首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Motoneurons have been shown to be particularly sensitive to Ca2+-dependent glutamate excitotoxicity, mediated via AMPA receptors (AMPARs). To determine the molecular basis for this susceptibility we have used immunocytochemistry, RT-PCR, and electrophysiology to profile AMPARs on embryonic day 14.5 rat motoneurons. Motoneurons show detectable AMPAR-mediated calcium permeability in vitro and in vivo as determined by cobalt uptake and electrophysiology. Motoneurons express all four AMPAR subunit mRNAs, with glutamate receptor (GluR) 2 being the most abundant (63.9+/-4.8%). GluR2 is present almost exclusively in the edited form, and electrophysiology confirms that most AMPARs present are calcium-impermeant. However, the kainate current in motoneurons was blocked an average of 32.0% by Joro spider toxin, indicating that a subset of the AM PARs is Ca2+-permeable. Therefore, heterogeneity of AMPARs, rather than the absence of GluR2 or the presence of unedited GluR2, explains AMPAR-mediated Ca2+ permeability. The relative levels of flip/flop isoforms of each subunit were also examined by semiquantitative PCR. Both isoforms were present, but the relative proportion varied for each subunit, and the flip isoform predominated. Thus, our data show that despite high levels of edited GluR2 mRNA, some AMPARs are Ca2+-permeable, and this subset of AMPARs can account for the AMPAR-mediated Ca2+ inflow inferred from cobalt uptake and electrophysiology studies.  相似文献   

2.
The AMPA type of glutamate receptors (AMPARs)-mediated excitotoxicity is involved in the secondary neuronal death following traumatic brain injury (TBI). But the underlying cellular and molecular mechanisms remain unclear. In this study, the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in GluR2-lacking AMPARs mediated neuronal death was investigated through an in vitro stretch injury model of neurons. It was indicated that both the mRNA and protein levels of PTEN were increased in cultured hippocampal neurons after stretch injury, which was associated with the decreasing expression of GluR2 subunits on the surface of neuronal membrane. Inhibition of PTEN activity by its inhibitor can promote the survival of neurons through preventing reduction of GluR2 on membrane. Moreover, the effect of inhibiting GluR2-lacking AMPARs was similar to PTEN suppression-mediated neuroprotective effect in stretch injury-induced neuronal death. Further evidence identified that the total GluR2 protein of neurons was not changed in all groups. So inhibition of PTEN or blockage of GluR2-lacking AMPARs may attenuate the death of hippocampal neurons post injury through decreasing the translocation of GluR2 subunit on the membrane effectively.  相似文献   

3.
Developing oligodendrocytes (OL precursors, pre‐OLs) express α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) subtype glutamate receptors (AMPARs) and are highly vulnerable to hypoxic‐ischemic or oxygen‐glucose deprivation (OGD)‐induced excitotoxic injury, yet the mechanisms of injury remain unclear. Here we investigated the role of glutamate accumulation and mitochondrial function in OGD‐induced pre‐OL toxicity in vitro. Bulk glutamate concentration in the culture medium did not increase during OGD and OGD‐conditioned medium did not transfer toxicity to naïve cells. Facilitation of glutamate diffusion by constant agitation of the culture reduced, while inhibition of glutamate diffusion by increasing medium viscosity with dextran enhanced, OGD‐induced pre‐OL injury. Depletion of extracellular glutamate by the glutamate scavenging system, glutamate‐pyruvate transaminase plus pyruvate, attenuated pre‐OL injury during OGD. Together these data suggest that local glutamate accumulation is critical for OGD toxicity. Interestingly, under normoxic conditions, addition of glutamate to pre‐OLs did not cause receptor‐mediated toxicity, but the toxicity could be unmasked by mitochondrial impairment with mitochondrial toxins. Furthermore, OGD caused mitochondrial potential collapse that was independent of AMPAR activation, and OGD toxicity was enhanced by mitochondrial toxins. These data demonstrate that pre‐OL excitotoxicity is exacerbated by mitochondrial dysfunction during OGD. Overall, our results indicate that OGD‐induced pre‐OL injury is a novel form of excitotoxicity caused by the combination of local glutamate accumulation that occurs without an increase in bulk glutamate concentration and mitochondrial dysfunction. Therapeutic strategies targeting local glutamate concentration and mitochondrial injury during hypoxia‐ischemia may be relevant to human disorders associated with pre‐OL excitotoxicity.  相似文献   

