首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Interference of antiviral agent adefovir, i.e. 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA) with microsomal drug metabolizing system was investigated in rats. The content of total liver cytochrome P450 (CYP) was lowered while that of its denaturated form, P420, was elevated in animals intraperitoneally treated with PMEA (25 mg/kg). Similar effect was observed after treatment with a prodrug of adevofir, adefovir dipivoxil (bisPOM-PMEA). The CYP2E1-dependent formation of 4-nitrocatechol from p-nitrophenol was diminished, though the specific activity of p-nitrophenol hydroxylase remained unchanged. PMEA had no influence on expression of CYP2E1 protein and mRNA and mRNAs of other P450 isoenzymes (1A1, 1A2, 2C11, 3A1, 3A2, and 4A1). It may be concluded that repeated systemic administration of higher doses of PMEA results in a partial degradation of rat CYP protein to inactive P420.  相似文献   

2.
3.
The aim of this study was to investigate the expression and organ distribution of cytochrome P450 (CYP450) enzymes, microsomal epoxide hydrolase (MEH), and microsomal glutathione-S-transferase (MGST 1, 2, 3) in human liver, lung, intestinal, and kidney microsomes by targeted peptide-based quantification using nano liquid chromatography–tandem multiple reaction monitoring (nano LC-MRM). Applying this method, we analyzed 16 human liver microsomes and pooled lung, kidney, and intestine microsomes. Nine of the CYP450s (CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5) could be quantified in liver. Except for CYP3A4 and 3A5 existing in intestine, other CYP450s had little content (<0.1 pmol/mg protein) in extrahepatic tissues. MEH and MGSTs could be quantified both in hepatic and in extrahepatic tissues. The highest concentrations of MEH and MGST 1, 2 were found in liver; conversely MGST 3 was abundant in human kidney and intestine compared to liver. The targeted proteomics assay described here can be broadly and efficiently utilized as a tool for investigating the targeted proteins. The method also provides novel CYP450s, MEH, and MGSTs expression data in human hepatic and extrahepatic tissues that will benefit rational approaches to evaluate metabolism in drug development.  相似文献   

4.
A highly sensitive method for the determination of coumarin 7-hydroxylation and 7-ethoxycoumarin O-deethylation by human cytochrome P450 (P450 or CYP) enzymes was developed using high-performance liquid chromatography (HPLC). The newly developed HPLC method was found to be about 100-fold more sensitive than the previous spectrofluorimetric method in detecting the metabolite 7-hydroxycoumarin (umbelliferone). With this high sensitivity, the kinetics of coumarin 7-hydroxylation and 7-ethoxycoumarin O-deethylation catalyzed by human liver microsomal and recombinant P450 enzymes were determined more precisely. With 36 different substrate concentrations in these two reactions, coumarin 7-hydroxylation was found to be catalyzed mainly by a single enzyme CYP2A6 and 7-ethoxycoumarin was oxidized by at least two enzymes CYP2E1 and CYP1A2 in human liver microsomes.  相似文献   

5.
Cypermethrin (alpha-cyano-3-phenoxybenzyl ester of 2,2-dimethyl-3-(2,2-dichlorovinyl) cyclopropane carboxylic acid) is a synthetic pyrethroid. It is one of the most widely used pesticide in commercial agricultural applications because of its high effectiveness against target species. Beside its target toxicity it is also highly toxic to other non-target species like fish, bees and aquatic insects. The aim of this study was to detect the presence of cytochrome P450 (CYP 450) in the hepatic microsomes of Heteropneustes fossilis upon exposure to cypermethrin. The 96 h LC50 value for each exposure route was calculated and two groups were treated, with one group receiving a single IP (intraperitoneal) injection for 96 h (0.030 mg/kg body weight) and the other group with 1/3 sub-lethal concentration (1.2 μg/l) of the LC50 value in water for 15 days. Activities of the enzymes ethoxyresorufin-o-deethylase (EROD), N,N-dimethylaniline demethylase, aniline hydroxylase and erythromycin demethylase mediated respectively by the isozymes CYP1A, CYP2B, CYP2E1 and CYP3A4 were studied. The liver somatic index (LSI) was also calculated to determine the physiological status of the fish. Activities of CYP1A, CYP2B and CYP2E1 enzymes increased significantly while that of CYP3A4 enzyme inhibited as compared to control. Total CYP 450 content was also significantly induced in both the treated groups. The increase in activities of CYP P450 isozymes could be used as a biomarker to indicate the pollution of an aquatic environment by the pesticide.  相似文献   

