首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tyrosine hydroxylase was separated from polyphenol oxidase activity and was highly purified from betacyanin producing callus cultures of Portulaca grandiflora. The purified enzyme catalyzed the formation of DOPA (L-3,4-dihydroxyphenylalanine) from tyrosine and required the pterin compounds (6-methyl-5,6,7,8-tetrahydropterin; 5,6,7,8-tetrahydrobiopterin; 6,7-dimethyl-5,6,7,8-tetrahydropterin) as coenzyme. The K(m) values for tyrosine and 6-methyl-5,6,7,8-tetrahydropterin were 0.5 mM and 0.15 mM, respectively. This enzyme was activated by Fe(2+) and Mn(2+), and inhibited by metal chelating agents.  相似文献   

2.
The substrates of dihydropteridine reductase (EC 1.6.99.7), quinonoid 7,8-dihydro(6 H)pterins, are unstable and decompose in various ways. In attempting to prepare a more stable substrate, 6,6,8-trimethyl-5,6,7,8-tetrahydro(3 H)pterin was synthesised and the quinonoid 6,6,8-trimethyl-7,8-dihydro(6 H)pterin derived from it is extremely stable with a half-life in 0.1 M Tris/HCl (pH 7.6, 25 degrees C) of 33 h. Quinonoid 6,6,8-trimethyl-7,8-dihydro(6 H)pterin is not a substrate for dihydropteridine reductase but it is reduced non-enzymically by NADH at a significant rate and it is a weak inhibitor of the enzyme: I50 200 microM, pH 7.6, 25 degrees C when using quinonoid 6-methyl-7,8-dihydro(6 H)pterin as substrate. 6,6,8-Trimethyl-5,6,7,8-tetrahydropterin is a cofactor for phenylalanine hydroxylase (EC 1.14.16.1) with an apparent Km of 0.33 mM, but no cofactor activity could be detected with tyrosine hydroxylase (EC 1.14.16.2). Its phenylalanine hydroxylase activity, together with the enhanced stability of quinonoid 6,6,8-trimethyl-7,8-dihydro(6 H)pterin, suggest that it may have potential for the treatment of variant forms of phenylketonuria.  相似文献   

3.
A peptide corresponding to position 32-47 in tyrosine hydroxylase was synthesized (TH-16) and polyclonal antibodies against this peptide were raised in rabbits (anti-TH-16). The effects of anti-TH-16 on modulation of tyrosine hydroxylase activity were investigated. Anti-TH-16 enhanced the enzymatic activity in a concentration-dependent manner, and the antigen TH-16 inhibited the stimulatory activity of the antiserum in a concentration-dependent manner. The activated enzyme had a lower Km app for the cofactor 2-amino-4-hydroxy-6-methyl-5,6,7,8-tetrahydropterin and a higher Vmax app than the nonactivated enzyme. Anti-TH-16 was characterized further by its ability to immunoprecipitate the enzyme activity by labeling tyrosine hydroxylase after Western blotting and by immunohistochemical labeling of catecholaminergic neurons. Anti-TH-16 did not block activation of tyrosine hydroxylase by phosphorylation catalyzed by cyclic AMP-dependent protein kinase. Exposure of the enzyme to anti-TH-16 and subsequent phosphorylation of the enzyme resulted in a greater activation of the enzyme than the sum of activation produced by these two treatments separately. However, the activation was less than additive when the enzyme was first phosphorylated and subsequently exposed to anti-TH-16. The present study demonstrates the utility of anti-TH-16 in investigating the molecular aspects of the enzyme activation.  相似文献   

