首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The integration of the mitochondrial and nuclear genomes coordinates cellular energy production and is fundamental to life among eukaryotes. Therefore, there is potential for strong selection to shape the interactions between the two genomes. Several studies have now demonstrated that epistatic interactions between cytoplasmic and nuclear genes for fitness can occur both at a "within" and "across" population level. Genotype-by-environment interactions are common for traits that are encoded by nuclear genes, but the effects of environmental heterogeneity on traits that are partly encoded by cytoplasmic genes have received little attention despite the fact that there are reasons to believe that phenotypic effects of cytoplasmic genetic variation may often be environment specific. Consequently, the importance of environmental heterogeneity to the outcomes of cyto-nuclear fitness interactions and to the maintenance of mitochondrial polymorphism is unclear. Here, we assess the influence of temperature on cyto-nuclear effects on egg-to-adult development time in seed beetles (Callosobruchus maculatus). We employed an "across-population" design, sourcing beetles from five distinct populations and using backcrossing to create orthogonal combinations of distinct introgression lines, fixed for their cytoplasmic and nuclear lineages. We then assayed development times at two different temperatures and found sizeable cyto-nuclear effects in general, as well as temperature- and block-specific cyto-nuclear effects. These results demonstrate that environmental factors such as temperature do exert selection on cytoplasmic genes by favoring specific cyto-nuclear genetic combinations, and are consistent with the suggestion that complex genotype-by-environment interactions may promote the maintenance of polymorphism in mitochondrial genes.  相似文献   

2.
Rand DM  Clark AG  Kann LM 《Genetics》2001,159(1):173-187
Theoretical and empirical studies have shown that selection cannot maintain a joint nuclear-cytoplasmic polymorphism within a population except under restrictive conditions of frequency-dependent or sex-specific selection. These conclusions are based on fitness interactions between a diploid autosomal locus and a haploid cytoplasmic locus. We develop a model of joint transmission of X chromosomes and cytoplasms and through simulation show that nuclear-cytoplasmic polymorphisms can be maintained by selection on X-cytoplasm interactions. We test aspects of the model with a "diallel" experiment analyzing fitness interactions between pairwise combinations of X chromosomes and cytoplasms from wild strains of Drosophila melanogaster. Contrary to earlier autosomal studies, significant fitness interactions between X chromosomes and cytoplasms are detected among strains from within populations. The experiment further demonstrates significant sex-by-genotype interactions for mtDNA haplotype, cytoplasms, and X chromosomes. These interactions are sexually antagonistic--i.e., the "good" cytoplasms in females are "bad" in males--analogous to crossing reaction norms. The presence or absence of Wolbachia did not alter the significance of the fitness effects involving X chromosomes and cytoplasms but tended to reduce the significance of mtDNA fitness effects. The negative fitness correlations between the sexes demonstrated in our empirical study are consistent with the conditions that maintain cytoplasmic polymorphism in simulations. Our results suggest that fitness interactions with the sex chromosomes may account for some proportion of cytoplasmic variation in natural populations. Sexually antagonistic selection or reciprocally matched fitness effects of nuclear-cytoplasmic genotypes may be important components of cytonuclear fitness variation and have implications for mitochondrial disease phenotypes that differ between the sexes.  相似文献   