4.
Isaac JT  Ashby MC  McBain CJ 《Neuron》2007,54(6):859-871
The AMPA receptor (AMPAR) GluR2 subunit dictates the critical biophysical properties of the receptor, strongly influences receptor assembly and trafficking, and plays pivotal roles in a number of forms of long-term synaptic plasticity. Most neuronal AMPARs contain this critical subunit; however, in certain restricted neuronal populations and under certain physiological or pathological conditions, AMPARs that lack this subunit are expressed. There is a current surge of interest in such GluR2-lacking Ca2+-permeable AMPARs in how they affect the regulation of synaptic transmission. Here, we bring together recent data highlighting the novel and important roles of GluR2 in synaptic function and plasticity.  相似文献   

5.
A central concept in the field of learning and memory is that NMDARs are essential for synaptic plasticity and memory formation. Surprisingly then, multiple studies have found that behavioral experience can reduce or eliminate the contribution of these receptors to learning. The cellular mechanisms that mediate learning in the absence of NMDAR activation are currently unknown. To address this issue, we examined the contribution of Ca2+-permeable AMPARs to learning and plasticity in the hippocampus. Mutant mice were engineered with a conditional genetic deletion of GluR2 in the CA1 region of the hippocampus (GluR2-cKO mice). Electrophysiology experiments in these animals revealed a novel form of long-term potentiation (LTP) that was independent of NMDARs and mediated by GluR2-lacking Ca2+-permeable AMPARs. Behavioral analyses found that GluR2-cKO mice were impaired on multiple hippocampus-dependent learning tasks that required NMDAR activation. This suggests that AMPAR-mediated LTP interferes with NMDAR-dependent plasticity. In contrast, NMDAR-independent learning was normal in knockout mice and required the activation of Ca2+-permeable AMPARs. These results suggest that GluR2-lacking AMPARs play a functional and previously unidentified role in learning; they appear to mediate changes in synaptic strength that occur after plasticity has been established by NMDARs.  相似文献   

6.
Cells of the oligodendroglial lineage express Ca2+-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-preferring glutamate receptors (AMPA-GluR) during development. Prolonged activation of their AMPA-GluR causes Ca2+ overload, resulting in excitotoxic death. Prior studies have shown that oligodendroglial progenitors and immature oligodendrocytes are susceptible to excitotoxicity, whereas mature oligodendrocytes are resistant. An unresolved issue has been why Ca2+-permeability of AMPA-GluR varies so markedly with oligodendroglial development, although the level of expression of edited GluR2, an AMPA-GluR subunit which blocks Ca2+ entry, is relatively constant. To address this question, we performed Ca2+ imaging, molecular and electrophysiological analyses using purified cultures of the rat oligodendroglial lineage. We demonstrate that transient up-regulation of expression of GluR3 and GluR4 subunits in oligodendroglial progenitors and immature oligodendrocytes results in the assembly by these cells, but not by oligodendroglial pre-progenitors or mature oligodendrocytes, of a population of AMPA-GluR which lack GluR2. This stage-specific up-regulation of edited GluR2-free, and hence Ca2+-permeable, AMPA-GluR explains the selective susceptibility to excitotoxicity of cells at these stages of oligodendroglial differentiation, and is likely to be important to these cells in the trans-synaptic Ca2+-signaling from glutamatergic neurons, which occurs in hippocampus  相似文献   

