首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Homogeneous low phosphorus availability was reported to regulate root architecture in Arabidopsis via auxin, but the roles of auxin in root architecture plasticity to heterogeneous P availability remain unclear. In this study, we employed auxin biosynthesis-, transport- and signalling-related mutants. Firstly, we found that in contrast to low P (LP) content in the whole medium, primary root (PR) growth of Arabidopsis was partially rescued in the medium divided into two parts: upper with LP and lower with high P (HP) content or in the reverse arrangement. The down part LP was more effective to arrest PR growth as well as to decrease density of lateral roots (DLR) than the upper LP, and effects were dependent on polar auxin transport. Secondly, we verified that auxin receptor TIR1 was involved in the responses of PR growth and lateral root (LR) development to P supply and loss of function of TIR1 inhibited LR development. Thirdly, effects of heterogeneous P on LRD in the upper part of PR was dependent on PIN2 and PIN4, and in the down part on PIN3 and PIN4, whereas density of total LRs was dependent on auxin transporters PIN2 and PIN7. Finally, heterogeneous P availability altered the accumulation of auxin in PR tip and the expression of auxin biosynthesisrelated genes TAA1, YUC1, YUC2, and YUC4. Taken together, we provided evidences for the involvement of auxin in root architecture plasticity in response to heterogeneous phosphorus availability in Arabidopsis.  相似文献   

2.
The role of auxins on root system architecture was studied by applying indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), and 1-naphthaleneacetic acid (NAA) to maize roots and analysing the main processes involved in root development: primary root (PR) elongation, lateral root (LR) formation, and LR root elongation. We found that these effects were not dependent only on concentration, but also on the type of auxin applied. We also studied temporal changes in auxin inhibition of PR elongation. These temporal changes were analysed calculating the elongation ratio between two consecutive one day periods after auxin application. It was observed that a reduction in root elongation was also dependent on the type of auxin applied and its concentration. The inhibitory effect of IBA and IAA decreased on the second day, and the ratio also increased with the concentration. In contrast, NAA increased root elongation inhibition with time. Indeed, the ratio decreased as the NAA concentration increased. Regarding LR formation, we observed that external auxin increased only LR formation in certain zones of the PR. Finally, comparison of inhibition elongation associated with auxin in the LR and PR clearly demonstrates that PR elongation was more sensitive to auxin than LR elongation.  相似文献   

3.
Root system architecture depends on nutrient availability, which shapes primary and lateral root development in a nutrient-specific manner. To better understand how nutrient signals are integrated into root developmental programs, we investigated the morphological response of Arabidopsis thaliana roots to iron (Fe). Relative to a homogeneous supply, localized Fe supply in horizontally separated agar plates doubled lateral root length without having a differential effect on lateral root number. In the Fe uptake-defective mutant iron-regulated transporter1 (irt1), lateral root development was severely repressed, but a requirement for IRT1 could be circumvented by Fe application to shoots, indicating that symplastic Fe triggered the local elongation of lateral roots. The Fe-stimulated emergence of lateral root primordia and root cell elongation depended on the rootward auxin stream and was accompanied by a higher activity of the auxin reporter DR5-β-glucuronidase in lateral root apices. A crucial role of the auxin transporter AUXIN RESISTANT1 (AUX1) in Fe-triggered lateral root elongation was indicated by Fe-responsive AUX1 promoter activities in lateral root apices and by the failure of the aux1-T mutant to elongate lateral roots into Fe-enriched agar patches. We conclude that a local symplastic Fe gradient in lateral roots upregulates AUX1 to accumulate auxin in lateral root apices as a prerequisite for lateral root elongation.  相似文献   

