首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the nucleus of animal and plant cells individual chromosomes maintain a compartmentalized structure. Chromosome territories (CTs), as these structures were named by Theodor Boveri, are essential components of the higher-order chromatin architecture. Recent studies in mammals and non-mammalian vertebrates indicate that the radial position of a given CT (or segments thereof) is correlated with its size, its gene-density and its replication timing. As a representative case, chicken cell nuclei show highly consistent radial chromatin arrangements: gene-rich, early replicating microchromosomes are clustered within the nuclear interior, while gene-poor, later replicating macrochromosomes are preferentially located at the nuclear periphery. In humans, chromosomes 18 and 19 (HSA18 and 19) territories that are of similar size show a distinctly different position in the cell nuclei of lymphocytes and lymphoblastoid cells: the gene-rich and early replicating HSA19 CTs are typically found close to the nuclear center, while the gene-poor and later replicating HSA18 CTs are preferentially located at the nuclear periphery. Recent comparative maps between human and chicken chromosomes revealed that the chicken macrochromosomes 2 and Z contain the genes homologous to HSA18, while the genes on HSA19 are located onto the chicken microchromosomes. These data lend tentative support to the hypothesis that differences in the radial nuclear positions of gene-rich, early replicating and gene-poor, later replicating chromatin have been evolutionarily conserved during a period of more than 300 million years irrespective of the evolution of highly divergent karyotypes between humans and chicken.  相似文献   

2.
Mapping DNase-I hypersensitive sites on human isochores   总被引:3,自引:0,他引:3  
Di Filippo M  Bernardi G 《Gene》2008,419(1-2):62-65
Mapping DNase-I hypersensitive sites (HS) was used in the past to identify regulatory elements of specific genes. More recently, thousands of HS were identified in the human genome by using high-throughput methods. These approaches showed a general enrichment of HS near or within known genes, within CpG islands, within human-mouse conserved regions and in GC-rich regions of the genome. Here we show that HS: (i) are characterized by a much higher GC level (approximately 56%) than the average GC level of the human genome (approximately 41%); (ii) are overwhelmingly located in the GC-richest compartment of the genome, which is predominantly associated with an open chromatin structure; (iii) and are slightly more and slightly less frequent than genes, respectively, in the gene-rich and in the gene-poor isochore families.  相似文献   

3.
Spatial organization of chromatin in the interphase nucleus plays a role in gene expression and inheritance. Although it appears not to be random, the principles of this organization are largely unknown. In this work, we show an explicit relationship between the intranuclear localization of various chromosome segments and the pattern of gene distribution along the genome sequence. Using a 7-megabase-long region of the Drosophila melanogaster chromosome 2 as a model, we observed that the six gene-poor chromosome segments identified in the region interact with components of the nuclear matrix to form a compact stable cluster. The six gene-rich segments form a spatially segregated unstable cluster dependent on nonmatrix nuclear proteins. The resulting composite structure formed by clusters of gene-rich and gene-poor regions is reproducible between the nuclei. We suggest that certain aspects of chromosome folding in interphase are predetermined and can be inferred through in silico analysis of chromosome sequence, using gene density profile as a manifestation of "folding code."  相似文献   

4.
DNA helix: the importance of being GC-rich   总被引:14,自引:2,他引:12       下载免费PDF全文
  相似文献   

5.
6.
7.
In the nuclei of human lymphocytes, chromosome territories are distributed according to the average gene density of each chromosome. However, chromosomes are very heterogeneous in size and base composition, and can contain both very gene-dense and very gene-poor regions. Thus, a precise analysis of chromosome organisation in the nuclei should consider also the distribution of DNA belonging to the chromosomal bands in each chromosome. To improve our understanding of the chromatin organisation, we localised chromosome 7 DNA regions, endowed with different gene densities, in the nuclei of human lymphocytes. Our results showed that this chromosome in cell nuclei is arranged radially with the gene-dense/GC-richest regions exposed towards the nuclear interior and the gene-poorest/GC-poorest ones located at the nuclear periphery. Moreover, we found that chromatin fibres from the 7p22.3 and the 7q22.1 bands are not confined to the territory of the bulk of this chromosome, protruding towards the inner part of the nucleus. Overall, our work demonstrates the radial arrangement of the territory of chromosome 7 in the lymphocyte nucleus and confirms that human genes occupy specific radial positions, presumably to enhance intra- and inter-chromosomal interaction among loci displaying a similar expression pattern, and/or similar replication timing.  相似文献   

