首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystal structure of substrate-free Pseudomonas putida cytochrome P-450   总被引:6,自引:0,他引:6  
T L Poulos  B C Finzel  A J Howard 《Biochemistry》1986,25(18):5314-5322
The crystal structure of Pseudomonas putida cytochrome P-450cam in the substrate-free form has been refined at 2.20-A resolution and compared to the substrate-bound form of the enzyme. In the absence of the substrate camphor, the P-450cam heme iron atom is hexacoordinate with the sulfur atom of Cys-357 providing one axial heme ligand and a water molecule or hydroxide ion providing the other axial ligand. A network of hydrogen-bonded solvent molecules occupies the substrate pocket in addition to the iron-linked aqua ligand. When a camphor molecule binds, the active site waters including the aqua ligand are displaced, resulting in a pentacoordinate high-spin heme iron atom. Analysis of the Fno camphor - F camphor difference Fourier and a quantitative comparison of the two refined structures reveal that no detectable conformational change results from camphor binding other than a small repositioning of a phenylalanine side chain that contacts the camphor molecule. However, large decreases in the mean temperature factors of three separate segments of the protein centered on Tyr-96, Thr-185, and Asp-251 result from camphor binding. This indicates that camphor binding decreases the flexibility in these three regions of the P-450cam molecule without altering the mean position of the atoms involved.  相似文献   

2.
3.
Cobalt-substituted cytochrome P-450cam   总被引:2,自引:0,他引:2  
Reconstitution of the apo-cytochrome with cobalt protoporphyrin provides a faithful P-450cam analogue as characterized by optical, ligand-binding, and enzymatic parameters. The thiol and cyanide complexes exhibit Soret "hyper" spectra, not previously observed in cobalt porphyrins. Substrate-induced spectral changes and limited stereospecific hydroxylation activity are retained in the cobalt P-450cam. The EPR (electron paramagnetic resonance) spectra of the reduced cobaltous protein indicate clearly an endogenous axial ligand other than a nitrogenous base and support an assignment of thiolate coordination. A thiolate ligand is also indicated by EPR measurements in the oxygenated cobaltous analogue. By analogy, these studies suggest that the native ferrous and oxygenated P-450cam states retain a thiolate axial ligand.  相似文献   

4.
Crystalline cytochrome P-450cam   总被引:3,自引:0,他引:3  
  相似文献   

5.
Cytochrome P-450cam catalyzes the stereospecific methylene hydroxylation of camphor to form 5-exohydroxycamphor and is encoded by the camC gene on the CAM plasmid of Pseudomonas putida, ATCC 17453. The cytochrome P-450cam structural gene has been cloned by mutant complementation in P. putida (Koga, H., Rauchfuss, B., and Gunsalus, I. C. (1985) Biochem. Biophys. Res. Commun. 130, 412-417). We report the complete nucleotide sequence of the camC gene along with 155 base pairs of 5' and 175 base pairs of 3' flanking sequence. Upon comparison of the amino acid sequence derived from the gene sequence to the one obtained from the purified protein (Haniu, M., Armes, L. G., Yasunobu, K. T., Shastry, B. A., and Gunsalus, I. C. (1982) J. Biol. Chem. 257, 12664-12671), five differences were found. The most significant was the addition of a Trp and a Thr residue between Val-54 and Arg-55, thereby increasing the amino acid numbering scheme by 2 after Val-54, bringing the total number of amino acids to 414. Other differences were: Gln-274----Glu-276, Ser-359----His-361, and Asn-405----Asp-407. N-terminal amino acid sequence analysis of the cloned cytochrome P-450cam enzyme expressed in Escherichia coli under the lac promoter showed a faithful translation of the hemo-protein, with the N-terminal Met removed by processing as found in P. putida. Purification to homogeneity of the cloned protein was accomplished by the method used for the CAM plasmid-encoded enzyme of P. putida. The G + C content of the camC gene was found to be 59.0%, caused by a preferred usage of G and C terminated codons. The gene encoding putidaredoxin reductase, camA, was located 22 nucleotides downstream from the cytochrome P-450cam gene. The camA gene initiated with a novel GUG codon, the first such initiator documented in Pseudomonas.  相似文献   