3.
C. M. Hutter  D. M. Rand 《Genetics》1995,140(2):537-548
A test for coadaptation of nuclear and mitochondrial genomes was performed using the sibling species, Drosophila pseudoobscura and D. persimilis. Two lines of flies with ``disrupted' cytonuclear genotypes were constructed by repeated backcrossing of males from one species to females carrying mitochondrial DNA (mtDNA) from the other species. Each ``disrupted' strain was competed in population cages with the original stock of each species from which the recurrent males were obtained during the backcrossing. As such, the two species' mitochondrial types were competed reciprocally in the nuclear genetic environments of each species. The trajectories of mtDNA haplotypes were followed in discrete-generation population cages using a PCR-four-cutter approach. A significant increase in the frequency of D. pseudoobscura mtDNA was observed in each of four replicate cages with a D. pseudoobscura nuclear background. In the D. persimilis nuclear background, one cage actually showed an increase in frequency of D. pseudoobscura mtDNA, although together the four replicate cages show little change in frequency. These results were repeated after frequency perturbations and reinitiation of each cage. An analysis of fitness components revealed that fertility selection greatly outweighed viability selection in these cytonuclear competition experiments. The asymmetry of the fitnesses of the mtDNA haplotypes on the two genetic backgrounds is consistent in direction with the previously reported asymmetry of female fertility in backcrosses between these two species. While our experiments do not allow us to identify mtDNA as the sole source of fitness variation, at a minimum the data indicate a fitness association between nuclear fertility factors and the D. pseudoobscura mtDNA on its own genetic background.  相似文献   

4.
We develop a series of models that examine the effects of differential selection between the sexes on cytonuclear polymorphism and disequilibria. A detailed analysis is provided for populations under constant fertility or viability selection censused at life stages without frequency differences in the sexes. We show analytically that cytonuclear disequilibria can be generated de novo if the cytoplasmic and nuclear loci each affect female fitness and there is a nonmultiplicative fitness interaction between them. While computer simulations demonstrate that the majority of disequilibria produced by random selection are transient and small in magnitude, measurable permanent disequilibria can result from selective differences both within and between the two sexes. We derive analytic conditions for a protected cytonuclear polymorphism and use numerical simulations to quantitate the likelihood of obtaining permanent nuclear, cytoplasmic, and cytonuclear variation under various patterns of selection. The numerical analysis identifies special selection regimes more likely to generate disequilibria and maintain cytonuclear polymorphism and reveals a direct correlation to the strength of selection. As a byproduct, our models also provide the first decomposition of the different parental contributions to cytonuclear dynamics and the analytic conditions under which selection can cause cytoplasmic frequency changes or a cytonuclear hitchhiking effect.  相似文献   

5.
A highly variable mitochondrial DNA (mtDNA) restriction fragment length polymorphism (RFLP) locus is used to assess the population structure of mitochondrial genomes in the gynodioecious plant Silene vulgaris at two spatial scales. Thirteen mtDNA haplotypes were identified within 250 individuals from 18 populations in a 20-km diameter region of western Virginia. The population structure of these mtDNA haplotypes was estimated as thetaST = 0.574 (+/- 0.066 SE) and, surprisingly, genetic differentiation among populations was negatively correlated with geographic distance (Mantel r = -0.246, P < 0.002). Additionally, mtDNA haplotypes were spatially clumped at the scale of meters within one population. Gender in S. vulgaris is determined by an interaction between autosomal male fertility restorers and cytoplasmic male sterility (CMS) factors, and seed fitness is affected by an interaction between gender and population sex ratio; thus, selection acting on gender could influence the distribution of mtDNA RFLP haplotypes. The sex ratio (females:hermaphrodites) varied among mtDNA haplotypes across the entire metapopulation, possibly because the haplotypes were in linkage disequilibrium with different CMS factors. The gender associated with some of the most common haplotypes varied among populations, suggesting that there is also population structure in male fertility restorer genes. In comparison with reports of mtDNA variation from other published studies, we found that S. vulgaris exhibits a large number of mtDNA haplotypes relative to that observed in other species.  相似文献   

6.
Laporte V  Viard F  Bena G  Valero M  Cuguen J 《Genetics》2001,157(4):1699-1710
We have analyzed the spatial distribution of the sex phenotypes and of mitochondrial, chloroplast, and nuclear markers within two gynodioecious populations of Beta vulgaris ssp. maritima. Within both populations, sexual phenotype variation is controlled mainly by the cytoplasmic genotype, although in one study population a joint polymorphism of cytonuclear factors is clearly involved. In spite of contrasts in the ecology (mainly due to different habitats), a clear common feature in both populations is the highly patchy distribution of cytoplasmic haplotypes, contrasting with the wide distribution of nuclear diversity. This high contrast between cytoplasmic vs. nuclear spatial structure may have important consequences for the maintenance of gynodioecy. It provides opportunities for differential selection since nuclear restorer alleles are expected to be selected for in the presence of their specific cytoplasmic male sterile (CMS) type, but to be neutral (or selected against if there is a cost of restoration) in the absence of their CMS type. Selective processes in such a cytonuclear landscape may explain the polymorphism we observed at restorer loci for two CMS types.  相似文献   

