首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P R Griffin  S D Aird 《FEBS letters》1990,274(1-2):43-47
Fast atom bombardment (FAB) mass spectrometry was used to identify a new small myotoxin from the venom of the prairie rattlesnake (Crotalus viridis viridis). FAB mass spectrometry and Edman degradation were used to characterize its structure. This toxin is similar to myotoxin I from C. v. concolor, except that it possesses an additional. C-terminal asparaginyl-alanine. At 45 residues it is the longest known myotoxin a homolog. A myotoxin of 43 residues, identical to myotoxin I from C. v. concolor, was also found. To date no other species has been shown to produce more than one length of myotoxin. The present paper documents 42-, 43-, and 45-residue myotoxins from the venom of a single animal.  相似文献   

2.
Hemorrhagic toxin f (HT-f) was isolated from Crotalus atrox (Western Diamondback Rattlesnake) venom by a five-step purification procedure. Homogeneity was established by the formation of a single band in acrylamide gel electrophoresis, isoelectric focusing, and sodium dodecyl sulfate (SDS)-electrophoresis. HT-f has a molecular weight of 64,000 and contains 572 amino acid residues. It contains 1 mol of zinc per mol of protein. Zinc is essential for both hemorrhagic and proteolytic activities. HT-f possesses proteolytic activity hydrolyzing the Val-Asn, Gln-His, Leu-Cys, His-Leu, Ala-Leu, and Tyr-Leu bonds of oxidized insulin B chain. HT-f did not coagulate fibrinogen to fibrin, yet it did hydrolyze the gamma chain of fibrinogen without affecting either the A alpha or B beta chains. This is the first time that a hemorrhagic toxin was shown to have fibrinogenase activity. HT-f was shown to differ immunologically from other hemorrhagic toxins such as HT-a and HT-c. HT-f also possesses lethal toxicity. When zinc was removed the apo-HT-f lost its lethal toxicity. HT-f produced not only local hemorrhage in the skin and muscle, but also produced systemic hemorrhage in internal organs such as the intestine, kidney, lung, heart, and liver.  相似文献   

3.
In our effort to identify the proteolytic specificity of various hemorrhagic toxins isolated from western diamondback rattlesnake venom, hemorrhagic toxin b was isolated in homogeneous form by previously published methods. Hemorrhagic toxin b hydrolyzed glucagon, producing six fragments. The proteolytic sites were identified as Thr(5)-Phe(6), Thr(10)-Ser(11), Asp(15)-Ser(16), Asp(21)-Phe(22) and Try(25)-Leu(26). When oxidized insulin B chain was used, proteolysis occurred at four sites: Asn(3)-Gln(4), His(10)-Leu(11), Tyr(16)-Leu(17) and Gly(23)-Phe(24). The proteolytic specificity of hemorrhagic toxin b is quite different from those of the nonvenom proteases such as thermomycolin, aspergillopeptidase c, alkaline protease from Aspergillus flavus, elastase, subtilisin and papain.  相似文献   

4.
A protein isolated from timber rattlesnake (Crotalus horridus horridus) venom by ion-exchange and high-pressure liquid chromatography is hemorrhage inducing and lethal to mice (LD50 of 10 micrograms/g of body weight). It is a Ca2+- and Zn2+-containing proteinase and has the ability to hydrolyze hide powder azure. Atomic absorption spectroscopy shows 2.5 Ca2+ and 1 Zn2+ per protein monomer. The proteinase activity is destroyed by incubation with disulfide-reducing agents and by dialysis against ethylenediaminetetraacetate. Coincident with the loss of proteinase activity is a corresponding loss of lethal and hemorrhagic activities, suggesting that all three are related. Attempts to replace the metals and restore activity have been unsuccessful. Amino acid analysis and isoelectric focusing reveal that this component is an acidic protein (pI = 5.1) containing about 20 disulfide bonds and 507 residues. Reduction of one disulfide bond per molecule decreases proteinase activity by 50% while reduction of eight disulfide bonds decreases activity by 80%. Loss of hemorrhagic activity parallels the decrease in proteinase activity.  相似文献   