8.
Summary We have investigated the compositional properties of coding sequences from cold-blooded vertebrates and we have compared them with those from warm-blooded vertebrates. Moreover, we have studied the compositional correlations of coding sequences with the genomes in which they are contained, as well as the compositional correlations among the codon positions of the genes analyzed.The distribution of GC levels of the third codon positions of genes from cold-blooded vertebrates are distinctly different from those of warm-blooded vertebrates in that they do not reach the high values attained by the latter. Moreover, coding sequences from cold-blooded vertebrates are either equal, or, in most cases, lower in GC (not only in third, but also in first and second codon positions) than homologous coding sequences from warm-blooded vertebrates; higher values are exceptional. These results at the gene level are in agreement with the compositional differences between cold-blooded and warm-blooded vertebrates previously found at the whole genome (DNA) level (Bernardi and Bernardi 1990a,b).Two linear correlations were found: one between the GC levels of coding sequences (or of their third codon positions) and the GC levels of the genomes of cold-blooded vertebrates containing them; and another between the GC levels of third and first+ second codon positions of genes from cold-blooded vertebrates. The first correlation applies to the genomes (or genome compartments) of all vertebrates and the second to the genes of all living organisms. These correlations are tantamount to a genomic code.  相似文献   

9.
The distribution of Alu and L1 retroelements in the human genome changes with their age. Active retroelements target AT-rich regions, but their frequency increases in GC- and gene-rich regions of the genome with increasing age of the insertions. Currently there is no consensus on the mechanism generating this pattern. In this paper we test the hypothesis that selection against deleterious deletions caused by ectopic recombination between repeats is the main cause of the inhomogeneous distribution of L1s and Alus, by means of a detailed analysis of the GC distribution of the repeats on the sex chromosomes. We show that (1) unlike on the autosomes and X chromosome, L1s do not accumulate on the Y chromosome in GC-rich regions, whereas Alus accumulate there to a minor extent; (2) on the Y chromosome Alu and L1 densities are positively correlated, unlike the negative correlation on other chromosomes; and (3) in gene-poor regions of chromosome 4 and X, the distribution of Alus and L1s does not shift toward GC-rich regions. In addition, we show that although local GC content of long L1 insertions is lower than average, their selective loss from recombining chromosomes is not the main cause of the enrichment of ancient L1s in GC-rich regions. The results support the hypothesis that ectopic recombination causes the shift of Alu and L1 distributions toward the gene-rich regions of the genome. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. Reviewing Editor: Dr. Deborah Charlesworth  相似文献   

10.
Gene-containing regions of wheat and the other grass genomes   总被引:18,自引:0,他引:18  
Sandhu D  Gill KS 《Plant physiology》2002,128(3):803-811
Deletion line-based high-density physical maps revealed that the wheat (Triticum aestivum) genome is partitioned into gene-rich and -poor compartments. Available deletion lines have bracketed the gene-containing regions to about 10% of the genome. Emerging sequence data suggest that these may further be partitioned into "mini" gene-rich and gene-poor regions. An average of about 10% of each gene-rich region seem to contain genes. Sequence analyses in various species suggest that uneven distribution of genes may be a characteristic of all grasses and perhaps all higher organisms. Comparison of the physical maps with genetic linkage maps showed that recombination in wheat and barley (Hordeum vulgare) is confined to the gene-containing regions. Number of genes, gene density, and the extent of recombination vary greatly among the gene-rich regions. The gene order, relative region size, and recombination are highly conserved within the tribe Triticeae and moderately conserved within the family. Gene-poor regions are composed of retrotransposon-like non-transcribing repeats and pseudogenes. Direct comparisons of orthologous regions indicated that gene density in wheat is about one-half compared with rice (Oryza sativa). Genome size difference between wheat and rice is, therefore, mainly because of amplification of the gene-poor regions. Presence of species-, genera-, and family-specific repeats reveal a repeated invasion of the genomes by different retrotransposons over time. Preferential transposition to adjacent locations and presence of vital genes flanking a gene-rich region may have restricted retrotransposon amplification to gene-poor regions, resulting into tandem blocks of non-transcribing repeats. Insertional inactivation by adjoining retro-elements and selection seem to have played a major role in stabilizing genomes.  相似文献   

11.
The differentiation between gene-rich and transposon-rich (gene-poor) regions is a common feature of plant genomes. This may be due to preferential integration of transposons into gene-poor regions or may be due to purifying selection against transposon insertion into gene-rich regions. We examined the distribution of a low-copy-number mobile subfamily of Arabidopsis CACTA transposons in the genomes of 19 natural variants (ecotypes) of A. thaliana, and compared that to the pattern of integrations induced in the laboratory by mutation of the DDM1 ( Decrease in DNA Methylation) gene. Sequences similar to mobile CACTA1 copies were distributed among the ecotypes and showed high degrees of polymorphism in genomic localization. Despite the high level of polymorphism, the copy number was low in all the ecotypes examined, and the elements were localized preferentially in pericentromeric and transposon-rich regions. This contrasts with the pattern of transposition induced by the ddm1 mutation, in which the range of integration sites is less biased and the copy number frequently increases. Based on these observations, we discuss the possible contribution of natural selection and chromatin structure to the distribution of transposons.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by M.-A. Grandbastien  相似文献   

