首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jagetia GC  Reddy TK 《Life sciences》2005,77(7):780-794
The alteration in the antioxidant status and lipid peroxidation was investigated in Swiss albino mice treated with 2 mg/kg b.wt. naringin, a citrus flavoglycoside, before exposure to 0.5, 1, 2, 3, and 4 Gy gamma radiation. Lipid peroxidation, glutathione, glutathione peroxidase, catalase and superoxide dismutase were determined in the liver and small intestine of mice treated or not with naringin at 0.5, 1, 2, 4 and 8 h post-irradiation. Whole-body irradiation of mice caused a dose-dependent elevation in the lipid peroxidation while a dose-dependent depletion was observed for glutathione, glutathione peroxidase, superoxide dismutase and catalase in both liver as well as small intestine. Treatment of mice with 2 mg/kg b. wt. naringin inhibited the radiation-induced elevation in the lipid peroxidation as well as depletion of glutathione, glutathione peroxidase, superoxide dismutase and catalase in liver and small intestine. Radiation-induced lipid peroxidation increased with time, which was greatest at 2 h post-irradiation and declined thereafter in the liver and small intestine. Similarly, a maximum decline in the glutathione glutathione peroxidase, and superoxide dismutase was observed at 1 h, while catalase showed a maximum decline at 2 h post-irradiation. Our study demonstrates that naringin protects mouse liver and intestine against the radiation-induced damage by elevating the antioxidant status and reducing the lipid peroxidation.  相似文献   

2.
The flavonoid silymarin, which is used as a therapeutical agent in the treatment of liver diseases, can inhibit the hemolysis and lipid peroxidation induced by phenylhydrazine on erythrocytes obtained from rats treated with the flavonoid. This effect is ascribed to the antioxidant properties as a free radical scavenger exhibited by the flavonoid. Silymarin failed to inhibit the glutathione depletion induced by phenylhydrazine on erythrocytes. It is proposed that the flavonoid acts at the membrane level of the cell avoiding the lipid peroxidative and fluidizing effect of phenylhydrazine.  相似文献   

3.
Although S-Adenosylmethionine (SAMe) has beneficial effects in many hepatic disorders, the effects of SAMe on acute alcohol-induced liver injury are unknown. In the present study, we investigated effects of SAMe on liver injury in mice induced by acute alcohol administration. Male C57BL/6 mice received ethanol (5 g/kg BW) by gavage every 12 hrs for a total of 3 doses. SAMe (5 mg/kg BW) was administrated i.p. once a day for three days before ethanol administration. Subsequent serum ALT level, hepatic lipid peroxidation, enzymatic activity of CYP2E1 and hepatic mitochondrial glutathione levels were measured colorimetrically. Intracellular SAMe concentration was measured by high-performance liquid chromatography (HPLC). Histopathological changes were assessed by H&E staining. Our results showed that acute ethanol administration caused prominent microvesicular steatosis with mild necrosis and an elevation of serum ALT activity. SAMe treatment significantly attenuated the liver injury. In association with the hepatocyte injury, acute alcohol administration induced significant decreases in both hepatic SAMe and mitochondrial GSH levels along with enhanced lipid peroxidation. SAMe treatment attenuated hepatic SAMe and mitochondrial GSH depletion and lipid peroxidation following acute alcohol exposure. These results demonstrate that SAMe protects against the liver injury and attenuates the mitochondrial GSH depletion caused by acute alcohol administration. SAMe may prove to be an effective therapeutic agent in many toxin-induced liver injuries including those induced by alcohol.  相似文献   

4.
Lipid peroxidation, glutathione level and activity of glutathione-S-transferase were studied in liver and brain of rats 4 and 3 h after a single i.p. administration of 0, 25, 75, 100 mg/kg acrylamide or 0, 50, 100, 200, 600 mg/kg styrene, respectively. In liver both acrylamide and styrene caused an increase in lipid peroxidation and decrease in glutathione contents and activity of glutathione-S-transferase in a dose dependent manner, while in brain only acrylamide produced a decrease in glutathione content. The decrease in glutathione content was not always associated with increase of lipid peroxidation. The enhancement of lipid peroxidation occurred only when glutathione contents were depleted to certain critical levels. No effect of acrylamide or styrene was seen on lipid peroxidation under in vitro conditions. The addition of glutathione in the incubation mixture significantly inhibited the rate of lipid peroxidation of liver homogenates of acrylamide and styrene treated animals.The results suggest that enhancement of lipid peroxidation in liver on exposure to acrylamide or styrene is a consequence of depletion of glutathione to certain critical levels. The inhibition of glutathione-S-transferase activity by acrylamide and styrene suggests that detoxication of these neurotoxic compounds could be suppressed following acute exposure.  相似文献   

