首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Kálmán L  Williams JC  Allen JP 《Biochemistry》2011,50(16):3310-3320
The energetics of a Mn cofactor bound to modified reaction centers were determined, including the oxidation/reduction midpoint potential and free energy differences for electron transfer. To determine these properties, a series of mutants of Rhodobacter sphaeroides were designed that have a metal-ion binding site that binds Mn2+ with a dissociation constant of 1 μM at pH 9.0 (Thielges et al. (2005) Biochemistry 44, 7389-7394). In addition to the Mn binding site, each mutant had changes near the bacteriochlorophyll dimer, P, that resulted in altered P/P+ oxidation/reduction midpoint potentials, which ranged from 480 mV to above 800 mV compared to 505 mV for wild type. The bound Mn2+ is redox active and after light excitation can rapidly reduce the oxidized primary electron donor, P+. The extent of P+ reduction was found to systematically range from a full reduction in the mutants with high P/P+ midpoint potentials to no reduction in the mutant with a potential comparable to wild type. This dependence of the extent of Mn2+ oxidation on the P/P+ midpoint potential can be understood using an equilibrium model and the Nernst equation, yielding a Mn2+/Mn3+ oxidation/reduction midpoint potential of 625 mV at pH 9. In the presence of bicarbonate, the Mn2+/Mn3+ potential was found to be 90 mV lower with a value of 535 mV suggesting that the bicarbonate serves as a ligand to the bound Mn. Measurement of the electron transfer rates yielded rate constants for Mn2+ oxidation ranging from 30 to 120 s(-1) as the P/P+ midpoint potentials increased from 670 mV to approximately 805 mV in the absence of bicarbonate. In the presence of bicarbonate, the rates increased for each mutant with values ranging from 65 to 165 s(-1), reflecting an increase in the free energy difference due to the lower Mn2+/Mn3+ midpoint potential. This dependence of the rate constant on the P/P+ midpoint potential can be understood using a Marcus relationship that yielded limits of at least 150 s(-1) and 290 meV for the maximal rate constant and reorganization energy, respectively. The implications of these results are discussed in terms of the energetics of proteins with redox active Mn cofactors, in particular, the Mn4Ca cofactor of photosystem II.  相似文献   

2.
The reduction potentials of the hydroxylase component of the soluble methane monooxygenase from Methylococcus capsulatus (Bath) have been investigated through potentiometric titrations. The potentials were determined by EPR spectroscopic quantitation of the mixed valent hydroxylase as a function of added sodium dithionite in the presence of appropriate mediators. The reduction of the oxidized Fe(III).Fe(III) form to the mixed valent Fe(II).Fe(III) form occurs at 48 mV versus NHE while the potential for the formation of the fully reduced Fe(II).Fe(II) species from the mixed valent form was determined to be -135 mV. Addition of the substrate propylene to the hydroxylase did not have a major effect on the reduction potentials. Introduction of the protein B and the reductase components, however, completely inhibited reduction of the hydroxylase at potentials as far negative as -200 mV. Addition of propylene to all three methane monooxygenase components greatly facilitated hydroxylase reduction. Under these conditions, the fully reduced form of the protein was obtained at potentials of greater than 150 mV. This high redox potential indicates that the oxidized form of the protein is highly reactive, as required for methane oxidation. The present results reveal aspects of how both protein B and substrate can regulate electron transfer into and out of the hydroxylase component of methane monooxygenase.  相似文献   