12.
An analysis by CsCl density gradient centrifugation has shown that, at a fragment size of about 100 kb, the DNA of a urochordate, Ciona intestinalis, is remarkably homogeneous in base composition. Localization of 16 coding sequences from C. intestinalis, chosen so as to cover the distribution range of all available coding sequences for this organism, showed a nearly symmetrical distribution almost coinciding with the DNA distribution. Both distributions are remarkably different from those found in vertebrates, which are skewed towards high GC levels (to a greater extent in warm-blooded vertebrates). In order to account for this change in genome organization, we propose a working hypothesis that can be tested. Basically, we suggest that the genome duplication that occurred between urochordates and fishes was accompanied by a preferential integration of transposons in one compartment of the genome, which was made gene-poor (by lowering gene density) compared to the rest. Since the gene-poor compartment (the 'empty quarter') is characterized by a lower level of gene expression compared to the gene-rich compartment (the 'genome core') in the vertebrate genome, we further suggest, as a working hypothesis, that a compartmentalization according to gene expression already existed in urochordates.  相似文献   

13.
14.
15.
Summary We have made pairwise comparisons between the coding sequences of 21 genes from coldblooded vertebrates and 41 homologous sequences from warm-blooded vertebrates. In the case of 12 genes, GC levels were higher, especially in third codon positions, in warm-blooded vertebrates compared to cold-blooded vertebrates. Six genes showed no remarkable difference in GC level and three showed a lower level. In the first case, higher GC levels appear to be due to a directional fixation of mutations, presumably under the influence of body temperature (see Bernardi and Bernardi 1986b). These GC-richer genes of warm-blooded vertebrates were located, in all cases studied, in isochores higher in GC than those comprising the homologous genes of cold-blooded vertebrates. In the third case, increases appear to be due to a limited formation of GC-rich isochores which took place in some cold-blooded vertebrates after the divergence of warm-blooded vertebrates. The directional changes in the GC content of coding sequences and the evolutionary conservation of both increased and unchanged GC levels are in keeping with the existence of compositional constraints on the genome.  相似文献   

16.

Background

The very recent availability of fully sequenced individual human genomes is a major revolution in biology which is certainly going to provide new insights into genetic diseases and genomic rearrangements.

Results

We mapped the insertions, deletions and SNPs (single nucleotide polymorphisms) that are present in Craig Venter''s genome, more precisely on chromosomes 17 to 22, and compared them with the human reference genome hg17. Our results show that insertions and deletions are almost absent in L1 and generally scarce in L2 isochore families (GC-poor L1+L2 isochores represent slightly over half of the human genome), whereas they increase in GC-rich isochores, largely paralleling the densities of genes, retroviral integrations and Alu sequences. The distributions of insertions/deletions are in striking contrast with those of SNPs which exhibit almost the same density across all isochore families with, however, a trend for lower concentrations in gene-rich regions.

Conclusions

Our study strongly suggests that the distribution of insertions/deletions is due to the structure of chromatin which is mostly open in gene-rich, GC-rich isochores, and largely closed in gene-poor, GC-poor isochores. The different distributions of insertions/deletions and SNPs are clearly related to the two different responsible mechanisms, namely recombination and point mutations.  相似文献   

17.
Presence of genes in gene-rich regions on wheat chromosomes has been widely reported. However, there is a lack of information on the precise characterization of these regions with respect to the distribution of genes and recombination. We attempted to critically analyze the available data to characterize gene-rich regions and to study the distribution of genes and recombination on wheat homoeologous group 6 chromosomes which are a reservoir of several useful genes controlling traits of economic importance. Consensus physical and genetic linkage maps were constructed for homoeologous group 6 using physical and genetic mapping data. Five major gene-rich regions were identified on homoeologous group 6 chromosomes, with two on the short and three on long arm. More than 90% of marker or gene loci were present in these five gene-rich regions, which comprise about 30% of the total physical chromosomal length. The gene-rich regions were mainly present in the distal 60% regions of the chromosomes. About 61% of the total loci map in the most distal regions which span only about 4% of the physical length of the chromosome. A range of sub-microscopic regions within each gene-rich region were also identified. Comparisons of the consensus physical and genetic linkage maps revealed that recombination occurred mainly in the gene-rich regions. Seventy percent of the total recombination occurred in the two most distally located regions that span only 4% of the physical length of the chromosomes. The relationship of recombination to the gene-rich region is not linear with distance from the centromere, especially on the long arm. The kb/cM estimates for group 6 chromosomes ranged from 146 kb in the gene-rich to about 10 Mb in the gene-poor region. The information obtained here is vital in understanding wheat genome structure and organization, which may lead in developing better strategies for positional cloning in wheat and related cereals.This revised version was pubished online in April 2005 with corrections to the page numbering.  相似文献   