6.
The kinetic constants for the metabolism of bromodichloromethane (BDCM) by three cytochrome P450 (CYP) isoenzymes have been measured in human liver microsomes. The three CYP isoenzymes, CYP2E1, CYP1A2 and CYP3A4, have been identified previously as important in the metabolism of this compound. To measure the constants for each isoenzyme, enzyme-specific inhibitory antibodies were used to block the activities for two of the three isoenzymes. CYP2E1 was found to have the lowest K(m), 2.9 microM, and the highest catalytic activity, k(cat). The K(m) for the other isoenzymes, CYP1A2 and CYP3A4, were about 60 microM with lower values of k(cat). Apparent kinetic constants obtained from two microsomal samples that were not inhibited were consistent with these results. In addition, 11 human microsome samples characterized for 10 CYP activities were correlated with the metabolism of 9.7 microM BDCM by each sample; statistical analysis showed a correlation with CYP2E1 activity only. This result is consistent with the finding that CYP2E1 is the only isoenzyme with a K(m) lower than the BDCM concentration used. The kinetic constants obtained from the inhibited microsomes were compared to similar results from recombinant human isoenzyme preparations containing only one CYP isoenzyme. The results for CYP2E1 were very similar, while the results for CYP1A2 were somewhat less similar and there was a substantial divergence for CYP3A4 in the two systems. Possible reasons for these differences are differing levels of CYP reductase and/or differing makeup of the membrane lipid environment for the CYPs. Because of the low levels of BDCM exposure from drinking water, it appears likely that CYP2E1 will dominate hepatic CYP-mediated BDCM metabolism in humans.  相似文献   

7.
Proteomic approaches have been used for detection and identification of cytochromes P450 forms from highly purified membrane preparations of human liver. These included the protein separation by 2D-and/or 1D-electrophoresis and molecular scanning of a SDS-PAGE gel fragment in a range 45–66 kDa (this area corresponds molecular weights of cytochromes P450). The analysis of protein content was statistically evaluated by means of an original 1D-ZOOMER software package which allowed to carry out the processing of mass spectra mixture instead of individual mass spectra used by standard techniques. In the range 45–66 kDa we identified 13 microsomal membrane proteins including such cytochrome P450 forms as CYPs 1A2, 1B1, 2A6, 2E1, 2C8, 2C9, 2C10, 2D6, 3A4, 4A11, 4F2. Study of enzymatic activities of human liver microsomal cytochrome P450 isoforms CYP 1A, 2B, 3A, and 2E revealed the decrease in the rates of O-dealkylation and N-demethylation catalyzed by CYP 450 1A1/1A2 and 3A4 under pathological conditions, whereas 7-benzyloxyresorufin-O-debenzylase activity (which characterizes the total activity of CYP 2B and CYP 2C), the activities of CYP 2E1 (methanol oxidation), 7-pentoxyresorufin-O-dealkylation (CYP 2B), 7-ethoxy-and 7-methoxycoumarin-O-dealkylases (CYP 2B1) remained basically unchanged.  相似文献   