3.
Photosystem I is a large macromolecular complex located in the thylakoid membranes of chloroplasts and in cyanobacteria that catalyses the light driven reduction of ferredoxin and oxidation of plastocyanin. Due to the very negative redox potential of the primary electron transfer cofactors accepting electrons, direct estimation by redox titration of the energetics of the system is hampered. However, the rates of electron transfer reactions are related to the thermodynamic properties of the system. Hence, several spectroscopic and biochemical techniques have been employed, in combination with the classical Marcus theory for electron transfer tunnelling, in order to access these parameters. Nevertheless, the values which have been presented are very variable. In particular, for the case of the tightly bound phylloquinone molecule A(1), the values of the redox potentials reported in the literature vary over a range of about 350 mV. Previous models of Photosystem I have assumed a unidirectional electron transfer model. In the present study, experimental evidence obtained by means of time resolved absorption, photovoltage, and electron paramagnetic resonance measurements are reviewed and analysed in terms of a bi-directional kinetic model for electron transfer reactions. This model takes into consideration the thermodynamic equilibrium between the iron-sulfur centre F(X) and the phylloquinone bound to either the PsaA (A(1A)) or the PsaB (A(1B)) subunit of the reaction centre and the equilibrium between the iron-sulfur centres F(A) and F(B). The experimentally determined decay lifetimes in the range of sub-picosecond to the microsecond time domains can be satisfactorily simulated, taking into consideration the edge-to-edge distances between redox cofactors and driving forces reported in the literature. The only exception to this general behaviour is the case of phylloquinone (A(1)) reoxidation. In order to describe the reported rates of the biphasic decay, of about 20 and 200 ns, associated with this electron transfer step, the redox potentials of the quinones are estimated to be almost isoenergetic with that of the iron sulfur centre F(X). A driving force in the range of 5 to 15 meV is estimated for these reactions, being slightly exergonic in the case of the A(1B) quinone and slightly endergonic, in the case of the A(1A) quinone. The simulation presented in this analysis not only describes the kinetic data obtained for the wild type samples at room temperature and is consistent with estimates of activation energy by the analysis of temperature dependence, but can also explain the effect of the mutations around the PsaB quinone binding pocket. A model of the overall energetics of the system is derived, which suggests that the only substantially irreversible electron transfer reactions are the reoxidation of A(0) on both electron transfer branches and the reduction of F(A) by F(X).  相似文献   

4.
The mechanism of catalytic hydrogen evolution and oxidation by Allochromatium vinosum [NiFe]-hydrogenase has been studied by protein film voltammetry (PFV) with the enzyme adsorbed at a pyrolytic graphite edge electrode. By analyzing the entire shapes of catalytic voltammograms, the energetics of the catalytic cycles (reduction potentials and acidity constants of the active states), including the detailed profiles of activity against pH and the sequences of proton and electron transfers, have been determined, and these are discussed with respect to the mechanism. PFV, which probes rates as a continuous function of the electrochemical potential (i.e., in the "potential domain"), is proven to be an invaluable tool for determining the redox properties of an active site in the presence of its substrate, at room temperature, and during turnover. This is especially relevant in the case of the active states of hydrogenase, since one of its substrates (the proton) is always present at significant levels in the titration medium at physiological pH values.  相似文献   

5.
Photosystem I is a large macromolecular complex located in the thylakoid membranes of chloroplasts and in cyanobacteria that catalyses the light driven reduction of ferredoxin and oxidation of plastocyanin. Due to the very negative redox potential of the primary electron transfer cofactors accepting electrons, direct estimation by redox titration of the energetics of the system is hampered. However, the rates of electron transfer reactions are related to the thermodynamic properties of the system. Hence, several spectroscopic and biochemical techniques have been employed, in combination with the classical Marcus theory for electron transfer tunnelling, in order to access these parameters. Nevertheless, the values which have been presented are very variable. In particular, for the case of the tightly bound phylloquinone molecule A1, the values of the redox potentials reported in the literature vary over a range of about 350 mV. Previous models of Photosystem I have assumed a unidirectional electron transfer model. In the present study, experimental evidence obtained by means of time resolved absorption, photovoltage, and electron paramagnetic resonance measurements are reviewed and analysed in terms of a bi-directional kinetic model for electron transfer reactions. This model takes into consideration the thermodynamic equilibrium between the iron-sulfur centre FX and the phylloquinone bound to either the PsaA (A1A) or the PsaB (A1B) subunit of the reaction centre and the equilibrium between the iron-sulfur centres FA and FB. The experimentally determined decay lifetimes in the range of sub-picosecond to the microsecond time domains can be satisfactorily simulated, taking into consideration the edge-to-edge distances between redox cofactors and driving forces reported in the literature. The only exception to this general behaviour is the case of phylloquinone (A1) reoxidation. In order to describe the reported rates of the biphasic decay, of about 20 and 200 ns, associated with this electron transfer step, the redox potentials of the quinones are estimated to be almost isoenergetic with that of the iron sulfur centre FX. A driving force in the range of 5 to 15 meV is estimated for these reactions, being slightly exergonic in the case of the A1B quinone and slightly endergonic, in the case of the A1A quinone. The simulation presented in this analysis not only describes the kinetic data obtained for the wild type samples at room temperature and is consistent with estimates of activation energy by the analysis of temperature dependence, but can also explain the effect of the mutations around the PsaB quinone binding pocket. A model of the overall energetics of the system is derived, which suggests that the only substantially irreversible electron transfer reactions are the reoxidation of A0 on both electron transfer branches and the reduction of FA by FX.  相似文献   