7.
Rand DM 《Genetica》2011,139(5):685-697
Biological variation exists across a nested set of hierarchical levels from nucleotides within genes to populations within species to lineages within the tree of life. How selection acts across this hierarchy is a long-standing question in evolutionary biology. Recent studies have suggested that genome size is influenced largely by the balance of selection, mutation and drift in lineages with different population sizes. Here we use population cage and maternal transmission experiments to identify the relative strength of selection at an individual and cytoplasmic level. No significant trends were observed in the frequency of large (L) and small (S) mtDNAs across 14 generations in population cages. In all replicate cages, new length variants were observed in heteroplasmic states indicating that spontaneous length mutations occurred in these experimental populations. Heteroplasmic flies carrying L genomes were more frequent than those carrying S genomes suggesting an asymmetric mutation dynamic from larger to smaller mtDNAs. Mother-offspring transmission of heteroplasmy showed that the L mtDNA increased in frequency within flies both between and within generations despite sampling drift of the same intensity as occurred in population cages. These results suggest that selection for mtDNA size is stronger at the cytoplasmic than at the organismal level. The fixation of novel mtDNAs within and between species requires a transient intracellular heteroplasmic stage. The balance of population genetic forces at the cytoplasmic and individual levels governs the units of selection on mtDNA, and has implications for evolutionary inference as well as for the effects of mtDNA mutations on fitness, disease and aging.  相似文献   

8.
Sequence variation in mitochondrial DNA (mtDNA) was traditionally considered to be selectively neutral. However, an accumulating body of evidence indicates that this assumption is invalid. Furthermore, recent advances indicate that mtDNA polymorphism can be maintained within populations via selection on the joint mitochondrial-nuclear genotype. Here, we review the latest findings that show mitochondrial and cytoplasmic genetic variation for life-history traits and fitness. We highlight the key importance of the mitochondrial-nuclear interaction as a unit of selection and discuss the consequences of mitochondrially encoded fitness effects on several key evolutionary processes. Our goal is to draw attention to the profound, yet neglected, influence of the mitochondrial genome on the fields of ecology and evolution.  相似文献   

9.
The study of reproductive isolation and species barriers frequently focuses on mitochondrial genomes and has produced two alternative and almost diametrically opposed narratives. On one hand, mtDNA may be at the forefront of speciation events, with co‐evolved mitonuclear interactions responsible for some of the earliest genetic incompatibilities arising among isolated populations. On the other hand, there are numerous cases of introgression of mtDNA across species boundaries even when nuclear gene flow is restricted. We argue that these seemingly contradictory patterns can result from a single underlying cause. Specifically, the accumulation of deleterious mutations in mtDNA creates a problem with two alternative evolutionary solutions. In some cases, compensatory or epistatic changes in the nuclear genome may ameliorate the effects of mitochondrial mutations, thereby establishing coadapted mitonuclear genotypes within populations and forming the basis of reproductive incompatibilities between populations. Alternatively, populations with high mitochondrial mutation loads may be rescued by replacement with a more fit, foreign mitochondrial haplotype. Coupled with many nonadaptive mechanisms of introgression that can preferentially affect cytoplasmic genomes, this form of adaptive introgression may contribute to the widespread discordance between mitochondrial and nuclear genealogies. Here, we review recent advances related to mitochondrial introgression and mitonuclear incompatibilities, including the potential for cointrogression of mtDNA and interacting nuclear genes. We also address an emerging controversy over the classic assumption that selection on mitochondrial genomes is inefficient and discuss the mechanisms that lead lineages down alternative evolutionary paths in response to mitochondrial mutation accumulation.  相似文献   