18.
An approach towards construction of two-dimensional (2D) and three-dimensional (3D) profiles of interphase chromatin architecture by quantification of fluorescence in situ hybridization (FISH) signal intensity is proposed. The technique was applied for analysis of signal intensity and distribution within interphase nuclei of somatic cells in different human tissues. Whole genomic DNA, fraction of repeated DNA sequences (Cot 1) and cloned satellite DNA were used as probes for FISH. The 2D and 3D fluorescence intensity profiles were able to depict FISH signal associations and somatic chromosome pairing. Furthermore, it allowed the detection of replicating signal patterns, the assessment of hybridization efficiency, and comparative analysis of DNA content variation of specific heterochromatic chromosomal regions. The 3D fluorescence intensity profiles allowed the analysis of intensity gradient within the signal volume. An approach was found applicable for determination of assembly of different types of DNA sequences, including classical satellite and alphoid DNA, gene-rich (G-negative bands) and gene-poor (G-positive bands) chromosomal regions as well as for assessment of chromatin architecture and targeted DNA sequence distribution within interphase nuclei. We conclude the approach to be a powerful additional tool for analysis of interphase genome architecture and chromosome behavior in the nucleus of human somatic cells. The text was submitted by the authors in English.  相似文献   

19.
CpG islands, genes and isochores in the genomes of vertebrates   总被引:6,自引:0,他引:6  
B A?ssani  G Bernardi 《Gene》1991,106(2):185-195
We have shown that human genes associated with CpG islands increase in number as they increase in % of guanine + cytosine (GC) levels, and that most genes associated with CpG islands are located in the GC-richest compartment of the human genome. This is an independent confirmation of the concentration gradient of CpG islands (detected as HpaII tiny fragments, or HTF) which was demonstrated in the genome of warm-blooded vertebrates [A?ssani and Bernardi, Gene 106 (1991) 173-183]. We then reassessed the location of CpG islands using the data currently available and confirmed that CpG islands are most frequently located in the 5'-flanking sequences of genes and that they overlap genes to variable extents. We have shown that such extents increase with the increasing GC levels of genes, the GC-richest genes being completely included in CpG islands. Under such circumstances, we have investigated the properties of the 'extragenic' CpG islands located in the 5'-flanking segments of homologous genes from both warm- and cold-blooded vertebrates. We have confirmed that, in cold-blooded vertebrates, CpG islands are often absent; when present, they have lower GC and CpG levels; the latter attain, however, statistically expected values. Finally, we have shown that CpG doublets increase with the increasing GC of exons, introns and intergenic sequences (including 'extragenic' CpG islands) in the genomes from both warm- and cold-blooded vertebrates. The correlations found are the same for both classes of vertebrates, and are similar for exons, introns and intergenic sequences (including 'extragenic' CpG islands). The findings just outlined indicate that the origin and evolution of CpG islands in the vertebrate genome are associated with compositional transitions (GC increases) in genes and isochores.  相似文献   

20.
We carried out a comprehensive survey of small subunit ribosomal RNA sequences from archaeal, bacterial, and eukaryotic lineages in order to understand the general patterns of thermal adaptation in the rRNA genes. Within each lineage, we compared sequences from mesophilic, moderately thermophilic, and hyperthermophilic species. We carried out a more detailed study of the archaea, because of the wide range of growth temperatures within this group. Our results confirmed that there is a clear correlation between the GC content of the paired stem regions of the 16S rRNA genes and the optimal growth temperature, and we show that this correlation cannot be explained simply by phylogenetic relatedness among the thermophilic archaeal species. In addition, we found a significant, positive relationship between rRNA stem length and growth temperature. These correlations are found in both bacterial and archaeal rRNA genes. Finally, we compared rRNA sequences from warm-blooded and cold-blooded vertebrates. We found that, while rRNA sequences from the warm-blooded vertebrates have a higher overall GC content than those from the cold-blooded vertebrates, this difference is not concentrated in the paired regions of the molecule, suggesting that thermal adaptation is not the cause of the nucleotide differences between the vertebrate lineages. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Nicolas Galtier]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号