6.
Cells maintain redox potentials (Eh) in intracellular compartments, sometimes referred to as redox environments. These potentials are often very reducing, for example in the cytoplasm, but throughout the cell different potentials are maintained, commensurate with the functionality of that particular part of the cell. Furthermore, within a simple cellular compartment, "hot-spots" of redox poise may be maintained. However, despite this complexity, the quantification of such redox potentials has been attempted, and there is indeed a need to accurately assess such potentials, and to monitor how they might change with time. Changes in intracellular potentials may control the oxidation or reduction of protein residues, such as cysteine, which would alter the conformation of those proteins and so modulate their function. Although there are several methods for estimating the intracellular redox potential, the most accessible technique is the measurement of intracellular concentrations of GSH and GSSG, and the calculation of Eh using the Nernst equation. However, using this equation shows that the Eh imposed by the glutathione couple is dependent on the total concentration of glutathione present, and therefore values of Eh obtained may be erroneous. Here, we suggest new equations that can be used to calculate the redox environments of cells.  相似文献   

7.
We report results of continuum electrostatics calculations of the cofactor redox potentials, and of the titratable group pK(a) values, in hydroxylamine oxidoreductase (HAO). A picture of a sophisticated multicomponent control of electron flow in the protein emerged from the studies. First, we found that neighboring heme cofactors strongly interact electrostatically, with energies of 50-100 mV. Thus, cofactor redox potentials depend on the oxidation state of other cofactors, and cofactor redox potentials in the active (partially oxidized) enzyme differ substantially from the values obtained in electrochemical redox titration experiments. We found that, together, solvent-exposed heme 1 (having a large negative redox potential) and heme 2 (having a large positive redox potential) form a lock for electrons generated during the oxidation reaction The attachment of HAO's physiological electron transfer partner cytochrome c(554) results in a positive shift in the redox potential of heme 1, and "opens the electron gate". Electrons generated as a result of hydroxylamine oxidation travel to heme 3 and heme 8, which have redox potentials close to 0 mV versus NHE (this result is in partial disagreement with an existing experimental redox potential assignment). The closeness of hemes 3 and 8 from different enzyme subunits allows redistribution of the four electrons generated as a result of hydroxylamine oxidation, among the three enzyme subunits. For the multielectron oxidation process to be maximally efficient, the redox potentials of the electron-accepting cofactors should be roughly equal, and electrostatic interactions between extra electrons on these cofactors should be minimal. The redox potential assignments presented in the paper satisfy this general rule.  相似文献   

8.
Lev I Krishtalik 《BBA》2003,1604(1):13-21
The activation barrier (the activation free energy) for the reaction's elementary act proper does not depend on the presence of reactants outside the reaction complex. The barrier is determined directly by the concentration-independent configurational free energy. In the case of redox reactants with pH-dependent redox potential, only the pH-independent quantity, the configurational redox potential enters immediately into expression for activation energy. Some typical cases of such reactions have been discussed (e.g., simultaneous proton and electron detachment, acid dissociation followed by oxidation, dissociation after oxidation, and others). For these mechanisms, the algorithms for calculation of the configurational redox potential from the experimentally determined redox potentials have been described both for the data related to a dissolved reactant or to a prosthetic group of an enzyme. Some examples of pH-dependent enzymatic redox reactions, in particular for the Rieske iron-sulfur protein, have been discussed.  相似文献   