10.
Electron transport system (ETS) function in mitochondria is essential for the aerobic production of energy. Because ETS function requires extensive interactions between mitochondrial and nuclear gene products, coadaptation between mitochondrial and nuclear genomes may evolve within populations. Hybridization between allopatric populations may then expose functional incompatibilities between genomes that have not coevolved. The intertidal copepod Tigriopus californicus has high levels of nucleotide divergence among populations at mitochondrial loci and suffers F2 hybrid breakdown in interpopulation hybrids. We hypothesize that hybridization results in incompatibilities among subunits in ETS enzyme complexes and that these incompatibilities result in diminished mitochondrial function and fitness. To test this hypothesis, we measured fitness, mitochondrial function, and ETS enzyme activity in inbred recombinant hybrid lines of Tigriopus californicus. We found that (1) both fitness and mitochondrial function are reduced in hybrid lines, (2) only those ETS enzymes with both nuclear and mitochondrial subunits show a loss of activity in hybrid lines, and (3) positive relationships exist between ETS enzyme activity and mitochondrial function and between mitochondrial function and fitness. We also present evidence that hybrid lines harboring mitochondrial DNA (mtDNA) and mitochondrial RNA polymerase (mtRPOL) from the same parental source population have higher fitness than those with mtDNA and mtRPOL from different populations, suggesting that mitochondrial gene regulation may play a role in disruption of mitochondrial performance and fitness of hybrids. These results suggest that disruption of coadaptation between nuclear and mitochondrial genes contributes to the phenomenon of hybrid breakdown.  相似文献   

11.
A growing body of research supports the view that within‐species sequence variation in the mitochondrial genome (mtDNA) is functional, in the sense that it has important phenotypic effects. However, most of this empirical foundation is based on comparisons across populations, and few studies have addressed the functional significance of mtDNA polymorphism within populations. Here, using mitonuclear introgression lines, we assess differences in whole‐organism metabolic rate of adult Drosophila subobscura fruit flies carrying either of three different sympatric mtDNA haplotypes. We document sizeable, up to 20%, differences in metabolic rate across these mtDNA haplotypes. Further, these mtDNA effects are to some extent sex specific. We found no significant nuclear or mitonuclear genetic effects on metabolic rate, consistent with a low degree of linkage disequilibrium between mitochondrial and nuclear genes within populations. The fact that mtDNA haplotype variation within a natural population affects metabolic rate, which is a key physiological trait with important effects on life‐history traits, adds weight to the emergent view that mtDNA haplotype variation is under natural selection and it revitalizes the question as to what processes act to maintain functional mtDNA polymorphism within populations.  相似文献   

12.
Because of their extensive functional interaction, mitochondrial DNA (mtDNA) and nuclear genes may evolve to form coadapted complexes within reproductively isolated populations. As a consequence of coadaptation, the fitness of particular nuclear alleles may depend on mtDNA genotype. Among populations of the copepod Tigriopus californicus, there are high levels of amino acid substitutions in both the mtDNA genes encoding subunits of cytochrome c oxidase (COX) and the nuclear gene encoding cytochrome c (CYC), the substrate for COX. Because of the functional interaction between enzyme and substrate proteins, we hypothesized that the fitness of CYC genotypes would depend on mtDNA genotype. To test this hypothesis, segregation ratios for CYC and a second nuclear marker (histone H1) unrelated to mitochondrial function were scored in F2 progeny of several reciprocal interpopulation crosses. Genotypic ratios at the CYC locus (but not the H1 locus) differed between reciprocal crosses and differed from expected Mendelian ratios, suggesting that CYC genotypic fitnesses were strongly influenced by cytoplasmic (including mtDNA) background. However, in most cases the nature of the deviations from Mendelian ratios and differences between reciprocal crosses are not consistent with simple coevolution between CYC and mtDNA background. In a cross in which both newly hatched larvae and adults were sampled, only the adult sample showed deviations from Mendelian ratios, indicating that genotypic viabilities differed. In two of six crosses, large genotypic ratio differences for CYC were observed between the sexes. These results suggest that significant variation in nuclear-mtDNA coadaptation may exist between T. californicus populations and that the relative viability of specific cytonuclear allelic combinations is somehow affected by sex.  相似文献   