4.
The effect of spermine on tyrosine hydroxylase (TH) activity purified from bovine adrenal medulla was examined before and after phosphorylation by the catalytic subunit of cyclic AMP-dependent protein kinase (A-kinase). Before phosphorylation, spermine (less than 1 mM) inhibited the enzymatic activity, and negative cooperative effect of spermine on TH (Hill coefficient = 0.7) was observed from the kinetic analysis concerning 6-methyl-5,6,7,8-tetrahydropterin (6MPH4). Spermine interacted noncompetitively toward tyrosine and the Ki for spermine was calculated to be 68 microM. Phosphorylation abolished the ability of spermine to inhibit TH activity in a negative cooperative manner against the pterin cofactor, and also increased four-fold the Ki value against the substrate. These results suggest that spermine may inhibit TH activity by interacting with the pterin binding site of the enzyme molecule in a manner of negative cooperativity, and that this inhibition is reversed by the conformational change of regulatory domain of TH after phosphorylation by A-kinase.  相似文献   

5.
Abstract: Tyrosine hydroxylase activity was measured under optimal and suboptimal assay conditions in hippocampal extracts from young (2 month), mature (12 month), and old (24 month) Fischer 344 male rats 72 h after the infusion of 200 µg of the neurotoxin 6-hydroxydopamine or vehicle into the lateral ventricle. The lesion resulted in a 45–55% decrease of tyrosine hydroxylase activity measured under optimal conditions (pH 6.1, 3.0 m M 6-methyl-5,6,7,8-tetrahydropterin) and an ∼35% decrease in the relative concentration of immunoreactive tyrosine hydroxylase. When measured under suboptimal conditions (pH 6.6, 0.7 m M 6-methyl-5,6,7,8-tetrahydropterin), tyrosine hydroxylase activity in 2- and 12-month-old lesioned animals was twice that measured in vehicle-treated animals. However, in the old lesioned animals, tyrosine hydroxylase activity measured under suboptimal conditions was not different from that measured in age-matched vehicle-treated animals. Isoforms of tyrosine hydroxylase were identified on immunoblots after two-dimensional gel electrophoresis using enhanced chemiluminescence. The relative proportion of lower pl isoforms of tyrosine hydroxylase in the 2-month-old lesioned animals was greater than that observed in vehicle-treated controls. In contrast, no difference was seen in the relative proportion of tyrosine hydroxylase isoforms in the 24-month-old lesioned versus control animals. These data indicate that the ability of locus ceruleus neurons to rapidly respond to and compensate for insult is attenuated in 24-month-old Fischer 344 rats due to a deficit in stimulus-evoked enzyme phosphorylation.  相似文献   

6.
The uncoupled portion of the partially uncoupled oxidation of tetrahydropterins by phenylalanine hydroxylase can be described by the same model as we have recently derived for the fully uncoupled reaction (Davis, M.D. and Kaufman, S. (1989) J. Biol. Chem.264, 8585–8596). Although essentially no hydrogen peroxide is formed during the fully coupled oxidation of tetrahydrobiopterin or 6-methyltetrahydropterin by phenylalanine hydroxylase when phenylalanine is the amino acid substrate, significant amounts of hydrogen peroxide are formed during the partially uncoupled oxidation of 6-methyltetrahydropterin whenpara-fluorophenylalanine orpara-chlorophenylalanine are used in place of phenylalanine. Similarly, during the partially uncoupled oxidation of the unsubstituted pterin, tetrahydropterin, even in the presence of phenylalanine, hydrogen peroxide formation is detected. The 4a-carbinolamine tetrahydropterin intermediate has been observed during the fully uncoupled tyrosine-dependent oxidations of tetrahydropterin and 6-methyltetrahydropterin by lysolecithin-activated phenylalanine hydroxylase, suggesting that this species is also a common intermediate for uncoupled oxidations by this enzyme.Abbreviations BH4 6-[dihydroxypropyl-(L-erythro)-5,6,7,8-tetrahydropterin (tetrahydrobiopterin) - 6MPH4 6-methyl-5,6,7,8-tetrahydropterin - PH4 5,6,7,8-tetrahydropterin - BH3OH 4a-hydroxytetrahydropterin (4a-carbinolamine) - qBH2 quinonoid dihydrobiopterin - q6MPH2 quinonoid dihydro-6-methylpterin - qPH2 quinoid dihydropterin - PAH phenylalanine hydroxylase - DHPR dihydropteridine reductase - PHS phenylalanine hydroxylase stimulating enzyme which is 4a-carbinolamine dehydratase - SOD superoxide dismutase - HPLC high performance liquid chromatography - R.T. retention time Special issue dedicated to Dr. Santiago Grisolia.  相似文献   