4.
Polar auxin transport inhibitors, including N-1-naphthylphthalamicacid (NPA) and 2,3,5-triiodobenzoic acid (TIBA), have variouseffects on physiological and developmental events, such as theelongation and tropism of roots and stems, in higher plants.We isolated NPA-resistant mutants of Arabidopsis thaliana, withmutations designated pir1 and pir2, that were also resistantto TIBA. The mutations specifically affected the root-elongationprocess, and they were shown ultimately to be allelic to aux1and ein2, respectively, which are known as mutations that affectresponses to phytohormones. The mechanism of action of auxintransport inhibitors was investigated with these mutants, inrelation to the effects of ethylene, auxin, and the polar transportof auxin. With respect to the inhibition of root elongationin A. thaliana, we demonstrated that (1) the background levelof ethylene intensifies the effects of auxin transport inhibitors,(2) auxin transport inhibitors might act also via an inhibitorypathway that does not involve ethylene, auxin, or the polartransport of auxin, (3) the hypothesis that the inhibitory effectof NPA on root elongation is due to high-level accumulationof auxin as a result of blockage of auxin transport is not applicableto A. thaliana, and (4) in contrast to NPA, TIBA itself hasa weak auxin-like inhibitory effect. (Received April 12, 1996; Accepted September 2, 1996)  相似文献   

5.
Changes in root architecture are one of the adaptive strategies used by plants to compensate for nutrient deficiencies in soils. In this work, the temporal responses of Arabidopsis (Arabidopsis thaliana) root system architecture to low boron (B) supply were investigated. Arabidopsis Col-0 seedlings were grown in 10 μM B for 5 days and then transferred to a low B medium (0.4 μM) or control medium (10 μM) for a 4-day period. Low B supply caused an inhibition of primary root (PR) growth without altering either the growth or number of lateral roots (LRs). In addition, low B supply induced root hair formation and elongation in positions close to the PR meristem not observed under control conditions. The possible role of auxin and ethylene in the alteration of root system architecture elicited by low B supply was also studied by using two Arabidopsis reporter lines (DR5:GUS and EBS:GUS) and two Arabidopsis mutants with impaired auxin and ethylene signaling (aux1-22 and ein2-1). Low B supply increased auxin reporter DR5:GUS activity in PR tip, suggesting that low B alters the pattern of auxin distribution in PR tip. Moreover, PR elongation in aux1-22 mutant was less sensitive to low B treatment than in wild-type plants, which suggests that auxin resistant 1 (AUX1) participates in the inhibition of PR elongation under low B supply. From all these results, a hypothetical model to explain the effect of low B treatment on PR growth is proposed. We also show that ethylene, via ethylene-insensitive 2 (EIN2) protein, is involved in the induction of root hair formation and elongation under low B treatment.  相似文献   

6.
Arabidopsis (Arabidopsis thaliana) plants display a number of root developmental responses to low phosphate availability, including primary root growth inhibition, greater formation of lateral roots, and increased root hair elongation. To gain insight into the regulatory mechanisms by which phosphorus (P) availability alters postembryonic root development, we performed a mutant screen to identify genetic determinants involved in the response to P deprivation. Three low phosphate-resistant root lines (lpr1-1 to lpr1-3) were isolated because of their reduced lateral root formation in low P conditions. Genetic and molecular analyses revealed that all lpr1 mutants were allelic to BIG, which is required for normal auxin transport in Arabidopsis. Detailed characterization of lateral root primordia (LRP) development in wild-type and lpr1 mutants revealed that BIG is required for pericycle cell activation to form LRP in both high (1 mm) and low (1 microm) P conditions, but not for the low P-induced alterations in primary root growth, lateral root emergence, and root hair elongation. Exogenously supplied auxin restored normal lateral root formation in lpr1 mutants in the two P treatments. Treatment of wild-type Arabidopsis seedlings with brefeldin A, a fungal metabolite that blocks auxin transport, phenocopies the root developmental alterations observed in lpr1 mutants in both high and low P conditions, suggesting that BIG participates in vesicular targeting of auxin transporters. Taken together, our results show that auxin transport and BIG function have fundamental roles in pericycle cell activation to form LRP and promote root hair elongation. The mechanism that activates root system architectural alterations in response to P deprivation, however, seems to be independent of auxin transport and BIG.  相似文献   