8.
The regional expression of six different cytochrome P450 (CYP) forms in rat liver under constitutive and induced conditions was compared using immunological techniques. Immunostaining of consecutive thin sections from control liver revealed that the same hepatocytes, forming a 6-8 cells thick layer surrounding the terminal hepatic venules, were stained for CYP2B1/2, CYP2E1 and CYP3A1. Staining of CYP2A1 extended further into the midzonal region, whereas all cells of the acinus stained for CYPEtOH2. These results were supported by Western blot analysis of cell lysates from the periportal or perivenous region obtained by zone-restricted digitonin treatment during in situ perfusion. The data suggest three distinct patterns of constitutive P450 expression: perivenous-restricted (CYP2B1/2, CYP2E1 and CYP3A1); perivenous-dominated (CYP2A1) and panacinar (CYPEtOH2). Chronic exposure to ethanol caused induction of CYP2E1 in the same cells already being constitutively expressed, whereas CYPEtOH2 was more induced in the periportal area. The relative induction of CYP2B1/2, CYP3A1 and CYPEtOH2 after treatment with phenobarbital was stronger in periportal hepatocytes, resulting in levelling out of the initial perivenous dominance of CYP2B1/2 and CYP3A1, whereas CYPEtOH2 became periportal-dominated. Acetone induced CYP2E1, CYP2C11 and CYP3A1 selectively in the perivenous area. These studies indicate that a particular P450 isozyme is generally induced in the same cells where it is constitutively expressed, and that this regional selectivity is independent of the kind of inducer. The data suggest that, during maturation, the hepatocytes acquire various phenotypes in the periportal and perivenous region, to respond differently to endogenous and exogenous signals in the control of P450 expression.  相似文献   

9.
It has been established beyond doubt that, as well as the liver, the small intestine is an important site of first-pass metabolism of numerous drugs, food components and toxic xenobiotics. However, there is not much information available about age-dependent changes of intestinal biotransformation pathways. In the present paper, we evaluated the relationships between intestinal cytochrome P450 complex activity and the age of animals. The study was carried out on male Sprague–Dawley rats (n = 5) from 5 age series: 0.5-, 2-, 4-, 20-, and 28 months old. Animals at every age series were divided into 4 groups: control and three groups of rats treated with the CYP450 specific inducers: phenobarbital, β-naphtoflavone and dexamethasone, respectively. RNA was isolated from intestinal mucosa, and then standard RT-PCR was used for the analysis of CYP1A1, CYP2B1/2 and CYP3A1 mRNA expression. Additionally, the activities of NADPH-cytochrome P450 and NADH-cytochrome b5 reductases in the microsomal fraction were biochemically estimated. The constitutive intestinal CYP1A1 mRNA expression changes during maturation and aging. Inducibility of CYP1A1 gene was evident in intestinal mucosa at 2-, 4- and 20-month-old rats. A similar pattern of changes was observed for CYP2B1/2 isoforms. CYP3A1 mRNA expression was not detected in small intestine of 2-week-old rats. In matured rats, constitutive intestinal CYP3A1 expression was low, although after induction, significant increases in CYP3A1 mRNA amount were noted in aged individuals. Intestinal activity of both analyzed reductases was lowest in immature rats and highest in 28-month-old animals. In conclusion, the activity of cytochrome P450 complex in rat small intestine was not decreased by the aging processes, so the high rate of oxidative metabolic reactions in intestinal mucosa can be maintained till the advanced life stage.  相似文献   

10.
Drug oxidation activities of 12 recombinant human cytochrome P450s (P450) coexpressed with human NADPH-P450 reductase (NPR) in bacterial membranes (P450/NPR membranes) were determined and compared with those of other recombinant systems and those of human liver microsomes. Addition of exogenous membrane-bound NPR to the P450/NPR membranes enhanced the catalytic activities of CYP2C8, CYP2C9, CYP2C19, CYP3A4, and CYP3A5. Enhancement of activities of CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2D6, and CYP2E1 in membranes was not observed after the addition of NPR (4 molar excess to each P450). Exogenous purified human cytochrome b5 (b5) further enhanced catalytic activities of CYP2A6, CYP2B6, CYP2C8, CYP2E1, CYP3A4, and CYP3A5/NPR membranes. Catalytic activities of CYP2C9 and CYP2C19 were enhanced by addition of b5 in reconstituted systems but not in the P450/NPR membranes. Apo b5 (devoid of heme) enhanced catalytic activities when added to both membrane and reconstituted systems, except for CYP2E1/NPR membranes and the reconstituted system containing purified CYP2E1 and NPR. Catalytic activities in P450/NPR membranes fortified with b5 were roughly similar to those measured with microsomes of insect cells coexpressing P450 with NPR (and b5) and/or human liver microsomes, based on equivalent P450 contents. These results suggest that interactions of P450 and NPR coexpressed in membranes or mixed in reconstituted systems appear to be different in some human CYP2 family enzymes, possibly due to a conformational role of b5. P450/NPR membrane systems containing b5 are useful models for prediction of the rates for liver microsomal P450-dependent drug oxidations.  相似文献   