7.
Mild electric footshock resulted in activation of tyrosine hydroxylase (TH) in prefrontal cortex of mice and rats. In mice, the activation was also observed following restraint. Shock-evoked activation of prefrontal cortex TH was characterized by a decrease of apparent Km for the pterin cofactor 6-methyl-5,6,7,8-tetrahydropterin and an increase of Vmax. Activation of prefrontal cortical TH was also demonstrated in vitro following preincubation under conditions that activate cyclic AMP-dependent protein kinase. Treatment of mice with the noradrenergic neurotoxin N-2-chloroethyl-N-ethyl-2-bromobenzylamine (DSP-4) caused a 70% decrease in prefrontal cortex norepinephrine levels but had no significant effect on the activity of TH in that brain region. Footshock resulted in the activation of prefrontal cortex TH of DSP-4-treated mice, suggesting that shock-evoked activation of the enzyme occurs in terminals of mesocortical 3,4-dihydroxyphenylethylamine neurons.  相似文献   

8.
S Knapp  A J Mandell  W P Bullard 《Life sciences》1975,16(10):1583-1593
Using both radioisotopic and fluorometric techniques to measure the activity of midbrain soluble enzyme, we have demonstrated that calcium activates tryptophan hydroxylase. The observed activation apparently results from an increased affinity of the enzyme for both its substrate, tryptophan, and the cofactor 2-amino-4-hydroxy-6-methyl-5,6,7,8-tetrahydropteridine (6-MPH4). The calcium activation of tryptophan hydroxylase appears to be specific for both enzyme and effector: other brain neurotransmitter biosynthetic enzymes, such as aromatic amino acid decarboxylase(s) and tyrosine hydroxylase, are not affected by calcium (at concentrations ranging from 0.01 mM to 2.0 mM); other divalent cations, such as Ba++, Mg++, and Mn++, have no activating effect on tryptophan hydroxylase. This work suggests that increases in brain serotonin biosynthesis induced by neural activation may be due to influx of Ca++ associated with membrane depolarization and resulting activation of nerve ending tryptophan hydroxylase.  相似文献   

9.
BALB/c mice were immunized with a synthetic co-factor of the aromatic amino acid hydroxylases, 6,7-dimethyl-5,6,7,8-tetrahydropterin, conjugated to albumin. Hybridoma cell lines isolated from the immunized mice secreted monoclonal antibodies reacting specifically with the pterin molecule and monoclonal antibodies which were found to bind phenylalanine hydroxylase. Several lines of evidence were consistent with the anti-phenylalanine hydroxylase antibodies being anti-idiotype antibodies mimicking the pterin molecule and binding to the pterin binding site of phenylalanine hydroxylase. (a) An anti-idiotype monoclonal antibody, NS7, when reimmunized into mice produced anti-pterin antibodies consistent with NS7 being an internal image anti-idiotypic antibody. (b) NS7 antibody was prevented from binding to phenylalanine hydroxylase when a competitive inhibitor of phenylalanine hydroxylase enzyme activity, 6,7-dimethyl-7,8-dihydropterin, was bound to phenylalanine hydroxylase. (c) NS7 antibody was shown to bind to a wide range of pterin-requiring enzymes: phenylalanine, tyrosine and tryptophan hydroxylases, dihydropteridine reductase, dihydrofolate reductase, and sepiapterin reductase. Thus the NS7 antibody has successfully mimicked a common portion of the pterin cofactors utilized by these enzymes and demonstrated structure homology in their pterin binding sites despite their diverse function and little amino acid sequence homology except among the three aromatic amino acid hydroxylases.  相似文献   