6.
The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450   总被引:19,自引:0,他引:19  
The crystal structure of Pseudomonas putida cytochrome P-450cam in the ferric, camphor bound form has been determined and partially refined to R = 0.23 at 2.6 A. The single 414 amino acid polypeptide chain (Mr = 45,000) approximates a triangular prism with a maximum dimension of approximately 60 A and a minimum of approximately 30 A. Twelve helical segments (A through L) account for approximately 40% of the structure while antiparallel beta pairs account for only approximately 10%. The unexposed iron protoporphyrin IX is sandwiched between two parallel helices designated the proximal and distal helices. The heme iron atom is pentacoordinate with the axial sulfur ligand provided by Cys 357 which extends from the N-terminal end of the proximal (L) helix. A substrate molecule, 2-bornanone (camphor), is buried in an internal pocket just above the heme distal surface adjacent to the oxygen binding site. The substrate molecule is held in place by a hydrogen bond between the side chain hydroxyl group of Tyr 96 and the camphor carbonyl oxygen atom in addition to complementary hydrophobic contacts between the camphor molecule and neighboring aliphatic and aromatic residues. The camphor is oriented such that the exo-surface of C5 would contact an iron bound, "activated" oxygen atom for stereoselective hydroxylation.  相似文献   

7.
8.
9.
10.
An extensive sequence analysis of the eukaryotic cytochrome P-450 (P-450) protein families was conducted with a view to identifying conserved regions that might be related to secondary structural features in the Pseudomonas putida camphor hydroxylase (P-450cam). All sequences available on-line were collected, classified and aligned within families. Distinctively different sequences were chosen from each of seven eukaryotic families, and an unbiased multi-alignment was constructed. Profile patterns of the most conserved regions were generated and screened against the sequence of P-450cam, the structure of which has been elucidated by X-ray crystallography. While some of these profiles did not map on the P-450cam sequence, the structurally most important helices were clearly identified and the correlations were found to be statistically significant. Our analysis suggests that the helix-rich domain with the cysteine pocket and the oxygen-binding site is conserved in all P-450 forms. Helices I and L from P-450cam can be easily identified in all eukaryotic P-450 forms. Other helices which seem to exist in all P-450 forms include helices C, D, G and J. K. In the helix-poor domain of P-450cam, only structures b3/b4 seem to have been conserved. The obvious sequence conservation throughout the helix-rich domain of the P-450cam protein might be expected for a molecular class whose overall topology is preserved. Additional support for the conservation of structure between eukaryotic cytochromes P-450 and P-450cam comes from secondary structure prediction of the eukaryotic sequences.  相似文献   

11.
Prasad S  Mitra S 《Biochemistry》2002,41(49):14499-14508
The role of protein structural flexibility and substrate dynamics in catalysis by cytochrome P450 enzymes is an area of current interest. We have addressed these in cytochrome P450(cam) (P450(cam)) and its Y96A mutant with camphor and its related compounds using fluorescence spectroscopy. Previously [Prasad et al. (2000) FEBS Lett. 477, 157-160], we provided experimental support to dynamic fluctuations in P450(cam), and substrate access into the active site region via the channel next to the flexible F-G helix-loop-helix segment. In the investigation described here, we show that the dynamic fluctuations in the enzyme are substrate dependent as reflected by tryptophan fluorescence quenching experiments. The orientation of tryptophan relative to heme (kappa(2)) for W42 obtained from time-resolved tryptophan fluorescence measurements show variation with type of substrate bound to P450(cam) suggesting regions distant from heme-binding site are affected by physicochemical and steric characteristics/protein-substrate interactions of P450(cam) active site. We monitored substrate dynamics in the active site region of P450(cam) by time-resolved substrate anisotropy measurements. The anisotropy decay of substrates bound to P450(cam) indicate that mobility of substrates is modulated by physicochemical and steric characteristics/protein-substrate interactions of local active site structure, and provides an understanding of factors controlling observed hydroxylated products for substrate bound P450(cam) complexes. The present study shows that P450(cam) local and peripheral structural flexibility and heterogeneity along with substrate mobility play an important role in regulating substrate binding orientation during catalysis and accommodating diverse range of substrates within P450(cam) heme pocket.  相似文献   