7.
In plants, the plasticity of root architecture in response to nitrogen availability largely determines nitrogen acquisition efficiency. One poorly understood root growth response to low nitrogen availability is an observed increase in the number and length of lateral roots (LRs). Here, we show that low nitrogen‐induced Arabidopsis LR growth depends on the function of the auxin biosynthesis gene TAR2 (tryptophan aminotransferase related 2). TAR2 was expressed in the pericycle and the vasculature of the mature root zone near the root tip, and was induced under low nitrogen conditions. In wild type plants, low nitrogen stimulated auxin accumulation in the non‐emerged LR primordia with more than three cell layers and LR emergence. Conversely, these low nitrogen‐mediated auxin accumulation and root growth responses were impaired in the tar2‐c null mutant. Overexpression of TAR2 increased LR numbers under both high and low nitrogen conditions. Our results suggested that TAR2 is required for reprogramming root architecture in response to low nitrogen conditions. This finding suggests a new strategy for improving nitrogen use efficiency through the engineering of TAR2 expression in roots.  相似文献   

8.
Up-regulation of the high-affinity transport system (HATS) for NO(3)(-) and stimulation of lateral root (LR) growth are two important adaptive responses of the root system to nitrogen limitation. Up-regulation of the NO(3)(-) HATS by nitrogen starvation is suppressed in the atnrt2.1-1 mutant of Arabidopsis (Arabidopsis thaliana), deleted for both NRT2.1 and NRT2.2 nitrate transporter genes. We then used this mutant to determine whether lack of HATS stimulation affected the response of the root system architecture (RSA) to low NO(3)(-) availability. In Wassilewskija (Ws) wild-type plants, transfer from high to low NO(3)(-) medium resulted in contrasting responses of RSA, depending on the level of nitrogen limitation. Moderate nitrogen limitation (transfer from 10 mm to 1 or 0.5 mm NO(3)(-)) mostly led to an increase in the number of visible laterals, while severe nitrogen stress (transfer from 10 mm to 0.1 or 0.05 mm NO(3)(-)) promoted mean LR length. The RSA response of the atnrt2.1-1 mutant to low NO(3)(-) was markedly different. After transfer from 10 to 0.5 mm NO(3)(-), the stimulated appearance of LRs was abolished in atnrt2.1-1 plants, whereas the increase in mean LR length was much more pronounced than in Ws. These modifications of RSA mimicked those of Ws plants subjected to severe nitrogen stress and could be fully explained by the lowered NO(3)(-) uptake measured in the mutant. This suggests that the uptake rate of NO(3)(-), rather than its external concentration, is the key factor triggering the observed changes in RSA. However, the mutation of NRT2.1 was also found to inhibit initiation of LR primordia in plants subjected to nitrogen limitation independently of the rate of NO(3)(-) uptake by the whole root system and even of the presence of added NO(3)(-) in the external medium. This indicates a direct stimulatory role for NRT2.1 in this particular step of LR development. Thus, it is concluded that NRT2.1 has a key dual function in coordinating root development with external NO(3)(-) availability, both indirectly through its role as a major NO(3)(-) uptake system that determines the nitrogen uptake-dependent RSA responses, and directly through a specific action on LR initiation under nitrogen-limited conditions.  相似文献   

9.
Miura K  Lee J  Gong Q  Ma S  Jin JB  Yoo CY  Miura T  Sato A  Bohnert HJ  Hasegawa PM 《Plant physiology》2011,155(2):1000-1012
Phosphate (Pi) limitation causes plants to modulate the architecture of their root systems to facilitate the acquisition of Pi. Previously, we reported that the Arabidopsis (Arabidopsis thaliana) SUMO E3 ligase SIZ1 regulates root architecture remodeling in response to Pi limitation; namely, the siz1 mutations cause the inhibition of primary root (PR) elongation and the promotion of lateral root (LR) formation. Here, we present evidence that SIZ1 is involved in the negative regulation of auxin patterning to modulate root system architecture in response to Pi starvation. The siz1 mutations caused greater PR growth inhibition and LR development of seedlings in response to Pi limitation. Similar root phenotypes occurred if Pi-deficient wild-type seedlings were supplemented with auxin. N-1-Naphthylphthalamic acid, an inhibitor of auxin efflux activity, reduced the Pi starvation-induced LR root formation of siz1 seedlings to a level equivalent to that seen in the wild type. Monitoring of the auxin-responsive reporter DR5::uidA indicated that auxin accumulates in PR tips at early stages of the Pi starvation response. Subsequently, DR5::uidA expression was observed in the LR primordia, which was associated with LR elongation. The time-sequential patterning of DR5::uidA expression occurred earlier in the roots of siz1 as compared with the wild type. In addition, microarray analysis revealed that several other auxin-responsive genes, including genes involved in cell wall loosening and biosynthesis, were up-regulated in siz1 relative to wild-type seedlings in response to Pi starvation. Together, these results suggest that SIZ1 negatively regulates Pi starvation-induced root architecture remodeling through the control of auxin patterning.  相似文献   