7.
Previous studies show that chronic hyperammonemia impairs learning ability of rats by impairing the glutamate-nitric oxide (NO)-cyclic guanosine mono-phosphate (cGMP) pathway in cerebellum. Three types of glutamate receptors cooperate in modulating the NO-cGMP pathway: metabotropic glutamate receptor 5 (mGluR5), (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartic acid (NMDA) receptors. The aim of this work was to assess whether hyperammonemia alters the modulation of this pathway by mGluR5 and AMPA receptors in cerebellum in vivo. The results support that in control rats: (1) low AMPA concentrations (0.1mM) activate nearly completely Ca(2+)-permeable (glutamate receptor subunit 2 (GluR2)-lacking) AMPA receptors and the NO-cGMP pathway; (2) higher AMPA concentrations (0.3 mM) also activate Ca(2+)-impermeable (GluR2-containing) AMPA receptors, leading to activation of NMDA receptors and of NO-cGMP pathway. Moreover, the data support that chronic hyperammonemia: (1) reduces glutamate release and activation of the glutamate-NO-cGMP pathway by activation of mGluR5; (2) strongly reduces the direct activation by AMPA receptors of the NO-cGMP pathway, likely due to reduced entry of Ca(2+) through GluR2-lacking, high affinity AMPA receptors; (3) strongly increases the indirect activation of the NO-cGMP pathway by high affinity AMPA receptors, likely due to increased entry of Na(+) through GluR2-lacking AMPA receptors and NMDA receptors activation; (4) reduces the indirect activation of the NO-cGMP pathway by low affinity AMPA receptors, likely due to reduced activation of NMDA receptors.  相似文献   

8.
Oxygen and glucose deprivation (OGD) induces delayed cell death in hippocampal CA1 neurons via Ca2+/Zn2+-permeable, GluR2-lacking AMPA receptors (AMPARs). Following OGD, synaptic AMPAR currents in hippocampal neurons show marked inward rectification and increased sensitivity to channel blockers selective for GluR2-lacking AMPARs. This occurs via two mechanisms: a delayed down-regulation of GluR2 mRNA expression and a rapid internalization of GluR2-containing AMPARs during the OGD insult, which are replaced by GluR2-lacking receptors. The mechanisms that underlie this rapid change in subunit composition are unknown. Here, we demonstrate that this trafficking event shares features in common with events that mediate long term depression and long term potentiation and is initiated by the activation of N-methyl-d-aspartic acid receptors. Using biochemical and electrophysiological approaches, we show that peptides that interfere with PICK1 PDZ domain interactions block the OGD-induced switch in subunit composition, implicating PICK1 in restricting GluR2 from synapses during OGD. Furthermore, we show that GluR2-lacking AMPARs that arise at synapses during OGD as a result of PICK1 PDZ interactions are involved in OGD-induced delayed cell death. This work demonstrates that PICK1 plays a crucial role in the response to OGD that results in altered synaptic transmission and neuronal death and has implications for our understanding of the molecular mechanisms that underlie cell death during stroke.Oxygen and glucose deprivation (OGD)3 associated with transient global ischemia induces delayed cell death, particularly in hippocampal CA1 pyramidal cells (13), a phenomenon that involves Ca2+/Zn2+-permeable, GluR2-lacking AMPARs (4). AMPARs are heteromeric complexes of subunits GluR1–4 (5), and most AMPARs in the hippocampus contain GluR2, which renders them calcium-impermeable and results in a marked inward rectification in their current-voltage relationship (68). Ischemia induces a delayed down-regulation of GluR2 mRNA and protein expression (4, 911), resulting in enhanced AMPAR-mediated Ca2+ and Zn2+ influx into CA1 neurons (10, 12). In these neurons, AMPAR-mediated postsynaptic currents (EPSCs) show marked inward rectification 1–2 days following ischemia and increased sensitivity to 1-naphthyl acetyl spermine (NASPM), a channel blocker selective for GluR2-lacking AMPARs (1316). Blockade of these channels at 9–40 h following ischemia is neuroprotective, indicating a crucial role for Ca2+-permeable AMPARs in ischemic cell death (16).In addition to delayed changes in AMPAR subunit composition as a result of altered mRNA expression, it was recently reported that Ca2+-permable, GluR2-lacking AMPARs are targeted to synaptic sites via membrane trafficking at much earlier times during OGD (17). This subunit rearrangement involves endocytosis of AMPARs containing GluR2 complexed with GluR1/3, followed by exocytosis of GluR2-lacking receptors containing GluR1/3 (17). However, the molecular mechanisms behind this trafficking event are unknown, and furthermore, it is not known whether these trafficking-mediated changes in AMPAR subunit composition contribute to delayed cell death.AMPAR trafficking is a well studied phenomenon because of its crucial involvement in long term depression (LTD) and long term potentiation (LTP), activity-dependent forms of synaptic plasticity thought to underlie learning and memory. AMPAR endocytosis, exocytosis, and more recently subunit-switching events (brought about by trafficking that involves endo/exocytosis) are central to the necessary changes in synaptic receptor complement (7, 1820). It is possible that similar mechanisms regulate AMPAR trafficking during OGD.PICK1 is a PDZ and BAR (Bin-amphiphysin-Rus) domain-containing protein that binds, via the PDZ domain, to a number of membrane proteins including AMPAR subunits GluR2/3. This interaction is required for AMPAR internalization from the synaptic plasma membrane in response to Ca2+ influx via NMDAR activation in hippocampal neurons (2123). This process is the major mechanism that underlies the reduction in synaptic strength in LTD. Furthermore, PICK1-mediated trafficking has recently emerged as a mechanism that regulates the GluR2 content of synaptic receptors, which in turn determines their Ca2+ permeability (7, 20). This is likely to be of profound importance in both plasticity and pathological mechanisms. Importantly, PICK1 overexpression has been shown to induce a shift in synaptic AMPAR subunit composition in hippocampal CA1 neurons, resulting in inwardly rectifying AMPAR EPSCs via reduced surface GluR2 and no change in GluR1 (24). This suggests that PICK1 may mediate the rapid switch in subunit composition occurring during OGD (17). Here, we demonstrate that the OGD-induced switch in AMPAR subunit composition is dependent on PICK1 PDZ interactions, and importantly, that this early trafficking event that occurs during OGD contributes to the signaling that results in delayed neuronal death.  相似文献   