10.
5,6,7,8-Tetrahydrobiopterin, the naturally occurring essential cofactor for the enzymatic hydroxylations of phenylalanine, tyrosine and tryptophan, and its synthetic analog 2-amino-6-methyl-5,6,7,8-tetrahydro-4(3H)-pteridinone, have been synthesized in good yield by the direct hydrogenation of 1-(2-amino-1,6-dihydro-5-nitro-6-oxopyrimidin-4-yl-amino)-1,5-dide oxy-L- erythro-pentulose and 2-amino-6-hydroxy-5-phenylazo-4-pyrimidylamino-acetone, respectively. The reactions were carried out at room temperature in trifluoroacetic acid over a platinum catalyst at 2 atm and the products, each containing a mixture of the two possible C-6 isomers, were isolated by precipitation. The simplicity of the preparative method suggests the procedure may be applied generally to the synthesis of all tetrahydropteridines derived from similar pyrimidine precursors.  相似文献   

11.
The aerobic degradation of 5,6,7,8-tetrahydrobiopterin at neutral pH is catalysed by peroxidase (EC 1.11.1.7) and provides quinonoid 7,8-dihydro(6H)biopterin which readily loses the side chain to yield 7,8-dihydro(3H)pterin. The latter is in equilibrium with trace amounts of 6-hydroxy-5,6,7,8-tetrahydropterin (covalent hydrate) which is irreversibly oxidised to quinonoid 6-hydroxy-7,8-dihydro(6H)pterin, and this finally rearranges to 7,8-dihydroxanthopterin. Spectroscopic evidence (ultraviolet, 1H NMR and 13C NMR) is presented for the reversible addition of water across the 5,6-double bond of 7,8-dihydro(3H)pterin. The intermediate quinonoid 6-hydroxy-7,8-dihydro(6H)pterin is a good substrate for dihydropteridine reductase (EC 1.6.99.7) with a Km of 16.3 microM and kcat of 22.5 s-1. The rate of aerobic degradation (oxidation and loss of the side chain) of natural (6R)-5,6,7,8-tetrahydrobiopterin is several times slower than the rate for the unnatural (6S) isomer. By using a modified assay procedure the kinetic parameters for dihydropteridine reductase are as follows: with (6R)-7,8-dihydro(6H)biopterin Km = 1.3 microM and kcat = 22.8 s-1; with (6S)-7,8-dihydro(6H)biopterin Km = 13.5 microM and kcat = 51.6 s-1; and with (6RS)-7,8-dihydro(6H)neopterin Km = 19.2 microM and kcat = 116 s-1.  相似文献   