13.
We compared patterns of mitochondrial restriction fragment length polymorphism (RFLP) diversity with patterns of nuclear RFLP diversity to investigate the effects of selection, gene flow, and sexual reproduction on the population genetic structure and evolutionary history of the wheat pathogen Phaeosphaeria nodorum. A total of 315 fungal isolates from Texas, Oregon, and Switzerland were analyzed using seven nuclear RFLP probes that hybridized to discrete loci and purified mitochondrial DNA that hybridized to the entire mtDNA genome. Forty-two different mitochondrial haplotypes and 298 different nuclear haplotypes were detected. The two most frequent mtDNA haplotypes were present in every population and represented 32% of all isolates. High levels of gene flow, low levels of population subdivision, no evidence for either host specificity or cyto-nuclear disequilibrium were inferred from the analysis of both genomes. The concordance in estimates of these population genetic parameters from both genomes suggests that the two genomes experienced similar degrees of migration, genetic drift and selection.  相似文献   

14.
The role of nuclear genes in local adaptation has been well documented. However, the role of maternally inherited cytoplasmic genes to the evolution of natural populations has been relatively unstudied. To evaluate the contribution of cytoplasmic and nuclear genomes and their interactions to local adaptation we created second-generation backcross hybrids between a Maryland and an Illinois population of the annual legume Chamaecrista fasciculata. Backcross progeny were planted in the sites native to each population for two years and we quantified germination, survivorship, fruit production, vegetative biomass, and cumulative fitness. We found limited evidence for the contribution of either cytoplasmic or nuclear genes to local adaptation. In Maryland plants had greater survivorship, biomass, fruit production, and cumulative fitness if their nuclear genome was composed predominately of native Maryland genes; cytoplasmic genes did not affect fitness. In Illinois local cytoplasm marginally enhanced fitness, whereas Maryland nuclear genes outperformed local nuclear genes. Interactions between cytoplasmic and nuclear genes influenced seed weight, vegetative biomass, and fitness and therefore may affect evolution of these characters. Genetic effects were stronger acting through seed size than directly on characters. However, seed size differences between the two populations were largely genetic and therefore selection on fitness components is likely to result in evolutionary change. The contribution of nuclear and cytoplasmic genes to fitness components varied across sites and years, suggesting that experiments should be replicated and conducted under natural conditions to understand the influence of these genomes and their interactions to population differentiation.  相似文献   

15.
Despite the mitochondrion's long‐recognized role in energy production, mitochondrial DNA (mtDNA) variation commonly found in natural populations was assumed to be effectively neutral. However, variation in mtDNA has now been increasingly linked to phenotypic variation in life history traits and fitness. We examined whether the relative fitness in native and invasive common wasp (Vespula vulgaris) populations in Belgium and New Zealand (NZ), respectively, can be linked to mtDNA variation. Social wasp colonies in NZ were smaller with comparatively fewer queen cells, indicating a reduced relative fitness in the invaded range. Interestingly, queen cells in this population were significantly larger leading to larger queen offspring. By sequencing 1,872 bp of the mitochondrial genome, we determined mitochondrial haplotypes and detected reduced genetic diversity in NZ. Three common haplotypes in NZ frequently produced many queens, whereas the four rare haplotypes produced significantly fewer or no queens. The entire mitochondrial genome for each of these haplotypes was sequenced to identify polymorphisms associated with fitness reduction. We found 16 variable sites; however, no nonsynonymous mutation that was clearly causing impaired mitochondrial function was detected. We discuss how detected variants may alter secondary structures, gene expression or mito‐nuclear interactions, or could be associated with nuclear‐encoded variation. Whatever the ultimate mechanism, we show reduced fitness and mtDNA variation in an invasive wasp population as well as specific mtDNA variants associated with fitness variation within this population. Ours is one of only a few studies that confirm fitness impacts of mtDNA variation in wild nonmodel populations.  相似文献   