9.
Oligodendrocytes (OLs) are responsible for axon myelination and are the principal cells targeted in preterm white matter injury. The cellular and molecular mechanisms involved in white matter development and immature OL injury are incompletely understood. Metabotropic glutamate receptors (mGluRs) modulate neuronal development and survival, and have recently been identified in oligodendrocyte progenitor cells (OPCs). Using the highly homogeneous CG-4 OPC line and O4 marker-immunoselected primary OLs, we established the differentiation stage-specific expression profile of mGluR3 and mGluR5 mRNAs and proteins in the oligodendroglial lineage and type-2-astrocytes (ASTs). Our quantitative analysis indicated no changes in mGluR3, but a significant down-regulation of mGluR5a mRNA and protein expression during differentiation of OPCs into OLs or ASTs. The down-regulation of mGluR5a had functional consequences, with significantly fewer OLs and ASTs than OPCs responding to the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine with intracellular Ca(2+) concentration oscillations. Neither stimulation nor inhibition of mGluR3 or mGluR5 altered OPC migration, suggesting that these receptors do not play prominent roles in the regulation of OPC motility. The activation of mGluR5 completely protected OPCs and substantially reduced staurosporine-induced apoptosis in OLs. This suggests that the down-regulation of mGluR5 in premyelinating OLs is likely to contribute to their increased vulnerability, and that the targeting of mGluR5 may be a potential therapeutic strategy for future development.  相似文献   

10.
Ca2+ fluxes through ionotropic glutamate receptors regulate a variety of developmental processes, including neurite outgrowth and naturally occurring cell death. In the CNS, NMDA receptors were originally thought to be the sole source of Ca2+ influx through glutamate receptors; however, AMPA receptors also allow a significant influx of Ca2+ ions. The Ca2+ permeability of AMPA receptors is regulated by the insertion of one or more edited GluR2 subunits. In this study, we tested the possibility that changes in GluR2 expression regulate the Ca2+ permeability of AMPA receptors during a critical period of neuronal development in chick lumbar motoneurons. GluR2 expression is absent between embryonic day (E) 5 and E7, but increases significantly by E8 in the chick ventral spinal cord. Increased GluR2 protein expression is correlated with parallel changes in GluR2 mRNA in the motoneuron pool. Electrophysiological recordings of kainate-evoked currents indicate a significant reduction in the Ca2(+)-permeability of AMPA receptors between E6 and E11. Kainate-evoked currents were sensitive to the AMPA receptor blocker GYKI 52466. Application of AMPA or kainate generates a significant increase in the intracellular Ca2+ concentration in E6 spinal motoneurons, but generates a small response in older neurons. Changes in the Ca(2+)-permeability of AMPA receptors are not mediated by age-dependent changes in the editing pattern of GluR2 subunits. These findings raise the possibility that Ca2+ influx through Ca(2+)-permeable AMPA receptors plays an important role during early embryonic development in chick spinal motoneurons.  相似文献   