12.
13.
Effects of pH on the ligand-binding reactions of ferric heme in cytochrome P-450 from Pseudomonas putida (camphor 5-monooxygenase, EC 1.14.15.1) were studied by using cyanide, N-methylimidazole, pyridine, and ethylisocyanide as ligands. In all cases, affinity of the ferric heme for the ligand was found to increase as pH of the medium was raised from around 6 to 9. Depending on the ligand, the increase was 10- to 1000-fold and the shapes of their pH-affinity curves were remarkably different. Analyses such pH profiles disclosed the presence of a dissociable group in the enzyme with a pK value of approximately 9.5 and that its ionization greatly enhanced the affinity of the heme for ligands. When a dissociable ligand such as hydrogen cyanide and N-methylimidazole was used, the dissociated form of the ligand had a higher affinity toward the heme than the undissociated form. The shapes of the pH-affinity curves were successfully simulated as overlapping curves of ionization reactions of the ligand and the dissociable group. In addition, size of the ligand molecule was shown to be also important in the binding reaction: relatively large molecules such as pyridine, ethylisocyanide, and N-methylimidazole bound to the enzyme in a competitive manner against d-camphor concentration, whereas the binding of a smaller molecule such as cyanide was inhibited by the substrate in a noncompetitive manner. On the basis of these findings, control mechanisms for the ligand-binding reactions of the cytochrome P-450 from P. putida are discussed.  相似文献   

14.
M?ssbauer studies of cytochrome P-450 cam   总被引:4,自引:0,他引:4  
  相似文献   

15.
Careful titration of oxidized cytochrome P-450cam from Pseudomonas putida with pyridine revealed deviations of the Eadie plot from linearity in the substrate-bound as well as in the substrate-free protein. A binding model which assumes two binding sites for pyridine--the iron and the camphor binding site--is able to describe completely the nonlinear Eadie plot.  相似文献   

16.
17.
18.
Electron paramagnetic resonance detectable states of cytochrome P-450cam   总被引:5,自引:0,他引:5  
J D Lipscomb 《Biochemistry》1980,19(15):3590-3599
Cytochrome P-450cam is a low-spin Fe3+hemoprotein (g = 2.45, 2.26, and 1.91) which is made 60% high spin (g = 7.85, 3.97, and 1.78) at 12 K by the addition of 1 mol of substrate per mol of enzyme. Low-temperature EPR spectra show that the low-spin fraction of substrate-bound P-450cam contains two magnetic species. The majority species has an unusual EPR spectrum (g = 2.42, 2.24, and 1.97) which connot be simulated by using the range of crystal field parameters known for other heme proteins. The minority species has the same g values as substrate-free enzyme. Both low-spin species show Curie law temperature dependence below 50 K and have similar saturation behavior. Above 50 K the g = 2.42, 2.24, and 1.97 species rapidly loses signal intensity. The distribution of low-spin species is pH dependent (apparent pKa = 6.2) with the g = 2.42, 2.24, and 1.97 magnetic species favored at high pH. The substrate binding stoichiometry and the equilibria observed in the low-spin fraction suggest that there are not multiple protein forms of cytochrome P-450cam. Putidaredoxin and other effector molecules which specifically catalyze hydroxylation convert either the high-spin or the g = 2.42, 2.24, and 1.97 low-spin species to another new magnetic species (g = 2.47, 2.26, and 1.91). This species is only seen in the presence of substrate, and its stability reflects the catalytic potency of the effector molecule. The EPR and UV-visible spectra of cytochrome P-420 depend upon the manner in which the P-420 is generated. Incubation with acetone or reaction with N-ethylmaleimide or diethyl pyrocarbonate generates P-420 with different spectral characteristics. Through identification of active-site amino acids by chemical modification and comparison with porphyrin model complexes, the range of ligands likely to participate in each of the EPR detectable species is assigned. Mechanisms of interconversion of these species and their bearing on catalysis are discussed.  相似文献   

19.
The cytochrome P-450 of Pseudomonas putida (P-450cam) and that of phenobarbital-induced liver microsomes (P-450LM) differ markedly in substrate specificity, solubility, and the requirement of the former for an iron-sulfur protein and the latter for a phospholipid for hydroxylation activity. Despite these differences, highly purified P-450cam and P-450LM show immunological cross reaction by competitive binding and inhibition of catalytic activity and are of similar subunit molecular weight and amino acid composition. Upon treatment with cyanogen bromide they yield small heme-containing peptides of highly similar amino acid composition.  相似文献   

20.
Apoprotein formation and heme reconstitution of cytochrome P-450cam   总被引:1,自引:0,他引:1  
Apoprotein suitable for heme reconstitution has been prepared by an acid/butanone extraction of cytochrome P-450cam at pH 2.5. Absorption spectra of apo-P-450cam indicate less than 2% residual holoenzyme. Four tryptophan residues per molecule were estimated from the aromatic absorbance region of denatured apoprotein. Heme-reconstituted holoprotein was purified in 30% yield to a specific activity equivalent to the native enzyme. Absorption and EPR spectra of 57Fe- and 54Fe-heme-enriched P-450cam reveal complete restoration of the native active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号