5.
Acetaminophen overdose causes acute liver injury or even death in both humans and experimental animals. We investigated the effect of 17β-estradiol against acetaminophen-induced acute liver injury and mortality in mice. Male mice were given acetaminophen (p-acetamidophenol; 300 mg/kg; orally) to induce acute liver injury. Acetaminophen significantly increased the levels of aspartate transaminase, alanine transaminase, myeloperoxidase, lipid peroxidation, and glutathione reductase, but it decreased superoxide dismutase, catalase, and glutathione. In addition, acetaminophen-induced mortality began 4h post-treatment, and all mice died within 9h. 17β-Estradiol (200 μg/kg; i.p.) protected against acetaminophen-induced oxidative hepatic damage by inhibiting neutrophil infiltration and stimulating the antioxidant defense system. However, 17β-estradiol did not affect acetaminophen-induced glutathione depletion or increased glutathione reductase activity. We conclude that 17β-estradiol specifically attenuates acute hepatic damage and decreases mortality in acetaminophen-overdosed male mice.  相似文献   

6.
Lipid peroxidation induced by cyclophosphamide   总被引:2,自引:0,他引:2  
Intraperitoneal administration of a single dose of cyclophosphamide (CP) to rats was found to produce hepatic glutathione depletion and to enhance NADPH-mediated lipid peroxidation in the 15,000 x g supernatant fraction of the liver. These effects were associated with CP in a dose- and a time-dependent manner. The data suggest that the glutathione depletion is, at least in part, responsible for the enhancement in lipid peroxidation induced by CP.  相似文献   

7.
Studies were carried out to determine the effects of lung and liver cytosol on pulmonary and hepatic mierosomal lipid peroxidation, to determine the cytosolic concentrations of various substances which affect lipid peroxidation, and to determine which of these substances is responsible for the effects of the cytosol on lipid peroxidation. Lung cytosol inhibits both enzymatic (NADPH-induced) and nonenzymatic (Fe2+-induced) lung microsomal lipid peroxidation. In contrast, liver cytosol stimulates lipid peroxidation in hepatic microsomes during incubation alone, enhances Fe2+-stimulated lipid peroxidation, and has no effect on the NADPH-induced response. Substances which are known to be involved in inhibition of lipid peroxidation, including glutathione, glutathione reductase, glutathione peroxidase, and superoxide dismutase, are found in greater concentrations in liver cytosol than in lung cytosol. However, ascorbate is found in approximately equal concentrations in pulmonary and hepatic cytosol. Most of the effects of the cytosol on lipid peroxidation seem to be due to ascorbate and glutathione. For example, ascorbate, in concentrations found in lung cytosol, inhibits lung microsomal lipid peroxidation to about the same extent as the cytosol. The effects of liver cytosol on hepatic microsomal lipid peroxidation can be duplicated by concentrations of ascorbate and glutathione normally found in the cytosol; i.e., ascorbate stimulates and glutathione inhibits lipid peroxidation with the net effect being similar to that of liver cytosol. The results indicate that ascorbate has opposite effects on pulmonary and hepatic microsomal lipid peroxidation and suggest that ascorbate plays a major role in protecting pulmonary tissue against the harmful effects of lipid peroxidation.  相似文献   

8.
Hyperglycemia and mitochondrial ROS overproduction have been identified as key factors involved in the development of diabetic nephropathy. This has encouraged the search for strategies decreasing glucose levels and long-term improvement of redox status of glutathione, the main antioxidant counteracting mitochondrial damage. Previously, we have shown that avocado oil improves redox status of glutathione in liver and brain mitochondria from streptozotocin-induced diabetic rats; however, the long-term effects of avocado oil and its hypoglycemic effect cannot be evaluated because this model displays low survival and insulin depletion. Therefore, we tested during 1 year the effects of avocado oil on glycemia, ROS levels, lipid peroxidation and glutathione status in kidney mitochondria from type 2 diabetic Goto-Kakizaki rats. Diabetic rats exhibited glycemia of 120–186 mg/dL the first 9 months with a further increase to 250–300 mg/dL. Avocado oil decreased hyperglycemia at intermediate levels between diabetic and control rats. Diabetic rats displayed augmented lipid peroxidation and depletion of reduced glutathione throughout the study, while increased ROS generation was observed at the 3rd and 12th months along with diminished content of total glutathione at the 6th and 12th months. Avocado oil ameliorated all these defects and augmented the mitochondrial content of oleic acid. The beneficial effects of avocado oil are discussed in terms of the hypoglycemic effect of oleic acid and the probable dependence of glutathione transport on lipid peroxidation and thiol oxidation of mitochondrial carriers.  相似文献   