5.
Myonecrosis is a serious result of rattlesnake bite and constitutes a persistent clinical problem. In the current study we have isolated crotamine from the venom of Crotalus durissus terrificus to test its ability to cause structural damage to skeletal muscle, and to make direct chemical comparisons with Myotoxin a, a myotoxic polypeptide we recently isolated from prairie rattlesnake (Crotalus viridis viridis) venom. Disc gel electrophoresis, isoelectric focusing, circular dichroic spectroscopy, and amino acid analysis, all indicated a high degree of chemical similarity. Light microscope histology revealed that crotamine caused vacuolizationof skeletal muscle fibers, qualitatively the same as the vacuolization caused by Myotoxin a. The ability of these two basic snake venom polypeptides to cause structural damage to skeletal muscle fibers has significant implications toward more complete understanding of the cause of snake venom-induced myonecrosis.  相似文献   

6.
Two hemorrhagic proteinases from Crotalus atrox venom, hemorrhagic toxin c (Ht-c) and hemorrhagic toxin d (Ht-d), were characterized and compared to one another. The two toxins are zinc metalloproteinases which both have molecular weights of 24,000. Their isoelectric points are slightly acidic, Ht-c being the more basic of the two with an isoelectric point of 6.2, whereas Ht-d has an isoelectric point of 6.1. Only minor differences were found in the amino acid compositions of the two toxins. The toxins were both demonstrated to be hemorrhagic, using an in vivo assay, and also proteolytic. Prior treatment of the hemorrhagic proteinases with ethylenediaminetetraacetic acid and o-phenanthroline eliminated both the hemorrhagic and the proteolytic activities. Aprotinin and phenylmethylsulfonyl fluoride had no effect upon these activities. The pH optimum of the proteolysis by Ht-c and Ht-d on hide powder azure as the substrate was between pH 8 and pH 9. The circular dichroism spectra for Ht-c and Ht-d appear almost identical with respect to minima positions and elipticities, indicative of very similar solution structures for the two enzymes. Antiserum raised in mice against Ht-c was assayed on double-diffusion Ouchterlony plates for cross-reactivity with other hemorrhagic toxins from C. atrox venom. From this experiment it was concluded that the two hemorrhagic proteinases Ht-c and Ht-d share identical antigenic structures. This was corroborated by tryptic mapping of the two toxins. Only one major difference was observed from the maps. In the case of Ht-c, it was determined that an aspartate was substituted by an alanine when compared to Ht-d. From these characterization studies we conclude that Ht-c and Ht-d are isoenzymes with only very minor differences in their structures.  相似文献   

7.
Hemorrhagic proteinase, HTb, isolated from Crotalus atrox (western diamondback rattlesnake) venom was studied for its specificity. HTb showed fibrinogenase activity, hydrolyzing the A alpha chain of fibrinogen first, followed by the cleavage of the B beta chain. HTb is different from thrombin and did not produce a fibrin clot. The degradation products of fibrinogen were found to be different, indicating that the cleavage sites in the A alpha and B beta chains are different from those of thrombin. N-Benzoyl-Phe-Val-Arg-p-nitroanilide was not hydrolyzed by HTb, although this substrate was hydrolyzed by thrombin and reptilase.  相似文献   

8.
A rapid and convenient method for the purification of a toxin from timber rattlesnake, Crotalus horridus horridus, venom using carboxymethyl cellulose ion-exchange chromatography has been devised. The toxicity of this venom component is labile, but it is stabilized by the addition of 20+ V/V glycerol to the buffer solution. This toxin has a molecular weight of 15,000 +/- 700 as determined by SDS gel electrophoresis. It is both heat and protease resistant. Treatment of this venom component with 2-mercaptoethanol followed by G-50 Sephadex chromatography causes no loss of toxicity although incubation of the toxin with 1% SDS and 1% 2-mercaptoethanol prior to electrophoresis does result in a faster migrating species. The toxin does not affect neuromuscular junctions but does appear to act on the nervous system. It causes no local responses in mice.  相似文献   

9.
10.
1. Hemorrhagic toxin from the venom of Trimeresurus elegans was purified in a homogeneous form using gel filtration and ion exchange chromatographies. 2. Hemorrhagic toxin possessed hemorrhagic and TAME (tosyl-L-arginine methyl ester) hydrolytic activities. These activities were inhibited when hemorrhagic toxin was incubated with benzamidine or N-bromosuccinimide. 3. Its mol. wt was 28,500 and the isoelectric point was 7.4. 4. This toxin contains ca 1.5 mol Ca per mol of protein.  相似文献   

11.
Laser Raman Spectra were obtained on aqueous and solid samples of Mojave toxin isolated from the venom of the Mojave rattlesnake (Crotalusscutulatus). The Raman spectra reveal that the Mojave toxin, an acidic protein of molecular weight about 22,000, contains a predominantly α-helical secondary structure and that the tyrosyl residues, on the basis of the Raman frequencies and intensities, are exposed to the solvent. These features of the Mojave toxin distinguish it structurally from the neurotoxins of sea snake venoms. However, like the sea snake venom toxins, Mojave toxin contains four disulfide bridges and is not greatly altered in structure by removal of the aqueous solvent.  相似文献   

