the serine/threonine kinase Akt. In contrast, p85alpha gene products were not required for FcepsilonRI-initiated exocytosis and phosphorylation of Akt. LY294002, which inhibits all classes of PI3Ks, strongly suppressed Kit- and FcepsilonRI-induced responses in p85alpha -/- mast cells, revealing the contribution of another PI3K family member(s). In contrast to B lymphocytes, mast cell proliferation was not dependent on Bruton's tyrosine kinase, a downstream effector of PI3K, revealing a distinct pathway of PI3K-dependent proliferation in mast cells. Our findings represent the first example of receptor-specific usage of different PI3K family members in a single cell type. In addition, because Kit- but not FcepsilonRI-initiated signaling is associated with mast cell proliferation, the results provide evidence that distinct biologic functions signaled by these two receptors may reflect differential usage of PI3Ks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号