9.
The purpose of this study was to investigate the potentially beneficial effects of apple cider vinegar (ACV) supplementation on serum triglycerides, total cholesterol, liver and kidney membrane lipid peroxidation, and antioxidant levels in ovariectomized (OVX) mice fed high cholesterol. Four groups of ten female mice were treated as follows: Group I received no treatment and was used as control. Group II was OVX mice. Group III received ACV intragastrically (0.6 % of feed), and group IV was OVX and was treated with ACV as described for group III. The treatment was continued for 28 days, during which the mice were fed a high-cholesterol diet. The lipid peroxidation levels in erythrocyte, liver and kidney, triglycerides, total, and VLDL cholesterol levels in serum were higher in the OVX group than in groups III and IV. The levels of vitamin E in liver, the kidney and erythrocyte glutathione peroxidase (GSH-Px), and erythrocyte-reduced glutathione (GSH) were decreased in group II. The GSH-Px, vitamin C, E, and β-carotene, and the erythrocyte GSH and GSH-Px values were higher in kidney of groups III and IV, but in liver the vitamin E and β-carotene concentrations were decreased. In conclusion, ACV induced a protective effect against erythrocyte, kidney, and liver oxidative injury, and lowered the serum lipid levels in mice fed high cholesterol, suggesting that it possesses oxidative stress scavenging effects, inhibits lipid peroxidation, and increases the levels of antioxidant enzymes and vitamin.  相似文献   

10.
Glutathione depleting agents and lipid peroxidation   总被引:3,自引:0,他引:3  
The mechanisms by which glutathione (GSH) depleting agents produce cellular injury, particularly liver cell injury have been reviewed. Among the model molecules most thoroughly investigated are bromobenzene and acetaminophen. The metabolism of these compounds leads to the formation of electrophilic reactants that easily conjugate with GSH. After substantial depletion of GSH, covalent binding of reactive metabolites to cellular macromolecules occurs. When the hepatic GSH depletion reaches a threshold level, lipid peroxidation develops and severe cellular damage is produced. According to experimental evidence, the cell death seems to be more strictly related to lipid peroxidation rather than to covalent binding. Loss of protein sulfhydryl groups may be an important factor in the disturbance of calcium homeostasis which, according to several authors, leads to irreversible cell injury. In the bromobenzene-induced liver injury loss of protein thiols as well as impairment of mitochondrial and microsomal Ca2+ sequestration activities are related to lipid peroxidation. However, some redox active compounds such as menadione and t-butylhydroperoxide produce direct oxidation of protein thiols.  相似文献   

11.
The present work was aimed at studying the antioxidative activity and hepatoprotective effects of methanolic extract (ME) of Hammada scoparia leaves against ethanol-induced liver injury in male rats. The animals were treated daily with 35 % ethanol solution (4 g?kg?1?day?1) during 4 weeks. This treatment led to an increase in the lipid peroxidation, a decrease in antioxidative enzymes (catalase, superoxide dismutase, and glutathione peroxidase) in liver, and a considerable increase in the serum levels of aspartate and alanine aminotransferase and alkaline phospahatase. However, treatment with ME protects efficiently the hepatic function of alcoholic rats by the considerable decrease in aminotransferase contents in serum of ethanol-treated rats. The glycogen synthase kinase-3 β was inhibited after ME administration, which leads to an enhancement of glutathione peroxidase activity in the liver and a decrease in lipid peroxidation rate by 76 %. These biochemical changes were consistent with histopathological observations, suggesting marked hepatoprotective effect of ME. These results strongly suggest that treatment with methanolic extract normalizes various biochemical parameters and protects the liver against ethanol induced oxidative damage in rats.  相似文献   