12.
J B Bjarnason  A T Tu 《Biochemistry》1978,17(16):3395-3404
Five previously unknown hemorrhagic proteins, designated hemorrhagic toxins a,b,c,d, and e, were isolated from the venom of the western diamondback rattlesnake (Crotalus atrox). Molecular weights of hemorrhagic toxins a-e were determined to be 68 000, 24 000, 24 000, 24 000, and 25 700, respectively, by sodium dodecyl sulfate-phosphate gel electrophoresis using various polyacrylamide gel concentrations. Amino acid composition showed a total of 636, 200, 213, 214, and 219 amino acids for hemorrhagic toxins a-e, respectively. All the hemorrhagic toxins were found to lose their hemorrhagic activities with the metal chelators ethylenediaminetetraacetic acid and 1, 10-phenanthroline. All the hemorrhagic toxins were found to contain approximately 1 mol of zinc/mol of toxin, and they were all demonstrated to be proteolytic when dimethylcasein and dimethylhemoglobin were used as substrates. When zinc was removed from hemorrhagic toxin e with 1,10-phenanthroline, both both the proteolytic and hemorrhagic activities were equally inhibited. When the apohemorrhagic toxin e thus produced was incubated with zinc, the hemorrhagic and proteolytic activities were regenerated to the same extent. CD, UV, and Raman spectroscopy were used to study the structure of native hemorrhagin toxin e as well as the structural changes caused by zinc removal. From CD spectroscopy the native toxin was estimated to consist of 23% alpha helix, 6% beta structure, and 71% random-coil conformation. When over 90% of the zinc was removed, the alpha-helix content dropped from 23 to 7%.  相似文献   

13.
The prairie rattlesnake (Crotalus viridis viridis) was experimentally infected with tetrathyridia of Mesocestoides sp. Individual snakes were killed at 4 wk increments, and sections of the stomach, small intestine, large intestine and attached mesenteries were examined for nonencapsulated and encapsulated tetrathyridia. Capsule formation was asynchronous with 9 to 80% encapsulated metacestodes. The distribution of tetrathyridia in the wall of all segments of the gastrointestinal tract is presented as evidence that this metacestode is principally a tissue dwelling parasite.  相似文献   

14.
1. Three pooled and 20 individual venom samples of Crotalus viridis lutosus from different localities in Utah and Arizona were screened and fractionated with HPLC-anion exchange. 2. Pooled venom samples and fractions were tested for hemorrhagic, collagenase, and phospholipase activities, and reactivity to a monoclonal antibody against a hemorrhagin from C. atrox venom (CA-P-8) using ELISA. 3. The 20 individual samples were organized into four groups based on their HPLC profiles. 4. ELISA results and specific hemorrhagic activity of the venom samples displayed a variation in latitidinal distribution although from the same species.  相似文献   

15.
16.
Three hemorrhagic toxins with proteolytic activity were isolated from the venom of Crotalus ruber ruber (red rattlesnake). Molecular weights of HT-1, HT-2, and HT-3 were 60,000, 25,000, and 25,500, respectively. Although HT-3 was a basic protein, HT-1 and HT-2 were slightly acidic proteins. Total amino acid residues were 482,207, and 221 for HT-1, HT-2, and HT-3, respectively. Protease activity of all the toxins was inhibited in the presence of EDTA or o-phenanthroline, suggesting that the toxins are metalloproteins. Analyses for various metals by inductively coupled plasma-atomic emission spectrometry indicated that sodium, potassium, zinc, and calcium atoms were present in significant quantities. With all three toxins, there was roughly 1 mol of zinc to 1 mol of protein; the results for calcium were not consistent. All three hemorrhagic toxins degraded the A alpha chain of fibrinogen, while HT-1 also degraded the B beta chain. Although fibrinogen was degraded by the three toxins, no clots were observed, indicating that the proteolytic specificities of the three toxins were different from those of thrombin. The hemorrhagic toxins increased creatine kinase activity in mice serum, indicating muscle damage, which was substantiated by histological examination.  相似文献   