12.
Phenylalanine hydroxylase converts phenylalanine to tyrosine utilizing molecular oxygen and tetrahydropterin as a cofactor, and belongs to the aromatic amino acid hydroxylases family. The catalytic domains of these enzymes are structurally similar. According to recent crystallographic studies, residue Tyr179 in Chromobacterium violaceum phenylalanine hydroxylase is located in the active site and its hydroxyl oxygen is 5.1 Å from the iron, where it has been suggested to play a role in positioning the pterin cofactor. To determine the catalytic role of this residue, the point mutants Y179F and Y179A of phenylalanine hydroxylase were prepared and characterized. Both mutants displayed comparable stability and metal binding to the native enzyme, as determined by their melting temperatures in the presence and absence of iron. The catalytic activity (kcat) of the Y179F and Y179A proteins was lower than wild-type phenylalanine hydroxylase by an order of magnitude, suggesting that the hydroxyl group of Tyr179 plays a role in the rate-determining step in catalysis. The KM values for different tetrahydropterin cofactors and phenylalanine were decreased by a factor of 3–4 in the Y179F mutant. However, the KM values for different pterin cofactors were slightly higher in the Y179A mutant than those measured for the wild-type enzyme, and, more significantly, the KM value for phenylalanine was increased by 10-fold in the Y179A mutant. By the criterion of kcat/KPhe, the Y179F and Y179A mutants display 10% and 1%, respectively, of the activity of wild-type phenylalanine hydroxylase. These results are consistent with Tyr179 having a pronounced role in binding phenylalanine but a secondary effect in the formation of the hydroxylating species. In conjunction with recent crystallographic analyses of a ternary complex of phenylalanine hydroxylase, the reported findings establish that Tyr179 is essential in maintaining the catalytic integrity and phenylalanine binding of the enzyme via indirect interactions with the substrate, phenylalanine. A model that accounts for the role of Tyr179 in binding phenylalanine is proposed.Electronic Supplementary Material Supplementary material is available in the online version of this article at Abbreviations AAAHs aromatic amino acid hydroxylases - BH2 7,8-dihydro-l-biopterin - BH4 (6R)-5,6,7,8-tetrahydro-l-biopterin - CD circular dichroism - cPAH Chromobacterium violaceum phenylalanine hydroxylase - DMPH4 6,7-dimethyl-5,6,7,8-tetrahydropterin - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - ES-MS electrospray ionization mass spectrometry - hPAH human phenylalanine hydroxylase - ICP-AE inductively coupled plasma atomic emission - 6-MPH4 6-methyl-5,6,7,8-tetrahydropterin - PAH phenylalanine hydroxylase - PH4 tetrahydropterin - PKU phenylketonuria - RDS rate-determining step - TH tyrosine hydroxylase - THA 3-(2-thienyl)-l-alanine - TPH tryptophan hydroxylase - wt wild-type  相似文献   

13.
Abstract— The kinetics of canine hypothalamic tyrosine hydroxylase were studied in the presence of various ions and sulphated mucopolysaccharides. Enzymic activity was dependent on ionic strength, a specific sulphate effect and the presence of the highly sulphated mucopolysaccharide, heparin. Whereas both sulphate and heparin activated tyrosine hydroxylase by increasing Vmax heparin, but not sulphate, also increased the affinity of the enzyme for the synthetic cofactor, 2-amino-4-hydroxy-6,7-dirnethyl-5,6,7,8-tetrahydropteridine, by nearly an order of magnitude. Other rnucopolysaccharides, such as chondroitin sulphate and hyaluronic acid, were not effective as activators of tyrosine hydroxylase. The allosteric activation of tyrosine hydroxylase by heparin may serve to 'sensitize' the enzyme to low levels of its end product, norepinephrine.  相似文献   

14.
The effects of a newly synthesized compound, 7-(3-[4-(2,3-dimethylphenyl)piperazinyl]propoxy)-2(1H)-quinolinone (OPC-4392), on tyrosine hydroxylation in situ and in vitro were studied using rat striatal slices and tyrosine hydroxylase (TH) purified from bovine adrenal medulla, respectively. OPC-4392 dose-dependently inhibited L-dihydroxyphenylalanine (DOPA) formation in rat striatal slices with IC50 values of about 10(-6) M. The inhibitory effect of OPC-4392 on in situ DOPA formation was dose-dependently reversed by addition of sulpiride, a dopamine D2 receptor antagonist, whereas no change was observed by addition of nomifensine (5 X 10(-6) M), a blocker of dopamine uptake. From in vitro experiment using purified TH, OPC-4392 affected neither the enzymatic activity nor the Km value for 6-methyl-5,6,7,8-tetrahydropterin (6MPH4). These results suggest that OPC-4392 impairs in situ DOPA formation by stimulating presynaptic dopamine D2 receptor as a dopamine agonist, and not by directly inhibiting the TH activity.  相似文献   