11.
12.
Oligodendrocytes (OLs) are mature glial cells that myelinate axons in the brain and spinal cord. As such, they are integral to functional and efficient neuronal signaling. The embryonic lineage and postnatal development of OLs have been well-studied and many features of the process have been described, including the origin, migration, proliferation, and differentiation of precursor cells. Less clear is the extent to which OLs and damaged/dysfunctional myelin are replaced following injury to the adult CNS. OLs and their precursors are very vulnerable to conditions common to CNS injury and disease sites, such as inflammation, oxidative stress, and elevated glutamate levels leading to excitotoxicity. Thus, these cells become dysfunctional or die in multiple pathologies, including Alzheimer's disease, spinal cord injury, Parkinson's disease, ischemia, and hypoxia. However, studies of certain conditions to date have detected spontaneous OL replacement. This review will summarize current information on adult OL progenitors, mechanisms that contribute to OL death, the consequences of their loss and the pathological conditions in which spontaneous oligodendrogenesis from endogenous precursors has been observed in the adult CNS.  相似文献   

13.
Determinants of postsynaptic Ca2+ signaling in Purkinje neurons   总被引:1,自引:0,他引:1  
Neuronal integration in Purkinje neurons involves many forms of Ca2+ signaling. Two afferent synaptic inputs, the parallel and the climbing fibers, provide a major drive for these signals. These two excitatory synaptic inputs are both glutamatergic. Postsynaptically they activate alpha-amino-3-hydroxy-5-methyl-4-propionic acid (AMPA) receptors (AMPARs) and metabotropic glutamate receptors (mGluRs). Unlike most other types of central neurons, Purkinje neurons do not express NMDA (N-methyl-D-aspartate) receptors (NMDARs). AMPARs in Purkinje neurons are characterized by a low permeability for Ca2+ ions. AMPAR-mediated synaptic depolarization may activate voltage-gated Ca2+ channels, mostly of the P/Q-type. The resulting intracellular Ca2+ signals are shaped by the Ca2+ buffers calbindin and parvalbumin. Ca2+ clearance from the cytosol is brought about by Ca2+-ATPases in the plasma membrane and the endoplasmic reticulum, as well as the Na+-Ca2+-exchanger. Binding of glutamate to mGluRs induces postsynaptic Ca2+-transients through two G protein-dependent pathways: involving (1) the release of Ca2+ ions from intracellular Ca2+ stores and (2) the opening of the cation channel TRPC1. Homer proteins appear to play an important role in postsynaptic Ca2+ signaling by providing a direct link between the plasma membrane-resident elements (mGluRs and TRPC1) and their intracellular partners, including the IP3Rs.  相似文献   

14.
Pathway-specific trafficking of native AMPARs by in vivo experience   总被引:3,自引:0,他引:3  
Clem RL  Barth A 《Neuron》2006,49(5):663-670
An accumulating body of evidence supports the notion that trafficking of AMPA receptors (AMPARs) underlies strengthening of glutamatergic synapses and, in turn, learning and memory in the behaving animal. However, without exception, these experiments have been performed using artificial stimulation protocols, cultured neurons, or viral-overexpression systems that can significantly alter the normal function of AMPARs. Using a single-whisker experience protocol that significantly enhances neuronal responses in vivo, we have targeted neurons in and around the spared whisker column of fosGFP transgenic mice for whole-cell recording. Here we show that in vivo experience induces the pathway-specific strengthening of neocortical excitatory synapses. By assaying AMPARs for rectification and sensitivity to joro spider toxin, we find that in vivo experience induces the delivery of native GluR2-lacking receptors at spared, but not deprived, inputs. These data demonstrate that pathway-specific trafficking of GluR2-lacking AMPARs is a normal feature of synaptic strengthening that underlies experience-dependent plasticity in the behaving animal.  相似文献   