10.
The requirement of auxin for the ethylene-mediated growth response in the root of Arabidopsis thaliana seedlings was investigated using two ethylene-resistant mutants, aux1-7 and eir1-1, whose roots have been shown to have a defect in the auxin influx and efflux carriers, respectively. A 50% inhibition of growth (I(50)) was achieved with 0.84 microl liter(-1) ethylene in wild-type roots, but 71.3 microl liter( -1) ethylene was required to induce I(50) in eir1-1 roots. In aux1-7 roots, I(50) was not obtained even at 1,000 microl liter(-1) ethylene. By contrast, in the presence of 10 nM 1-naphthaleneacetic acid (NAA), the concentrations of ethylene required to induce I(50) in eir1-1 and aux1-7 roots were greatly reduced nearly to the level required in wild-type roots. Since the action of NAA to restore the ethylene response in aux1-7 roots was not replaced by IAA, an increase in the intracellular level of auxin is likely to be the cause for the restoration of ethylene response. NAA at 10 nM did not inhibit root growth when applied solely, but it was the optimum concentration to recover the ethylene response in the mutant roots. These results suggest that auxin is a positive regulator for ethylene-induced inhibition in root elongation.  相似文献   

11.
12.
The postembryonic developmental program of the plant root system is plastic and allows changes in root architecture to adapt to environmental conditions such as water and nutrient availability. Among essential nutrients, phosphorus (P) often limits plant productivity because of its low mobility in soil. Therefore, the architecture of the root system may determine the capacity of the plant to acquire this nutrient. We studied the effect of P availability on the development of the root system in Arabidopsis. We found that at P-limiting conditions (<50 microM), the Arabidopsis root system undergoes major architectural changes in terms of lateral root number, lateral root density, and primary root length. Treatment with auxins and auxin antagonists indicate that these changes are related to an increase in auxin sensitivity in the roots of P-deprived Arabidopsis seedlings. It was also found that the axr1-3, axr2-1, and axr4-1 Arabidopsis mutants have normal responses to low P availability conditions, whereas the iaa28-1 mutant shows resistance to the stimulatory effects of low P on root hair and lateral root formation. Analysis of ethylene signaling mutants and treatments with 1-aminocyclopropane-1-carboxylic acid showed that ethylene does not promote lateral root formation under P deprivation. These results suggest that in Arabidopsis, auxin sensitivity may play a fundamental role in the modifications of root architecture by P availability.  相似文献   

13.
Lateral root development in cultured seedlings of Pisum sativum (cv. Alaska) was modified by the application of auxin transport inhibitors or antagonists. When applied either to replace the root tip or beneath the cotyledonary node, two auxin transport inhibitors, 2,3,5-triiodobenzoic acid (TIBA) and 3,3a-dihydro-2-(p-methoxyphenyl)-8H-pyrazolo[5,1-α]isoindol-8-one (DPX-1840), increased cell division activity opposite the protoxylem poles. This resulted in the formation of masses of cells, which we are calling root primordial masses (RPMs), 2 to 3 days after treatment. RPMs differed from lateral root primordia in that they lacked apical organization. Some roots however developed both RPMs and lateral roots indicating that both structures were similar in terms of the timing and location of cell division in the pericycle and endodermis leading to their initiation. Removal of the auxin transport inhibitors allowed many of the RPMs to organize later into lateral root primordia and to emerge in clusters. When the auxin, indoleacetic acid (IAA) was added to the growth medium along with DPX-1840, 3 ranks of RPMs now in the form of fasciated lateral roots emerged from the primary root. The auxin antagonist, p-chlorophenoxy-isobutyric acid (PCIB), also induced RPM formation. In contrast to DPX-1840 treatment, the addition of IAA during PCIB treatment caused normal lateral root development.  相似文献   