12.
Cultured mycelium Cordyceps sinensis (CMCS) was widely used for a variety of diseases including liver injury, the current study aims to investigate the protective effects of CMCS on liver sinusoidal endothelial cells (LSECs) in acute injury liver and related action mechanisms. The mice were injected intraperitoneally with lipopolysaccharide (LPS) and d-galactosamine (D-GalN). 39 male BABL/c mice were randomly divided into four groups: normal control, model control, CMCS treatment and 1,10-phenanthroline treatment groups. The Serum liver function parameters including alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were assayed with the commercial kit. The inflammation and scaffold structure in liver were stained with hematoxylin and eosin and silver staining respectively. The LSECs and sub-endothelial basement membrane were observed with the scanning and transmission electronic microscope. The protein expressions of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in liver were analyzed with Western blotting. Expression of von Willebrand factor (vWF) was investigated with immunofluorescence staining. The lipid peroxidation indicators including antisuperoxideanion (ASAFR), hydroxyl free radical (·OH), superoxide dismutase (SOD), malondialdehyde and glutathione S-transferase (GST) were determined with kits, and matrix metalloproteinase-2 and 9 (MMP-2/9) activities in liver were analyzed with gelatin zymography and in situ fluorescent zymography respectively. The model mice had much higher serum levels of ALT and AST than the normal mice. Compared to that in the normal control, more severe liver inflammation and hepatocyte apoptosis, worse hepatic lipid peroxidation demonstrated by the increased ASAFR, ·OH and MDA, but decreased SOD and GST, increased MMP-2/9 activities and VCAM-1, ICAM-1 and vWF expressions, which revealed obvious LSEC injury and scaffold structure broken, were shown in the model control. Compared with the model group, CMCS and 1,10-phenanthroline significantly improved serum ALT/AST, attenuated hepatic inflammation and improved peroxidative injury in liver, decreased MMP-2/9 activities in liver tissue, improved integration of scaffold structure, and decreased protein expression of VCAM-1 and ICAM-1. CMCS could protect LSECs from injury and maintain the microvasculature integration in acute injured liver of mice induced by LPS/D-GalN. Its action mechanism was associated with the down-regulation of MMP-2/9 activities and inhibition of peroxidation in injured liver.  相似文献   

13.
To elucidate the protective effects of glutathione against iron-induced peroxidative injury, changes in the hepatic glutathione metabolism were studied in chronically iron-loaded mice. When the diets of the mice were supplemented with carbonyl iron, iron deposition occurred primarily in the parenchymal cells of the liver. In addition, expiratory ethane production was elevated, suggesting an enhancement in lipid peroxidation. In iron-loaded mice, the total hepatic glutathione contents were higher (6.21 +/- 0.53 mumol/g wet wt.) than in control mice (4.61 +/- 0.31 mumol/g wet wt.), primarily due to an increase in the reduced glutathione contents. The value of oxidized glutathione was also higher (98.5 +/- 8.1 nmol/g wet wt.) than in the controls (60.8 +/- 9.5 nmol/g wet wt.), and the ratio of oxidized glutathione to total glutathione increased. The excretion rate of glutathione from the hepatocytes in iron-loaded mice also increased. These observations suggest that chronic iron-loading of mice stimulates lipid peroxidation and oxidation of glutathione and that peroxidized molecules may be catabolized using reduced glutathione.  相似文献   

14.
Bee pollen and propolis are popular, traditional health foods. The objective of the current study was to investigate the anti-mutagenic, anti-histopathologic and antioxidant effects among water extracts of Egyptian bee pollen (WEBP) and brown powder of water-soluble derivative propolis (WSDP) on cisplatin (CDDP) induced hepatic, renal, testicular and genotoxicity in male albino mice (Mus muscullus), in addition to their effects on the oxidant/antioxidant status in the tested organs. Hepatic, renal and testicular dysfunctions were evaluated histologically; while genotoxicity and cytotoxicity were evaluated by the bone marrow chromosomal aberration assay and mitotic index, respectively. Moreover, oxidative stress was explored via determination of lipid peroxidation, catalase activity and the concentration of the reduced form of glutathione. The treatment of mice with WEBP and WSDP at doses 140 and 8.4 mg/kg b. wt./day, respectively for 14 days simultaneously with CDDP (2.8 mg/kg b. wt.) resulted in significant protection. The positive control animals taken CDDP alone showed toxic histological and genetical manifestations (at P < 0.05) accompanied with an elevated content of peroxidized lipid and lowered catalase activity and glutathione concentration in the homogenate of liver, kidney and testis tissues (at P < 0.001). These toxic side effects in all tested organs were greatly ablated with a significant reduction in lipid peroxidation level and elevation in catalase activity and glutathione concentration (P < 0.001) when using both WEBP and WSDP. On the basis of the present assays, Bee pollen appears more potent in exerting an ameliorative effect and this effect was more pronounced in testis.  相似文献   