15.
Reduction in GluR2 subunit expression and subsequent increases in AMPA receptor mediated Ca(2+) currents were postulated to exacerbate glutamate neurotoxicity following seizures or global ischemia. To directly test the effects of shifting the GluR1/GluR2 subunit ratio on excitotoxicity, GluR2 antisense deoxyoligonucleotides (AS-ODNs) were applied to dissociated hippocampal cultures for 1-8 days. The GluR1/GluR2 protein ratio was examined immunohistochemically and by Western blotting. [Ca(2+)](i) concentrations were determined by ratiometric imaging of Fura 2-loaded cells. The cultures were exposed to glutamate, AMPA, NMDA or kainic acid (KA) 3 days after GluR2 knockdown and cell viability was determined 1 day later by MTT reduction assay or Trypan blue exclusion. Although GluR2 AS-ODNs increased the GluR1/GluR2 protein ratio in a time dependent manner, neurons and glia appeared healthy and MTT reduction values were similar to untreated and sense controls. Basal [Ca(2+)](i) levels were unchanged but [Ca(2+)](i) was selectively increased by agonist stimulation of AMPA receptors. Unexpectedly, delayed neurotoxicity was attenuated at saturating doses of glutamate while little difference in cell viability was observed at lower doses or with the other excitotoxins at any concentration. Therefore, there was a dissociation between rises in AMPA receptor-mediated Ca(2+) influx and neurotoxicity despite marked decreases in GluR2 but not GluR1 immunoreactivity. It is proposed that a modification of AMPA receptor stochiometry that raises agonist-stimulated Ca(2+) influx during an excitotoxic insult may have eventual neuroprotective effects.  相似文献   

16.
-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs), a subtype of glutamate receptor, contribute to olfactory processing in the olfactory bulb (OB). These ion channels consist of various combinations of the subunits GluR1–GluR4, which bestow certain properties. For example, AMPARs that lack GluR2 are highly permeable to Ca2+ and generate inwardly rectifying currents. Because increased intracellular Ca2+ could trigger a host of Ca2+-dependent odor-encoding processes, we used whole cell recording as well as histological and immunocytochemical (ICC) techniques to investigate whether AMPARs on rat OB neurons flux Ca2+. Application of 1-naphthylacetyl spermine (NAS), a selective antagonist of Ca2+-permeable AMPARs (CP-AMPARs), inhibited AMPAR-mediated currents in subsets of interneurons and principal cells in cultures and slices. The addition of spermine to the electrode yielded inwardly rectifying current-voltage plots in some cells. In OB slices, olfactory nerve stimulation elicited excitatory responses in juxtaglomerular and mitral cells. Bath application of NAS with D,L-2-amino-5-phosphonovaleric acid (AP5) to isolate AMPARs suppressed the amplitudes of these synaptic responses compared with responses obtained using AP5 alone. Co2+ staining, which involves the kainate-stimulated influx of Co2+ through CP-AMPARs, produced diverse patterns of labeling in cultures and slices as did ICC techniques used with a GluR2-selective antibody. These results suggest that subsets of OB neurons express CP-AMPARs, including functional CP-AMPARs at synapses. Ca2+ entry into cells via these receptors could influence odor encoding by modulating K+ channels, N-methyl-D-aspartate receptors, and Ca2+-binding proteins, or it could facilitate synaptic vesicle fusion. GluR2; polyamines; cobalt; glutamate receptor; olfaction  相似文献   