16.
Whole-genome duplications (WGDs) are a prominent process of diversification in eukaryotes. The genetic and evolutionary forces that WGD imposes on cytoplasmic genomes are not well understood, despite the central role that cytonuclear interactions play in eukaryotic function and fitness. Cellular respiration and photosynthesis depend on successful interaction between the 3,000+ nuclear-encoded proteins destined for the mitochondria or plastids and the gene products of cytoplasmic genomes in multi-subunit complexes such as OXPHOS, organellar ribosomes, Photosystems I and II, and Rubisco. Allopolyploids are thus faced with the critical task of coordinating interactions between the nuclear and cytoplasmic genes that were inherited from different species. Because the cytoplasmic genomes share a more recent history of common descent with the maternal nuclear subgenome than the paternal subgenome, evolutionary “mismatches” between the paternal subgenome and the cytoplasmic genomes in allopolyploids might lead to the accelerated rates of evolution in the paternal homoeologs of allopolyploids, either through relaxed purifying selection or strong directional selection to rectify these mismatches. We report evidence from six independently formed allotetraploids that the subgenomes exhibit unequal rates of protein-sequence evolution, but we found no evidence that cytonuclear incompatibilities result in altered evolutionary trajectories of the paternal homoeologs of organelle-targeted genes. The analyses of gene content revealed mixed evidence for whether the organelle-targeted genes are lost more rapidly than the non-organelle-targeted genes. Together, these global analyses provide insights into the complex evolutionary dynamics of allopolyploids, showing that the allopolyploid subgenomes have separate evolutionary trajectories despite sharing the same nucleus, generation time, and ecological context.  相似文献   

17.
Genetic variation outside of the cell nucleus can affect the phenotype. The cytoplasm is home to the mitochondria, and in arthropods often hosts intracellular bacteria such as Wolbachia. Although numerous studies have implicated epistatic interactions between cytoplasmic and nuclear genetic variation as mediators of phenotypic expression, two questions remain. Firstly, it remains unclear whether outcomes of cyto‐nuclear interactions will manifest differently across the sexes, as might be predicted given that cytoplasmic genomes are screened by natural selection only through females as a consequence of their maternal inheritance. Secondly, the relative contribution of mitochondrial genetic variation to other cytoplasmic sources of variation, such as Wolbachia infection, in shaping phenotypic outcomes of cyto‐nuclear interactions remains unknown. Here, we address these questions, creating a fully crossed set of replicated cyto‐nuclear populations derived from three geographically distinct populations of Drosophila melanogaster, measuring the lifespan of males and females from each population. We observed that cyto‐nuclear interactions shape lifespan and that the outcomes of these interactions differ across the sexes. Yet, we found no evidence that placing the cytoplasms from one population alongside the nuclear background of others (generating putative cyto‐nuclear mismatches) leads to decreased lifespan in either sex. Although it was difficult to partition mitochondrial from Wolbachia effects, our results suggest at least some of the cytoplasmic genotypic contribution to lifespan was directly mediated by an effect of sequence variation in the mtDNA. Future work should explore the degree to which cyto‐nuclear interactions result in sex differences in the expression of other components of organismal life history.  相似文献   