9.
The activation barrier (the activation free energy) for the reaction's elementary act proper does not depend on the presence of reactants outside the reaction complex. The barrier is determined directly by the concentration-independent configurational free energy. In the case of redox reactants with pH-dependent redox potential, only the pH-independent quantity, the configurational redox potential enters immediately into expression for activation energy. Some typical cases of such reactions have been discussed (e.g., simultaneous proton and electron detachment, acid dissociation followed by oxidation, dissociation after oxidation, and others). For these mechanisms, the algorithms for calculation of the configurational redox potential from the experimentally determined redox potentials have been described both for the data related to a dissolved reactant or to a prosthetic group of an enzyme. Some examples of pH-dependent enzymatic redox reactions, in particular for the Rieske iron-sulfur protein, have been discussed.  相似文献   

10.
The steady-state kinetic behavior of the six-electron reduction of N2 by nitrogenase is known to differ markedly from the six-electron reduction of cyanide in two ways. First, on extrapolation to infinite concentration of cyanide, the H2 evolution reaction is almost completely suppressed whereas at extrapolated infinite concentration of N2, H2 evolution continues. Second, as the ratio of the Fe protein to the MoFe protein increases, the reduction of N2 is favored over H2 evolution, whereas the reduction of cyanide becomes less favored relative to H2 evolution. We have extended these steady-state experiments with Azotobacter vinelandii nitrogenase to include a third observation, that the six-electron reduction of N2 is favored over H2 evolution at high total protein concentrations whereas cyanide reduction is less favored over H2 evolution at high total protein concentrations. All three steady-state observations can be explained by a model whereby cyanide is proposed to bind to a redox state of the MoFe protein more oxidized than that reactive toward H2 evolution and N2 reduction. To test this model, we have examined the pre-steady-state kinetic behavior of both cyanide reduction by A. vinelandii nitrogenase and cyanide inhibition of total electron flow through nitrogenase. The data show that in the presence or absence of cyanide there is a short lag of 100 ms before H2 is detected, followed by a linear phase of H2 evolution lasting for about 3 s, during which time no effects of cyanide are observable. After 3 s electron flow is finally inhibited by cyanide, and the cyanide reduction product CH4 is finally formed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Systematic control over molecular driving forces is essential for understanding the natural electron transfer processes as well as for improving the efficiency of the artificial mimics of energy converting enzymes. Oxygen producing photosynthesis uniquely employs manganese ions as rapid electron donors. Introducing this attribute to anoxygenic photosynthesis may identify evolutionary intermediates and provide insights to the energetics of biological water oxidation. This work presents effective environmental methods that substantially and simultaneously tune the redox potentials of manganese ions and the cofactors of a photosynthetic enzyme from native anoxygenic bacteria without the necessity of genetic modification or synthesis. A spontaneous coordination with bis-tris propane lowered the redox potential of the manganese (II) to manganese (III) transition to an unusually low value (~400?mV) at pH?9.4 and allowed its binding to the bacterial reaction center. Binding to a novel buried binding site elevated the redox potential of the primary electron donor, a dimer of bacteriochlorophylls, by up to 92?mV also at pH?9.4 and facilitated the electron transfer that is able to compete with the wasteful charge recombination. These events impaired the function of the natural electron donor and made BTP-coordinated manganese a viable model for an evolutionary alternative.  相似文献   