14.
15.
Nitric oxide (NO) is a bioactive molecule that functions in numerous physiological processes in plants, most of them involving cross-talk with traditional phytohormones. Auxin is the main hormone that regulates root system architecture. In this communication we report that NO promotes lateral root (LR) development, an auxin-dependent process. Application of the NO donor sodium nitroprusside (SNP) to tomato (Lycopersicon esculentum Mill.) seedlings induced LR emergence and elongation in a dose-dependent manner, while primary root (PR) growth was diminished. The effect is specific for NO since the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO) blocked the action of SNP. Depletion of endogenous NO with CPTIO resulted in the complete abolition of LR emergence and a 40% increase in PR length, confirming a physiological role for NO in the regulation of root system growth and development. Detection of endogenous NO by the specific probe 4,5-diaminofluorescein diacetate (DAF-2 DA) revealed that the NO signal was specifically located in LR primordia during all stages of their development. In another set of experiments, SNP was able to promote LR development in auxin-depleted seedlings treated with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). Moreover, it was found that LR formation induced by the synthetic auxin 1-naphthylacetic acid (NAA) was prevented by CPTIO in a dose-dependent manner. All together, these results suggest a novel role for NO in the regulation of LR development, probably operating in the auxin signaling transduction pathway.Abbreviations CPTIO 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide - DAF-2 DA 4,5-Diaminofluorescein diacetate - LR Lateral root - NAA 1-Naphthylacetic acid - NO Nitric oxide - NPA N-1-Naphthylphthalamic acid - PR Primary root - SNP Sodium nitroprusside  相似文献   

16.
Coumarin is a highly active allelopathic compound which plays a key role in plant–plant interactions and communications. It affects root growth and development of many species, but its mode of action has not been clarified yet. It has been hypothesized that auxin could mediate coumarin-induced effects on root system. Through morphological and pharmacological approaches together with the use of Arabidopsis auxin mutants, a possible interaction between coumarin and auxin in driving root system development has been investigated in Arabidopsis thaliana (Col-0). Coumarin strongly affected primary root elongation and lateral root development of Arabidopsis seedlings. In particular, 10?4 M coumarin significantly inhibited primary root elongation increasing lateral root number and root hairs length. Further, coumarin addition was able to restore the negative effects of TIBA and NPA, two auxin transport inhibitors, which caused a complete inhibition of lateral root formation. Arabidopsis auxin mutants differently responded to coumarin compared to wild type (Col-0). In particular, lax3 mutant showed the lowest (42 %) inhibition of primary root length, whereas, eir1-4 mutant had higher inhibition (53 %) compared to Col-0; conversely, aux1-22 mutant did not show any effect in response to coumarin. An increase of lateral root number was observed in pin1 mutant only. Finally, coumarin increased the root hairs length in eir1-4, lax3, pin1 and pin3-5 mutants, but not in aux1-22. These results suggested a functional interaction between coumarin and auxin polar transport in driving root development in A. thaliana.  相似文献   

17.
Jasmonic acid (JA) regulates a broad range of plant defense and developmental responses. COI1 has been recently found to act as JA receptor. In this report, we show that low micromolar concentrations of JA inhibited primary root (PR) growth and promoted lateral root (LR) formation in Arabidopsis wild-type (WT) seedlings. It was observed that the coi1-1 mutant was less sensitive to JA on pericycle cell activation to induce lateral root primordia (LRP) formation and presented alterations in lateral root positioning and lateral root emergence on bends. To investigate JA-auxin interactions important for remodeling of root system (RS) architecture, we tested the expression of auxin-inducible markers DR5:uidA and BA3:uidA in WT and coi1-1 seedlings in response to indole-3-acetic acid (IAA) and JA and analyzed the RS architecture of a suite of auxin-related mutants under JA treatments. We found that JA did not affect DR5:uidA and BA3:uidA expression in WT and coi1-1 seedlings. Our data also showed that PR growth inhibition in response to JA was likely independent of auxin signaling and that the induction of LRP required ARF7, ARF19, SLR, TIR1, AFB2, AFB3 and AXR1 loci. We conclude that JA regulation of postembryonic root development involves both auxin-dependent and independent mechanisms.  相似文献   