15.
The mechanisms underlying iodobenzene hepatotoxicity were investigated in Albino mice in which the hepatic glutathione (GSH) content had been decreased by nearly 50% by starvation for 16 h before poisoning. After iodobenzene administration (9 mmol/Kg, p.o.) the hepatic GSH content decreased progressively and liver necrosis, as measured by the plasma transaminase (GPT, GOT) levels, occurred in many animals at 12 and 16 h. A clear cut necrosis was evident only when the hepatic GSH depletion reached a threshold value (3.5-2.5 nmol/mg protein). The same threshold value was evident for the occurrence of lipid peroxidation (measured as both carbonyl functions and conjugated dienes in liver phospholipids). The highly significant correlation found between lipid peroxidation and liver necrosis supports the possibility of a cause-effect relationship between the two phenomena.  相似文献   

16.
The relation between loss of glutathione due to metal-induced phytochelatin synthesis and oxidative stress was studied in the roots of copper-sensitive and tolerant Silene cucubalus (L.) Wib., resistant to 1 and 40 micromolar Cu, respectively. The amount of nonprotein sulfhydryl compounds other than glutathione was taken as a measure of phytochelatins. At a supply of 20 micromolar Cu, which is toxic for sensitive plants only, phytochelatin synthesis and loss of total glutathione were observed only in sensitive plants within 6 h of exposure. When the plants were exposed to a range of copper concentrations for 3 d, a marked production of phytochelatins in sensitive plants was already observed at 0.5 micromolar Cu, whereas the production in tolerant plants was negligible at 40 micromolar or lower. The highest production in tolerant plants was only 40% of that in sensitive plants. In both varieties, the synthesis of phytochelatins was coupled to a loss of glutathione. Copper at toxic concentrations caused oxidative stress, as was evidenced by both the accumulation of lipid peroxidation products and a shift in the glutathione redox couple to a more oxidized state. Depletion of glutathione by pretreatment with buthionine sulfoximine significantly increased the oxidative damage by copper. At a comparably low glutathione level, cadmium had no effect on either lipid peroxidation or the glutathione redox couple in buthionine sulfoximine-treated plants. These results indicate that copper may specifically cause oxidative stress by depletion of the antioxidant glutathione due to phytochelatin synthesis. We conclude that copper tolerance in S. cucubalus does not depend on the production of phytochelatins but is related to the plant's ability to prevent glutathione depletion resulting from copper-induced phytochelatin production, e.g. by restricting its copper uptake.  相似文献   

17.
Treatment of isolated hepatocytes from 3-methylcholanthrene induced rats with 1 mM paracetamol has been found to greatly decrease cellular reduced glutathione (GSH) content and to promote lipid peroxidation, evaluated as malonaldehyde (MDA) production and conjugated diene absorbance. A similar dosing of hepatocytes from phenobarbital-induced or normal rats is ineffective in that respect. On the other hand, the aspecific stimulation of the cytochrome P-450-mediated paracetamol activation due to acetone addition further increases GSH depletion as well as MDA production.Isolated hepatocytes with basal low GSH content are also more susceptible to paracetamol-induced lipid peroxidation, indicating that the rate of the drug metabolism and the cellular GSH content are critical factors in the determination of such peroxidative attack.In isolated mouse liver cells paracetamol does not require preliminary cytochrome P-450 induction to stimulate MDA formation, even at concentrations ineffective in rat cells.However, 5 mM paracetamol, despite a great depletion of cellular GSH content, does not promote MDA formation either in the rat or in the mouse hepatocytes. This effect may be due to the ability of paracetamol to scavenge lipid peroxides under defined conditions, as tested in various lipid peroxidizing systems.Membrane leakage of lactate dehydrogenase (LDH) is evident in paracetamol treated cells undergoing lipid peroxidation, but not when MDA formation is inhibited by high doses of the drug or by addition of antioxidants such as α-tocopherol and diphenylphenylenediamine (DPPD).Nevertheless in these conditions the covalent binding of activated paracetamol metabolites is not affected, suggesting that lipid peroxidation might play a role in the pathogenesis of liver damage following paracetamol overdose.  相似文献   