12.
The nickel-iron hydrogenase from Chromatium vinosum adsorbs at a pyrolytic graphite edge-plane (PGE) electrode and catalyzes rapid interconversion of H(+)((aq)) and H(2) at potentials expected for the half-cell reaction 2H(+) right arrow over left arrow H(2), i.e., without the need for overpotentials. The voltammetry mirrors characteristics determined by conventional methods, while affording the capabilities for exquisite control and measurement of potential-dependent activities and substrate-product mass transport. Oxidation of H(2) is extremely rapid; at 10% partial pressure H(2), mass transport control persists even at the highest electrode rotation rates. The turnover number for H(2) oxidation lies in the range of 1500-9000 s(-)(1) at 30 degrees C (pH 5-8), which is significantly higher than that observed using methylene blue as the electron acceptor. By contrast, proton reduction is slower and controlled by processes occurring in the enzyme. Carbon monoxide, which binds reversibly to the NiFe site in the active form, inhibits electrocatalysis and allows improved definition of signals that can be attributed to the reversible (non-turnover) oxidation and reduction of redox centers. One signal, at -30 mV vs SHE (pH 7.0, 30 degrees C), is assigned to the [3Fe-4S](+/0) cluster on the basis of potentiometric measurements. The second, at -301 mV and having a 1. 5-2.5-fold greater amplitude, is tentatively assigned to the two [4Fe-4S](2+/+) clusters with similar reduction potentials. No other redox couples are observed, suggesting that these two sets of centers are the only ones in CO-inhibited hydrogenase capable of undergoing simple rapid cycling of their redox states. With the buried NiFe active site very unlikely to undergo direct electron exchange with the electrode, at least one and more likely each of the three iron-sulfur clusters must serve as relay sites. The fact that H(2) oxidation is rapid even at potentials nearly 300 mV more negative than the reduction potential of the [3Fe-4S](+/0) cluster shows that its singularly high equilibrium reduction potential does not compromise catalytic efficiency.  相似文献   

13.
The semi-classical electron transfer theory has been very successful in describing reactions occurring in biological systems, but the relevant parameters in the case of iron-sulfur proteins remain unknown. The recent discovery that 2[4Fe-4S] proteins homologous to Chromatium vinosum ferredoxin contain clusters with different reduction potentials now gives the opportunity to study the dependence of the intramolecular electron transfer rate between these clusters as a function of the driving force. This work shows how decreasing the reduction potential difference between the clusters by site-directed mutagenesis of C. vinosum ferredoxin modifies the rate of electron hopping between the two redox sites of the protein by measuring the line broadening of selected 1H NMR signals. Beside the shifts of the reduction potentials, no signs of large structural changes or of significant alterations of the intrinsic kinetic parameters among the different variants of C. vinosum ferredoxin have been found. A reorganization energy of less than 0.5 eV was deduced from the dependence of the electron transfer rates with the reduction potential difference. This small value is associated with a weak electronic coupling between the two closely spaced clusters. This set of parameters, determined for the first time in an iron-sulfur protein, may help to explain how efficient vectorial electron transfer occurs with a small driving force in the many enzymatic systems containing a 2[4Fe-4S] domain.  相似文献   

14.
MutY and endonuclease III, two DNA glycosylases from Escherichia coli, and AfUDG, a uracil DNA glycosylase from Archeoglobus fulgidus, are all base excision repair enzymes that contain the [4Fe-4S](2+) cofactor. Here we demonstrate that, when bound to DNA, these repair enzymes become redox-active; binding to DNA shifts the redox potential of the [4Fe-4S](3+/2+) couple to the range characteristic of high-potential iron proteins and activates the proteins toward oxidation. Electrochemistry on DNA-modified electrodes reveals potentials for Endo III and AfUDG of 58 and 95 mV versus NHE, respectively, comparable to 90 mV for MutY bound to DNA. In the absence of DNA modification of the electrode, no redox activity can be detected, and on electrodes modified with DNA containing an abasic site, the redox signals are dramatically attenuated; these observations show that the DNA base pair stack mediates electron transfer to the protein, and the potentials determined are for the DNA-bound protein. In EPR experiments at 10 K, redox activation upon DNA binding is also evident to yield the oxidized [4Fe-4S](3+) cluster and the partially degraded [3Fe-4S](1+) cluster. EPR signals at g = 2.02 and 1.99 for MutY and g = 2.03 and 2.01 for Endo III are seen upon oxidation of these proteins by Co(phen)(3)(3+) in the presence of DNA and are characteristic of [3Fe-4S](1+) clusters, while oxidation of AfUDG bound to DNA yields EPR signals at g = 2.13, 2.04, and 2.02, indicative of both [4Fe-4S](3+) and [3Fe-4S](1+) clusters. On the basis of this DNA-dependent redox activity, we propose a model for the rapid detection of DNA lesions using DNA-mediated electron transfer among these repair enzymes; redox activation upon DNA binding and charge transfer through well-matched DNA to an alternate bound repair protein can lead to the rapid redistribution of proteins onto genome sites in the vicinity of DNA lesions. This redox activation furthermore establishes a functional role for the ubiquitous [4Fe-4S] clusters in DNA repair enzymes that involves redox chemistry and provides a means to consider DNA-mediated signaling within the cell.  相似文献   