18.
Li X  Mo X  Shou H  Wu P 《Plant & cell physiology》2006,47(8):1112-1123
In Arabidopsis, lateral root formation is a post-embryonic developmental event, which is regulated by hormones and environmental signals. In this study, via analyzing the expression of cyclin genes during lateral root (LR) formation, we report that cytokinins (CTKs) inhibit the initiation of LR through blocking the pericycle founder cells cycling at the G(2) to M transition phase, while the promotion by CTK of LR elongation is due to the stimulation of the G(1) to S transition. No significant difference was detected in the inhibitory effect of CTK on LR formation between wild-type plants and mutants defective in auxin response or transport. In addition, exogenously applied auxin at different concentrations could not rescue the CTK-mediated inhibition of LR initiation. Our data suggest that CTK and auxin might control LR initiation through two separate signaling pathways in Arabidopsis. The CTK-mediated repression of LR initiation is transmitted through the two-component signal system and mediated by the receptor CRE1.  相似文献   

19.
We have found that chromosaponin I (CSI), a gamma-pyronyl-triterpenoid saponin isolated from pea (Pisum sativum L. cv Alaska), specifically interacts with AUX1 protein in regulating the gravitropic response of Arabidopsis roots. Application of 60 microM CSI disrupts the vertically oriented elongation of wild-type roots grown on agar plates but orients the elongation of agravitropic mutant aux1-7 roots toward the gravity. The CSI-induced restoration of gravitropic response in aux1-7 roots was not observed in other agravitropic mutants, axr2 and eir1-1. Because the aux1-7 mutant is reduced in sensitivity to auxin and ethylene, we examined the effects of CSI on another auxin-resistant mutant, axr1-3, and ethylene-insensitive mutant ein2-1. In aux1-7 roots, CSI stimulated the uptake of [(3)H]indole-3-acetic acid (IAA) and induced gravitropic bending. In contrast, in wild-type, axr1-3, and ein2-1 roots, CSI slowed down the rates of gravitropic bending and inhibited IAA uptake. In the null allele of aux1, aux1-22, the agravitropic nature of the roots and IAA uptake were not affected by CSI. This close correlation between auxin uptake and gravitropic bending suggests that CSI may regulate gravitropic response by inhibiting or stimulating the uptake of endogenous auxin in root cells. CSI exhibits selective influence toward IAA versus 1-naphthaleneacetic acid as to auxin-induced inhibition in root growth and auxin uptake. The selective action of CSI toward IAA along with the complete insensitivity of the null mutant aux1-22 toward CSI strongly suggest that CSI specifically interacts with AUX1 protein.  相似文献   

20.
Zhao Y  Wang T  Zhang W  Li X 《The New phytologist》2011,189(4):1122-1134
? The SOS signaling pathway plays an important role in plant salt tolerance. However, little is known about how the SOS pathway modulates organ development in response to salt stress. Here, the involvement of SOS signaling in NaCl-induced lateral root (LR) development in Arabidopsis was assessed. ? Wild-type and sos3-1 mutant seedlings on iso-osmotic concentrations of NaCl and mannitol were analyzed. The marker lines for auxin accumulation, auxin transport, cell division activity and stem cells were also examined. ? The results showed that ionic effect alleviates the inhibitory effects of osmotic stress on LR development. LR development of the sos3-1 mutant showed increased sensitivity specifically to low salt. Under low-salt conditions, auxin in cotyledons and LR primordia (LRP) of the sos3-1 mutant was markedly reduced. Decreases in auxin polar transport of mutant roots may cause insufficient auxin supply, resulting in defects not only in LR initiation but also in cell division activity in LRP. ? Our data uncover a novel role of the SOS3 gene in modulation of LR developmental plasticity and adaptation in response to low salt stress, and reveal a new mechanism for plants to sense and adapt to small changes of salt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号