11.
Hepatic microsomes prepared from 10 fish species from Bermuda were studied to establish features of cytochrome P450 (CYP) systems in tropical marine fish. The majority (7/10) of the species had total P450 content between 0.1 and 0.5 nmol/mg, and cytochrome b5 content between 0.025 and 0.25 nmol/mg. Ethoxycoumarin O-deethylase (ECOD) and aminopyrine N-demethylase (APND) rates in these 7 species were 0.23–2.1 nmol/min/mg and 0.5–11 nmol/min/mg, respectively, similar to rates in many temperate fish species. In contrast to those 7 species, sergeant major (Abudefduf saxatilis) and Bermuda chub (Kyphosus sectatrix) had microsomal P450 contents near 1.7 nmol/mg, among the highest values reported in untreated fish, and had greater rates of ECOD, APND, ethoxyresorufin O-deethylase (EROD) and pentoxyresorufin O-depentylase than did most of the other species. Freshly caught individuals of all species had detectable levels of EROD and aryl hydrocarbon hydroxylase (AHH) activities. Those individuals with higher rates of EROD activity had greater content of immunodetected CYP1A protein, consistent with Ah-receptor agonists acting to induce CYP1A in many fish in Bermuda waters. Injection of tomtate and blue-striped grunt with β-naphthoflavone (BNF; 50 or 100 mg/kg) induced EROD rates by 25 to 55-fold, suggesting that environmental induction in some fish was slight compared with the capacity to respond. AHH rates were induced only 3-fold in these same fish. The basis for disparity in the degree of EROD and AHH induction is not known. Rates of APND and testosterone 6β- and 16β-hydroxylase were little changed by BNF, indicating that these are not CYP1A activities in these fish. Antibodies to phenobarbital-inducible rat CYP2B1 or to scup P450B, a putative CYP2B, detected one or more proteins in several species, suggesting that CYP2B-like proteins are highly expressed in some tropical fishes. Generally, species with greater amounts of total P450 had greater amounts of proteins related to CYP2B. These species also had appreciable amounts of CYP3A-like proteins. Thus, many fishes in Bermuda appear to have induced levels of CYP1A; some also have unusually high levels of total P450 and of CYP2B-like and CYP3A-like proteins. These species may be good models for examining the structural, functional and regulatory properties of teleost CYP and the environmental or ecological factors contributing to high levels of expression of CYP in some fishes.  相似文献   

12.
Benzene is an occupational hazard and environmental toxicant found in cigarette smoke, gasoline, and the chemical industry. The major health concern associated with benzene exposure is leukemia. The toxic effects of benzene are dependent on its metabolism by the cytochrome P450 enzyme system. Previous research has identified CYP2E1 as the primary P450 isozyme responsible for benzene metabolism at low concentrations, whereas CYP2B1 is involved at higher concentrations. Our studies using microsomal preparations from human, mouse, and rat indicate that CYP2E1 is the P450 isozyme primarily responsible for benzene metabolism in lung and in liver. CYP2B isozymes have little involvement in benzene metabolism by either lung or liver. Our results also indicate that isozymes of the CYP2F subfamily may play a role in benzene metabolism by lung.  相似文献   