15.
D C Pike  M T Hora  S W Bailey  J E Ayling 《Biochemistry》1986,25(17):4762-4771
Homologues of 6-methyl-7,8-dihydropterin (6-Me-7,8-PH2) and 6-methyl-5,6,7,8-tetrahydropterin (6-Me-PH4), expanded in the pyrazine ring, were synthesized to determine the effect of increased strain on the chemical and enzymatic properties of the pyrimidodiazepine series. 2-Amino-4-keto-6-methyl-7,8-dihydro-3H,9H-pyrimido[4,5-b] [1,4]diazepine (6-Me-7,8-PDH2) was found to be more unstable in neutral solution than 6-Me-7,8-PH2. Its decomposition appears to proceed by hydrolytic ring opening of the 5,6-imine bond, followed by autooxidation. 6-Me-7,8-PDH2 can be reduced, either chemically or by dihydrofolate reductase (Km = 0.16 mM), to the 5,6,7,8-tetrahydro form (6-Me-PDH4). This can be oxidized with halogen to quinoid dihydropyrimidodiazepine (quinoid 6-Me-PDH2), which is a substrate for dihydropteridine reductase (Km = 33 microM). Whereas quinoid 6-methyldihydropterin was found to tautomerize to 6-Me-7,8-PH2 in 95% yield in 0.1 M tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl), pH 7.4, quinoid 6-Me-PDH2 gives only 53% 6-Me-7,8-PDH2, the remainder decomposing via an initial opening of the diazepine ring. Additional evidence for the extra strain in the pyrimidodiazepine system is the cyclization of quinoid 6-N-(2'-aminopropyl)divicine to quinoid 6-Me-PH2 in 57% yield in 0.1 M Tris-HCl, pH 7.4. By comparison, no quinoid 6-Me-PDH2 is formed from the homologue quinoid 6-N-(3'-aminobutyl)divicine. A small (2%) yield of 6-Me-PDH4 is found if the unstable C4a-carbinolamine intermediate is trapped by enzymatic dehydration and reduction. Although phenylalanine hydroxylase utilizes 6-Me-PDH4 (Km = 0.15 mM), the maximum velocity of tyrosine production is 20 times slower than that with 6-Me-PH4, indicating that a ring opening reaction is not a rate-limiting step in the hydroxylase pathway. Further, the maximum velocities of 2,5,6-triamino-4(3H)-pyrimidinone, 2,6-diamino-5-(methylamino)-4(3H)-pyrimidinone, and 2,6-diamino-5-(benzylamino)-4(3H)-pyrimidinone span a 35-fold range. These cofactors would theoretically form the same oxide of quinoid divicine if oxygen activation involves a carbonyl oxide intermediate. Thus, the limiting step is also not transfer of oxygen from this hypothetical intermediate to the phenylalanine substrate.  相似文献   

16.
A recently described new form of hyperphenylalaninemia is characterized by the excretion of 7-substituted isomers of biopterin and neopterin and 7-oxo-biopterin in the urine of patients. It has been shown that the 7-substituted isomers of biopterin and neopterin derive from L-tetrahydrobiopterin and D-tetrahydroneopterin and are formed during hydroxylation of phenylalanine to tyrosine with rat liver dehydratase-free phenylalanine hydroxylase. We have now obtained identical results using human phenylalanine hydroxylase. The identity of the pterin formed in vitro and derived from L-tetrahydrobiopterin as 7-(1',2'-dihydroxypropyl)pterin was proven by gas-chromatography mass spectrometry. Tetrahydroneopterin and 6-hydroxymethyltetrahydropterin also are converted to their corresponding 7-substituted isomers and serve as cofactors in the phenylalanine hydroxylase reaction. Dihydroneopterin is converted by dihydrofolate reductase to the tetrahydro form which is biologically active as a cofactor for the aromatic amino acid monooxygenases. The 6-substituted pterin to 7-substituted pterin conversion occurs in the absence of pterin-4a-carbinolamine dehydratase and is shown to be a nonenzymatic process. 7-Tetrahydrobiopterin is both a substrate (cofactor) and a competitive inhibitor with 6-tetrahydrobiopterin (Ki approximately 8 microM) in the phenylalanine hydroxylase reaction. For the first time, the formation of 7-substituted pterins from their 6-substituted isomers has been demonstrated with tyrosine hydroxylase, another important mammalian enzyme which functions in the hydroxylation of phenylalanine and tyrosine.  相似文献   