18.
Steep genetic clines resulting from recent secondary contact between previously isolated taxa can either gradually erode over time or be stabilized by factors such as ecological selection or selection against hybrids. We used patterns of variation in 30 nuclear and two mitochondrial SNPs to examine the factors that could be involved in stabilizing clines across a hybrid zone between two subspecies of the Atlantic killifish, Fundulus heteroclitus. Increased heterozygote deficit and cytonuclear disequilibrium in populations near the center of the mtDNA cline suggest that some form of reproductive isolation such as assortative mating or selection against hybrids may be acting in this hybrid zone. However, only a small number of loci exhibited these signatures, suggesting locus‐specific, rather than genomewide, factors. Fourteen of the 32 loci surveyed had cline widths inconsistent with neutral expectations, with two SNPs in the mitochondrial genome exhibiting the steepest clines. Seven of the 12 putatively non‐neutral nuclear clines were for SNPs in genes related to oxidative metabolism. Among these putatively non‐neutral nuclear clines, SNPs in two nuclear‐encoded mitochondrial genes (SLC25A3 and HDDC2), as well as SNPs in the myoglobin, 40S ribosomal protein S17, and actin‐binding LIM protein genes, had clines that were coincident and concordant with the mitochondrial clines. When hybrid index was calculated using this subset of loci, the frequency distribution of hybrid indices for a population located at the mtDNA cline center was non‐unimodal, suggesting selection against advanced‐generation hybrids, possibly due to effects on processes involved in oxidative metabolism.  相似文献   

19.
Subdivided Pleistocene glacial refugia, best known as “refugia within refugia”, provided opportunities for diverging populations to evolve into incipient species and/or to hybridize and merge following range shifts tracking the climatic fluctuations, potentially promoting extensive cytonuclear discordances and “ghost” mtDNA lineages. Here, we tested which of these opposing evolutionary outcomes prevails in northern Iberian areas hosting multiple historical refugia of common frogs (Rana cf. temporaria), based on a genomic phylogeography approach (mtDNA barcoding and RAD‐sequencing). We found evidence for both incipient speciation events and massive cytonuclear discordances. On the one hand, populations from northwestern Spain (Galicia and Asturias, assigned to the regional endemic R. parvipalmata), are deeply‐diverged at mitochondrial and nuclear genomes (~4 My of independent evolution), and barely admix with northeastern populations (assigned to R. temporaria sensu stricto) across a narrow hybrid zone (~25 km) located in the Cantabrian Mountains, suggesting that they represent distinct species. On the other hand, the most divergent mtDNA clade, widespread in Cantabria and the Basque country, shares its nuclear genome with other R. temporaria s. s. lineages. Patterns of population expansions and isolation‐by‐distance among these populations are consistent with past mitochondrial capture and/or drift in generating and maintaining this ghost mitochondrial lineage. This remarkable case study emphasizes the complex evolutionary history that shaped the present genetic diversity of refugial populations, and stresses the need to revisit their phylogeography by genomic approaches, in order to make informed taxonomic inferences.  相似文献   

20.
We investigated the extent and potential cause(s) of mitochondrial introgression within the polytypic North American Lycaeides species complex (Lepidoptera). By comparing population genetic structure based on mitochondrial DNA (COI and COII) and nuclear DNA (251 polymorphic amplified fragment length polymorphism markers), we detected substantial mito‐nuclear discordance, primarily involving a single mitochondrial haplotype (h01), which is likely due to mitochondrial introgression between differentiated Lycaeides populations and/or species. We detected reduced mitochondrial genetic diversity relative to nuclear genetic diversity in populations where mitochondrial haplotype h01 occurs, suggesting that the spread of this haplotype was facilitated by selection. We found no evidence that haplotype h01 is associated with increased fitness (in terms of survival to eclosion, fresh adult weight, and adult longevity) in a polymorphic Lycaeides melissa population. However, we did find a positive association between mitochondrial haplotype h01 and infection by the endoparasitic bacterium Wolbachia in one out of three lineages tested. Linkage disequilibrium between mitochondrial haplotype h01 and Wolbachia infection status may have resulted in indirect selection favouring the spread of haplotype h01 in at least one lineage of North American Lycaeides. These results illustrate the potential for introgressive hybridization to produce substantial mito‐nuclear discordance and demonstrate that an individual's mitochondrial and nuclear genome may have strikingly different evolutionary histories resulting from non‐neutral processes and intrinsic differences in the inheritance and biology of these genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号