13.
14.
Substances K-48 and HI-6, oxime-type acetylcholinesterase (AChE) reactivators, were tested for their potential to inhibit the activities of human liver microsomal cytochromes P450 (CYP). The compounds were shown to bind to microsomal cytochromes P450 with spectral binding constants of 0.25 ± 0.05 μM (K-48) and 0.54 ± 0.15 μM (HI-6). To find which cytochrome P450 from the human liver microsomal fraction interacts with these compounds, an inhibition of enzyme activities specific for nine individual CYP enzymes (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4) was studied. The results have shown no prominent inhibition of individual CYP activities with both compounds except the CYP2E1 activity and the HI-6 reactivator. However, the inhibition of this activity was less than 50% which makes the possible drug interactions highly unlikely. Hence, the interaction of K-48 and HI-6 oxime-type AChE reactivators with human liver microsomal CYP enzymes does not seem to be clinically significant and both compounds could be taken in this respect as antidotal drugs with low risk of drug interactions.  相似文献   

15.
Tannins have long been considered ‘anti-nutritional’ factors in monogastric nutrition, shown to reduce feed intake and palatability. However, recent studies revealed that compared with condensed tannins, hydrolysable tannins (HT) appear to have far less impact on growth performance, but may be inhibitory to the total activity of caecal bacteria. This in turn could reduce microbial synthesis of skatole and indole in the hindgut of entire male pigs (EM). Thus, the objective of this study was to determine the impact of a group of dietary HT on growth performance, carcass traits and boar taint compounds of group housed EM. For the study, 36 Swiss Large White boars were assigned within litter to three treatment groups. Boars were offered ad libitum one of three finisher diets supplemented with 0 (C), 15 (T15) or 30 g/kg (T30) of HT from day 105 to 165 of age. Growth performance, carcass characteristics, boar taint compounds in the adipose tissue and cytochrome P450 (CYP) isoenzymes CYP2E1, CYP1A2 and CYP2A19 gene expression in the liver was assessed. Compared with C, feed efficiency but not daily gain and daily feed intake was lower (P<0.05) in T15 and T30 boars. Except for the percentage carcass weight loss during cooling, which tended (P<0.10) to be greater in T30 than C and T15, carcass characteristics were not affected by the diets. In line with the numerically lower androstenone level, bulbourethral and salivary glands of T30 boars were lighter (P<0.05) than of T15 with intermediate values for C. Indole level was lower (P<0.05) in the adipose tissue of T30 than C pigs with intermediate levels in T15. Skatole levels tended (P<0.10) to be lower in T30 and C than T15 pigs. Hepatic gene expression of CYP isoenzymes did not differ between-treatment groups, but was negatively correlated (P<0.05) with androstenone (CYP2E1 and CYP1A2), skatole (CYP2E1, CYP2A) and indole (CYP2A) level. In line with the numerically highest androstenone and skatole concentrations, boar taint odour but not flavour was detected by the panellists in loins from T15 compared with loins from C and T30 boars. These results provide evidence that HT affected metabolism of indolic compounds and androstenone and that they affected the development of accessory sex glands. However, the effects were too small to be detected by sensory evaluation.  相似文献   

16.
The two CHCl3 activation pathways have been studied in incubations at different oxygenation conditions with hepatic microsomes from control Sprague Dawley (SD) rats or SD rats treated with different cytochrome P450 inducers (acetone, phenobarbital, pyrazole, dexamethasone, and β-naphthoflavone). The present results provide direct evidence that CHCl3 concentration is critical in determining the role of different cytochrome P450 isoforms (CYP) and the related effects of metabolic inducers. At 0.1 mM CHCl3 concentration, the only major contribution to its oxidative biotransformation in liver microsomes from untreated rats was due to CYP2E1, as shown by metabolic inhibition due to 4-methylpyrazole or by anti-CYP2E1 antibodies. Moreover, animal treatments with acetone and pyrazole increased the production of adducts of phosgene to microsomal phospholipid by about 10–15 times. At 5 mM chloroform, in control rat liver microsomes, CYP2B1/2 was the major participant responsible for chloroform activation, while CYP2E1 and CYP2C11 were also significantly involved. Consistently, at this chloroform concentration, the effect of phenobarbital (CYP2B1/2 inducer) was maximal, producing very high levels of adducts. The reductive pathway was expressed at 5 mM CHCl3 only and was not significantly increased by any of the inducers used. Moreover, it was not inhibited by metyrapone and 4-methylpyrazole or by anti CYP2C11 antibodies. Therefore, it may be concluded that, in the range of chloroform concentrations tested, those CYPs involved in CHCl3 oxidative bioactivation do not participate in CHCl3 reduction. Chloroform oxidative metabolism in PB-microsomes could achieve very high absolute rates, much higher than those in C-microsomes; in contrast, the metabolic rates in AC- and PYR-microsomes remained within the activity levels observable in C-microsomes at high chloroform concentration. Therefore, it can be argued that the CYP2B1/2-mediated induction of CHCl3 activation is the basis for the effect of PB in potentiating chloroform hepatotoxicity. Moreover, processes other than CYP2E1-mediated metabolic induction may be more relevant in the ketones potentiation of chloroform-induced acute toxicity. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 11: 305–312, 1997.  相似文献   