17.
1. A kallikrein-like enzyme was isolated and characterized from the venom of Crotalus ruber ruber (red rattlesnake). 2. The kallikrein-like enzyme was shown to be homogeneous as demonstrated by a single band on acrylamide gel electrophoresis, isoelectric focusing, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunodiffusion and reverse-phase (RP) HPLC. 3. The enzyme has a molecular weight of 31,000 and isoelectric point of 4.6. It consists of 271 total amino acid residues, 24% of which are acidic amino acids. 4. Specific esterolytic activities of the kallikrein-like enzyme on N-tosyl-L-arginine methylester (TAME) and N-benzoyl-L-arginine ethylester (BAEE) are 109.5 and 23.6 mumol/min/mg, respectively. 5. The enzyme differs from trypsin as the soybean trypsin inhibitor does not inhibit the enzyme's action. Diisopropylfluorophosphate (DFP) inhibits the enzyme, suggesting that the serine hydroxyl group is important for enzyme activity. 6. The enzyme is not lethal at 15 micrograms/g in mice and has no hemorrhagic activity, yet the injection of the purified enzyme intradermally, produced capillary permeability-increasing activity as shown by the use of Evans blue dye, and immediate drop in blood pressure. It also contracted the rat uterus.  相似文献   

18.
A fibrinogenolytic enzyme was isolated from the venom of Western Diamondback rattlesnake (Crotalus atrox) by a three-step procedure involving gel filtration and anion-exchange chromatography. The molecular weight was estimated as 22 900 by SDS-polyacrylamide gel electrophoresis. The isoelectric point was found to be pH 4.65. The enzyme rapidly destroyed the ability of bovine fibrinogen to form a clot on incubation with thrombin. Incubation of fibrinogen with the fibrinogenolytic enzyme for 5 min resulted in the disappearance of the beta-chain of fibrinogen and the appearance of lower molecular weight fragments. Thus the enzyme can be classified as a beta-fibrinogenase. However, on prolonged incubation of the fibrinogen there was also a partial digestion of the alpha-chain. The fibrinogenase showed no activity towards fibrin or casein or arginine esters. The fibrinogenolytic activity was inhibited by phenylmethanesulphonyl fluoride (PMSF) but was unaffected by EDTA.  相似文献   

19.
The major hemorrhagic principle (HR1B) in the venom of Habu (Trimeresurus flavoviridis), a crotalid, was found to be easily inactivated and hydrolyzed by a commercial protease (Nagarse). The ability of the hydrolysate to produce the toxin-neutralizing antibody has been shown to be comparable to or superior to those of two formol toxoids used as the controls, suggesting that inactivation of HR1B by the protease provides a new method for the preparation of Habu toxoid.  相似文献   

20.
Crotalus atrox venom contains agents that render human fibrinogen and plasma incoagulable by thrombin. To elucidate the mechanism of alteration of fibrinogen clotting function by the venom, four immunochemically different proteases, I, II, III, and IV, were purified from the venom by anion-exchange chromatography and column gel filtration. All four proteases had anticoagulant activity rendering purified fibrinogen incoagulable. Proteases I and IV do not affect fibrinogen in plasma but in purified fibrinogen cleave the A alpha chain first and then the B beta and gamma chains. Both enzymes are metalloproteases containing a single polypeptide chain with 1 mol of zinc, are inhibited by (ethylenedinitrilo)tetraacetate and human alpha 2-macroglobulin, and have an optimal temperature of 37 degrees C and an optimal pH of 7. Protease I has a molecular weight (Mr) of 20 000 and is the most cationic. Protease IV has an Mr of 46 000 and is the most anionic glycoprotein with one free sulfhydryl group. Proteases II and III degrade both purified fibrinogen and fibrinogen in plasma, cleaving only the B beta chain and leaving the A alpha and gamma chains intact. Both enzymes are alkaline serine proteases, cleave chromogenic substrates at the COOH terminal of arginine or lysine, are inhibited by diisopropyl fluorophosphate and phenylmethanesulfonyl fluoride, and have an optimal temperature of 50-65 degrees C. Protease II is a single polypeptide chain glycoprotein with an Mr of 31 000. Protease III is a two polypeptide chain protein with an Mr of 24 000, each of the two chains having an Mr of 13 000; its activity is not affected by major protease inhibitors of human plasma. Proteases II and III are enzymes with unique and limited substrate specificity by cleaving only the B beta chain, releasing a peptide of Mr 5000 and generating a fibrinogen derivative of Mr 325 000, with intact A alpha and gamma chains and poor coagulability. Since the two enzymes are active in human plasma and serum, it is postulated that proteases II and III can mediate anticoagulant effects in vivo after envenomation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号