15.
In higher plant plastids, ferredoxin (Fd) is the unique soluble electron carrier protein located in the stroma. Consequently, a wide variety of essential metabolic and signaling processes depend upon reduction by Fd. The currently available plant genomes of Arabidopsis and rice (Oryza sativa) contain several genes encoding putative Fds, although little is known about the proteins themselves. To establish whether this variety represents redundancy or specialized function, we have recombinantly expressed and purified the four conventional [2Fe-2S] Fd proteins encoded in the Arabidopsis genome and analyzed their physical and functional properties. Two proteins are leaf type Fds, having relatively low redox potentials and supporting a higher photosynthetic activity. One protein is a root type Fd, being more efficiently reduced under nonphotosynthetic conditions and supporting a higher activity of sulfite reduction. A further Fd has a remarkably positive redox potential and so, although redox active, is limited in redox partners to which it can donate electrons. Immunological analysis indicates that all four proteins are expressed in mature leaves. This holistic view demonstrates how varied and essential soluble electron transfer functions in higher plants are fulfilled through a diversity of Fd proteins.  相似文献   

16.
Classical solution chemistry and thermodynamics have been used to quantify the energetics of two fundamental bioenergetic processes over a range of environmental conditions in which life is known to thrive: (1) the flow of electrons originating from an electron donor through the nicotinamide adenine dinucleotide (NAD) redox couple to an electron acceptor, and (2) the synthesis of ATP from ADP and aqueous phosphate. The approach taken explicitly accounts for the chemical formulas, charge states, complexation of ADP and ATP with magnesium, and the thermodynamic properties of individual biochemical species in stoichiometric and charge‐balanced reactions among biomolecules and other compounds. Because these species are represented in the reactions by explicit formula units, the chemical and thermodynamic consequences of the reactions can be evaluated as a function of temperature, pH, and bulk composition. To illustrate the utility of this approach, the energetics of the oxidation of glucose and hydrogen and the reduction of oxygen and sulfate coupled to NAD were characterized as functions of pH and temperature. The thermodynamic drive (chemical affinity, A ) for glucose to reduce NAD increases as the temperature increases, whereas the opposite is true for hydrogen. Also, at lower pHs, the chemical affinity is lower for these two electron donors to reduce NAD than at higher pHs. Similarly, the chemical affinity for oxidation of NAD by oxygen decreases by more than 2 kcal mol−1 as temperature increases from 0 to 125 °C but the chemical affinity for oxidation of NAD by sulfate decreases by less than 1 kcal mol−1. Calculations were also carried out to quantify the energetics of the synthesis of ATP for different bulk compositions, pHs, and temperatures. The chemical affinity for the synthesis of MgATP from MgADP and aqueous monophosphate at pH 5 minimizes with increasing temperature from 0 to 125 °C, which is not the case at pH 7 or 9. The procedures employed in these various calculations can be used to better understand how different environmental variables influence biogeochemical interactions. In addition, they help constrain the minimum energy required to sustain a particular microbial population and provide the means to determine why certain types of metabolism occur in the environments in which they do.  相似文献   

17.
Reversible oxidation of amino acids within intracellular proteins leads to local and/or global conformational changes in protein structure. Thus, the enzymatic activity or binding properties of a protein might be regulated by local changes in a cell's redox potential, mediated by the availability of reducing/oxidizing equivalents. Whereas it is well established that intracellular pools of oxidizable groups compensate for oxidative stress, far less is known about the molecular mechanisms that accompany transient and reversible oxidation of cytoplasmic proteins. Therefore, the intrinsic redox properties of proteins amenable to reversible oxidation need to be determined. Here we describe the application of NMR spectroscopy to derive the redox properties of intracellular proteins. As exemplified for thioredoxin 1, the Tnk-1 kinase SH3 domain, and the hSH3(N) domain of the T cell protein ADAP, the conformational changes associated with disulfide bond formation can be followed directly upon titration with different ratios of reduced to oxidized glutathione. Redox potentials can be measured accurately in homogeneous solutions and define the conditions under which regulatory oxidation of the respective protein may occur in the living cell.  相似文献   