17.
Ceramides, which are membrane sphingolipids and key mediators of cell-stress responses, are generated by a family of (dihydro) ceramide synthases (Lass1-6/CerS1-6). Here, we report that brain development features significant increases in sphingomyelin, sphingosine, and most ceramide species. In contrast, C(16:0)-ceramide was gradually reduced and CerS6 was down-regulated in mitochondria, thereby implicating CerS6 as a primary ceramide synthase generating C(16:0)-ceramide. Investigations into the role of CerS6 in mitochondria revealed that ceramide synthase down-regulation is associated with dramatically decreased mitochondrial Ca(2+)-loading capacity, which could be rescued by addition of ceramide. Selective CerS6 complexing with the inner membrane component of the mitochondrial permeability transition pore was detected by immunoprecipitation. This suggests that CerS6-generated ceramide could prevent mitochondrial permeability transition pore opening, leading to increased Ca(2+) accumulation in the mitochondrial matrix. We examined the effect of high CerS6 expression on cell survival in primary oligodendrocyte (OL) precursor cells, which undergo apoptotic cell death during early postnatal brain development. Exposure of OLs to glutamate resulted in apoptosis that was prevented by inhibitors of de novo ceramide biosynthesis, myriocin and fumonisin B1. Knockdown of CerS6 with siRNA reduced glutamate-triggered OL apoptosis, whereas knockdown of CerS5 had no effect: the pro-apoptotic role of CerS6 was not stimulus-specific. Knockdown of CerS6 with siRNA improved cell survival in response to nerve growth factor-induced OL apoptosis. Also, blocking mitochondrial Ca(2+) uptake or decreasing Ca(2+)-dependent protease calpain activity with specific inhibitors prevented OL apoptosis. Finally, knocking down CerS6 decreased calpain activation. Thus, our data suggest a novel role for CerS6 in the regulation of both mitochondrial Ca(2+) homeostasis and calpain, which appears to be important in OL apoptosis during brain development.  相似文献   

18.
Ischemic stroke, or a brain attack, is the third leading cause of death in developed countries. A critical feature of the disease is a highly selective pattern of neuronal loss; certain identifiable subsets of neurons--particularly CA1 pyramidal neurons in the hippocampus are severely damaged, whereas others remain intact. A key step in this selective neuronal injury is Ca2+/Zn2+ entry into vulnerable neurons through alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor channels, a principle subtype of glutamate receptors. AMPA receptor channels are assembled from glutamate receptor (GluR)1, -2, -3, and -4 subunits. Circumstance data have indicated that the GluR2 subunits dictate Ca2+/Zn2+ permeability of AMPA receptor channels and gate injurious Ca2+/Zn2+ signals in vulnerable neurons. Therefore, targeting to the AMPA receptor subunit GluR2 can be considered a practical strategy for stroke therapy.  相似文献   

19.
The assembly of AMPA-type glutamate receptors (AMPARs) into distinct ion channel tetramers ultimately governs the nature of information transfer at excitatory synapses. How cells regulate the formation of diverse homo- and heteromeric AMPARs is unknown. Using a sensitive biophysical approach, we show that the extracellular, membrane-distal AMPAR N-terminal domains (NTDs) orchestrate selective routes of heteromeric assembly via a surprisingly wide spectrum of subunit-specific association affinities. Heteromerization is dominant, occurs at the level of the dimer, and results in a preferential incorporation of the functionally critical GluA2 subunit. Using a combination of structure-guided mutagenesis and electrophysiology, we further map evolutionarily variable hotspots in the NTD dimer interface, which modulate heteromerization capacity. This 'flexibility' of the NTD not only explains why heteromers predominate but also how GluA2-lacking, Ca(2+)-permeable homomers could form, which are induced under specific physiological and pathological conditions. Our findings reveal that distinct NTD properties set the stage for the biogenesis of functionally diverse pools of homo- and heteromeric AMPAR tetramers.  相似文献   

20.
Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond   总被引:5,自引:0,他引:5  
AMPA-type glutamate receptors (AMPARs) mediate most fast excitatory synaptic transmission in the brain. Diversity in excitatory signalling arises, in part, from functional differences among AMPAR subtypes. Although the rapid insertion or deletion of AMPARs is recognised as important for the expression of conventional forms of long-term synaptic plasticity--triggered, for example, by Ca2+ entry through NMDA-type glutamate receptors--only recently has attention focused on novel forms of plasticity that are regulated by, or alter the expression of, Ca2+-permeable AMPARs. The dynamic regulation of these receptors is important for normal synaptic function and in disease states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号