18.
Oxidative stress induced by toxicants is known to cause various complications in the liver. Herbal drug such as Liv.52 is found to have hepatoprotective effect. However, the biochemical mechanism involved in the Liv.52 mediated protection against toxicity is not well elucidated using suitable in vitro models. Hence, in the present study, the hepatoprotective effect of Liv.52 against oxidative damage induced by tert-butyl hydroperoxide (t-BHP) in HepG2 cells was evaluated in order to relate in vitro antioxidant activity with cytoprotective effects. Cytotoxicity was measured by MTT assay. Antioxidant effect of Liv.52 was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, ferric-reducing antioxidant power (FRAP) assay, and lipid peroxidation and measurement of non-enzymic and antioxidant enzymes in HepG2 cells exposed to t-BHP over a period of 24 h. The results obtained indicate that t-BHP induced cell damage in HepG2 cells as shown by significant increase in lipid peroxidation as well as decreased levels of reduced glutathione (GSH). Liv.52 significantly decreased toxicity induced by t-BHP in HepG2 cells. Liv.52 was also significantly decreased lipid peroxidation and prevented GSH depletion in HepG2 cells induced by t-BHP. Therefore, Liv.52 appeared to be important for cell survival when exposed to t-BHP. The protective effect of Liv.52 against cell death evoked by t-BHP was probably achieved by preventing intracellular GSH depletion and lipid peroxidation. The results showed protective effect of Liv.52 against oxidative damage induced in HepG2 cells. Hence, taken together, these findings derived from the present study suggest the beneficial effect of Liv.52 in regulating oxidative stress induced in liver by toxicants.  相似文献   

19.
Sub-acute hepatotoxicity was induced in mice by exposure to pesticides. The effect of pretreatment with aqueous black tea extract on lipid peroxidation and antioxidants in the liver was investigated. Administering a combination dose of chlorpyriphos and cypermethrin (20 mg kg(-1) each) on alternate days over a 15-day period to male mice resulted in induction of sub-acute toxicity as reflected by elevated levels of liver damage marker enzymes alkaline phosphatase(ALP), aspartate transaminase(AST) and alanine transaminase(ALT). Significantly elevated levels of lipid peroxidation were observed in the experimental group (group III) as compared with control mice. Decreased activities of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), total thiol, glutathione peroxidase (GPx), glutathione reductase(GR) and glutathione-S-transferase (GST) were also observed in pesticide-treated as compared to control mice. Aqueous black tea extract was given as a pretreatment to group IV mice at a dose of 200 mg ml(-1) polyphenols before the pesticide dose, which significantly decreased the levels of lipid peroxidation and significantly elevated the activities of SOD, CAT, GSH, total thiol, GPx, GR and GST in liver to levels similar to the controls. Thus, the data offer support for the claim that the central mechanism of pesticide action occurs via changes in cellular oxidative status and shows conclusively that supplementation with black tea extract protects against the free radical-mediated oxidative stress in hepatocytes of animals with pesticide-induced liver injury.  相似文献   

20.
Oxidative stress is a common mechanism contributing to hepatic damage and fibrogenesis in a variety of liver disorders. The liver is the target organ for many parasitic infections, hence there is a great demand for the development of novel treatment strategies. In the present study conducted on mice infected with larval stage of Mesocestoides vogae, we investigated effects of therapy with praziquantel (PZQ) alone and in combination with silymarin on liver GSH content, lipid peroxidation and larval reduction. Proliferation of liver cells by means of BrdU incorporation into DNA and production of superoxide anions by peritoneal adherent cells was measured to assess the antioxidant activity of silymarin. Drug administration was carried on from day 15 post infection (p.i.) for ten consecutive days and examination was performed during 20 days of follow-up the therapy. Larval M. vogae infection caused liver damage and triggered extensive oxidative stress, resulting in the abolishment of GSH redox balance and ROS-induced lipid peroxidation. PZQ administration caused short-term decline of GSH levels in healthy mice. Low GSH levels in infected mice were elevated gradually in response to the drug, but respiratory burst in cells was not reduced. Silymarin in combination with PZQ showed strong direct antioxidant capacity and stimulated the larvicidal effect of praziquantel. Treatment with PZQ and silymarin downregulated the generation of superoxide anions, prevented lipid peroxidation, stimulated GSH synthesis and proliferation of hepatocytes in infected livers. These findings demonstrated that silymarin can markedly decrease the liver injury and its co-administration with PZQ potentiate effect of therapy, probably due to the down-regulation of fibrogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号