18.
NADPH-cytochrome P450 reductase is a flavoprotein which contains both an FAD and FMN cofactor. Since the distribution of electrons is governed solely by the redox potentials of the cofactors, there are nine different ways the electrons can be distributed and hence nine possible unique forms of the protein. More than one species of reductase will exist at a given level of oxidation except when the protein is either totally reduced or oxidized. In an attempt to unambiguously characterize the redox properties of the physiologically relevant FMNH(2) form of the reductase, the T491V mutant of NADPH-cytochrome P450 reductase has been reconstituted with 5'-deazaFAD which binds to the FAD-binding site of the reductase with a K(d) of 94 nM. The 5'-deazaFAD cofactor does not undergo oxidation or reduction under our experimental conditions. The molar ratio of FMN to 5'-deazaFAD in the reconstituted reductase was 1.1. Residual FAD accounted for less than 5% of the total flavins. Addition of 2 electron equivalents to the 5'-deazaFAD T491V reductase from dithionite generated a stoichiometric amount of the FMN hydroquinone form of the protein. The 5'-deazaFAD moiety remained oxidized under these conditions due to its low redox potential (-650 mV). The 2-electron-reduced 5'-deazaFAD reductase was capable of transferring only a single electron from its FMN domain to its redox partners, ferric cytochrome c and cytochrome b(5). Reduction of the cytochromes and oxidation of the reductase occurred simultaneously. The FMNH(2) in the 5'-deazaFAD reductase autoxidizes with a first-order rate constant of 0.007 s(-)(1). Availability of a stable NADPH-cytochrome P450 reductase capable of donating only a single electron to its redox partners provides a unique tool for investigating the electron-transfer properties of an intact reductase molecule.  相似文献   

19.
Thiocapsa. roseopersicina BBS has four active [NiFe] hydrogenases, providing an excellent opportunity to examine their metabolic linkages to the cellular redox processes. Hyn is a periplasmic membrane-associated hydrogenase harboring two additional electron transfer subunits: Isp1 is a transmembrane protein, while Isp2 is located on the cytoplasmic side of the membrane. In this work, the connection of HynSL to various electron transport pathways is studied. During photoautotrophic growth, electrons, generated from the oxidation of thiosulfate and sulfur, are donated to the photosynthetic electron transport chain via cytochromes. Electrons formed from thiosulfate and sulfur oxidation might also be also used for Hyn-dependent hydrogen evolution which was shown to be light and proton motive force driven. Hyn-linked hydrogen uptake can be promoted by both sulfur and nitrate. The electron flow from/to HynSL requires the presence of Isp2 in both directions. Hydrogenase-linked sulfur reduction could be inhibited by a QB site competitive inhibitor, terbutryne, suggesting a redox coupling between the Hyn hydrogenase and the photosynthetic electron transport chain. Based on these findings, redox linkages of Hyn hydrogenase are modeled.  相似文献   

20.
Measuring and monitoring of protein oxidation modifications is important for biopharmaceutical process development and stability assessment during long-term storage. Currently available methods for biomolecules oxidation analysis use time-consuming peptide mapping analysis. Therefore, it is desirable to develop high-throughput methods for advanced process control of protein oxidation. Here, we present a novel approach by which oxidative protein modifications are monitored by an indirect potentiometric method. The method is based on adding an electron mediator, which enhances electron transfer (ET) between all redox species and the electrode surface. Specifically, the procedure involves measuring the sharp change in the open circuit potential (OCP) for the mediator system (redox couple) as a result of its interaction with the oxidized protein species in the solution. Application of Pt and Ag/AgCl microelectrodes allowed for a high-sensitivity protein oxidation analysis. We found that the Ru(NH3)62+/3+ redox couple is suitable for measuring the total oxidation of a wide range of therapeutic proteins between 1.1 and 13.6%. Accuracy determined by comparing with the known percentage oxidation of the reference standard showed that percentage oxidation determined for each sample was within ±20% of the expected percentage oxidation determined by mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号