17.
The effects of 6R-5,6,7,8-tetrahydro-L-biopterin (6R-BH4), the in vivo cofactor for tryptophan hydroxylase, on the synthesis, release, and metabolism of serotonin were studied in superfused slices from rat hippocampus. 6R-BH4 did not alter the spontaneous release of [3H]serotonin but it did significantly increase release when slices were depolarized with 30 mM KCl. Under the same incubation conditions, 6R-BH4 altered neither the synthesis (basal or tryptophan-stimulated) nor the metabolism of serotonin in hippocampal slices. The synthetic pteridine 6-methyl-5,6,7,8-tetrahydropterin also augmented release under depolarizing conditions whereas biopterin, the oxidized form of 6R-BH4, did not. The 6S isomer of BH4, which is relatively inactive as a cofactor for tryptophan hydroxylase, was equipotent with 6R-BH4 in stimulating serotonin release. 6R-BH4 did not inhibit serotonin uptake nor did it function as a serotonin autoreceptor antagonist to increase release. A direct serotonin releasing effect of 6R-BH4, like that produced by p-chloroamphetamine, could also be ruled out. At suboptimal concentrations of extracellular calcium, the KCl-induced release of 3H was significantly reduced, yet the increase in release caused by BH4 remained the same in magnitude. It is concluded that 6R-BH4 increases the depolarization-induced release of serotonin through an interaction with the release mechanism itself, possibly by enhancing calcium influx or by increasing the sensitivity of the release mechanism to calcium. The effects of 6R-BH4 on serotonin release are independent from its function as the cofactor for tryptophan hydroxylase.  相似文献   

18.
S W Bailey  S B Dillard  J E Ayling 《Biochemistry》1991,30(42):10226-10235
The chiral specificities of bovine striatal tyrosine hydroxylase (TH) (unphosphorylated and phosphorylated by cAMP-dependent protein kinase) and rat liver phenylalanine hydroxylase (PH) were examined at physiological pH using the pure C6 stereoisomers of 6-methyl- and 6-propyl-5,6,7,8-tetrahydropterin (6-methyl-PH4 and 6-propyl-PH4) and (6R)- and (6S)-tetrahydrobiopterin (BH4). Both PH and phosphorylated TH have substantially higher Vmax values with the unnatural (6R)-propyl-PH4 than the natural (6S)-propyl-PH4 (approximately 6- and 11-fold, respectively). However, the Km's are also higher such that Vmax/Km is almost unaffected by C6 chirality. Unphosphorylated TH has equal Km values for both isomers of 6-propyl-PH4, but has about a 6 times greater Vmax with the unnatural isomer, making it the fastest cofactor yet for this form of the enzyme. With the shorter 6-methyl group, chiral differences are still recognized by phosphorylated TH but hardly at all by PH. Inhibition of both PH and TH by amino acid substrate which occurs with (6R)-BH4 as cofactor is also observed with (6S)-propyl-PH4 but not with (6S)-BH4, (6R)-propyl-PH4, or (6R)- or (6R,S)-methyl-PH4. The Km for (6S)-BH4 with phosphorylated TH is nearly 3 times higher than with (6R)-BH4, but Vmax is unchanged. With unphosphorylated TH, (6S)-BH4 produces very low decelerating rates, which was shown not to be due to irreversible inactivation of the enzyme. The Km for (6R)-BH4 with either hydroxylase is 10 times higher than for the equivalently configured (6S)-propyl-PH4. Comparison of these two cofactors reveals that the 1' and 2' side-chain hydroxyl groups of the natural cofactor promote different regulatory functions in PH than in TH.  相似文献   

19.
We have examined the interaction of hepatic phenylalanine hydroxylase with the phenylalanine analogs, tryptophan and the diastereomers of 3-phenylserine (beta-hydroxyphenylalanine). Both isomers of phenylserine are substrates for native phenylalanine hydroxylase at pH 6.8 and 25 degrees C, when activity is measured with the use of the dihydropteridine reductase assay coupled with NADH in the presence of the synthetic cofactor, 6-methyl-5,6,7,8-tetrahydropterin. However, while erythro-phenylserine exhibits simple Michaelis-Menten kinetics (Km = 1.2 mM, Vmax = 1.2 mumol/min X min) under these conditions, the threo isomer exhibits strong positive cooperativity (S0.5 = 4.8 mM Vmax = 1.4 mumol/min X mg, nH = 3). Tryptophan also exhibits cooperativity under these conditions (S0.5 = 5 mM, Vmax = 1 mumol/min X mg, nH = 3). The presence of 1 mM lysolecithin results in a hyperbolic response of phenylalanine hydroxylase to tryptophan (Km = 4 mM, Vmax = 1 mumol/min X mg) and threo-phenylserine (Km = 2 mM, Vmax = 1.4 mumol/min X mg). erythro-Phenylserine is a substrate for native phenylalanine hydroxylase in the presence of the natural cofactor, L-erythro-tetrahydrobiopterin (BH4) (Km = 2 mM, Vmax 0.05 mumol/min X mg, nH = 2). Preincubation of phenylalanine hydroxylase with erythro-phenylserine results in a 26-fold increase in activity upon subsequent assay with BH4 and erythro-phenylserine, and hyperbolic kinetic plots are observed. In contrast, both threo-phenylserine and tryptophan exhibit negligible activity in the presence of BH4 unless the enzyme has been activated. The product of the reaction of phenylalanine hydroxylase with either isomer of phenylserine was identified as the corresponding p-hydroxyphenylserine by reaction with sodium periodate and nitrosonaphthol. With erythro-phenylserine, the hydroxylation reaction is tightly coupled (i.e. 1 mol of hydroxyphenylserine is formed for every mole of tetrahydropterin cofactor consumed), while with threo-phenylserine and tryptophan the reaction is largely uncoupled (i.e. more cofactor consumed than product formed). Erythro-phenylserine is a good activator, when preincubated with phenylalanine hydroxylase (A0.5 = 0.2 mM), with a potency about one-third that of phenylalanine (A0.5 = 0.06 mM), while threo-phenylserine (A0.5 = 6 mM) and tryptophan (A0.5 approximately 10 mM) are very poor activators. Addition of 4 mM tryptophan or threo-phenylserine or 0.2 mM erythro-phenylserine to assay mixtures containing BH4 and phenylalanine results in a dramatic increase in the hydroxylation at low concentrations of phenylalanine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Phenylalanine hydroxylase (PAH) is a pterin-dependent non-heme metalloenzyme that catalyzes the oxidation of phenylalanine to tyrosine, which is the rate-limiting step in the catabolism of Phe. Chromobacterium violaceum phenylalanine hydroxylase (cPAH) has been prepared and its steady-state mechanism has been investigated. The enzyme requires iron for maximal activity. Initial rate measurements, done in the presence of the 6,7-dimethyl-5,6,7,8-tetrahydropterin (DMPH(4)) cofactor, yielded an average apparent k(cat) of 36+/-1 s(-1). The apparent K(M) values measured for the substrates DMPH(4), L-Phe, and O(2) are 44+/-7, 59+/-10, and 76+/-7 microM, respectively. Steady-state kinetic analyses using double-reciprocal plots revealed line patterns consistent with a sequential ter-bi mechanism in which L-Phe is the middle substrate in the order of binding. The occurrence of a line intersection on the double-reciprocal plot abscissa when either pterin or O(2) is saturated suggests that, prior to O(2) binding, DMPH(4) and L-Phe are in associative pre-equilibrium with cPAH. Together with an inhibition study using the oxidized cofactor, 7,8-dimethyl-6,7-dihydropterin, it is conclusive that the mechanism is fully ordered, with DMPH(4) binding the active site first, L-Phe second, and O(2) last. This represents the first conclusive steady-state mechanism for a PAH enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号