17.
The herbicide-inducible, soluble cytochrome P450s CYP105A1 and CYP105B1 and their adjacent ferredoxins, Fd1 and Fd2, of Streptomyces griseolus were expressed in Escherichia coli to high levels. Conditions for high-level expression of active enzyme able to catalyze hydroxylation have been developed. Analysis of the expression levels of the P450 proteins in several different E. coli expression hosts identified E. coli BL21 Star(DE3)pLysS as the optimal host cell to express CYP105B1 as judged by CO difference spectra. Examination of the codons used in the CYP1051A1 sequence indicated that it contains a number of codons corresponding to rare E. coli tRNA species. The level of its expression was improved in the modified forms of E. coli BL21(DE3), which contain extra copies of rare codon E. coli tRNA genes. The activity of correctly folded cytochrome P450s was further enhanced by cloning a ferredoxin reductase from Streptomyces coelicolor downstream of CYP105A1 and CYP105B1 and their adjacent ferredoxins. Expression of CYP105A1 and CYP105B1 was also achieved in Streptomyces lividans 1326 by cloning the P450 genes and their ferredoxins into the expression vector pBW160. S. lividans 1326 cells containing CYP105A1 or CYP105B1 were able efficiently to dealkylate 7-ethoxycoumarin.  相似文献   

18.
The conformational dynamics of cytochrome P450 2B1 (CYP2B1) were investigated through the introduction of a disulfide bond to link the I- and K-helices by generation of a double Cys variant, Y309C/S360C. The consequences of the disulfide bonding were examined both experimentally and in silico by molecular dynamics simulations. Under high hydrostatic pressures, the partial inactivation volume for the Y309C/S360C variant was determined to be −21 cm3mol−1, which is more than twice as much as those of the wild type (WT) and single Cys variants (Y309C, S360C). This result indicates that the engineered disulfide bond has substantially reduced the protein plasticity of the Y309C/S360C variant. Under steady-state turnover conditions, the S360C variant catalyzed the N-demethylation of benzphetamine and O-deethylation of 7-ethoxy-trifluoromethylcoumarin as the WT did, whereas the Y309C variant retained only 39% of the N-demethylation activity and 66% of the O-deethylation activity compared with the WT. Interestingly, the Y309C/S360C variant restored the N-demethylation activity to the same level as that of the WT but decreased the O-deethylation activity to only 19% of the WT. Furthermore, the Y309C/S360C variant showed increased substrate specificity for testosterone over androstenedione. Molecular dynamics simulations revealed that the engineered disulfide bond altered substrate access channels. Taken together, these results suggest that protein dynamics play an important role in regulating substrate entry and recognition.Liver microsomal cytochromes P450 (CYP or P450)2 metabolize a large number of clinically used drugs that have diverse steric and functional moieties. Despite low sequence homology among CYPs from different families, all P450s invariably contain a heme cofactor that is coordinated to a thiolate and catalyze the oxidative metabolism, mostly through hydroxylation, of substrates. However, production of reactive intermediates by P450s is often associated with drug toxicity and carcinogenesis, and inhibition or induction of a specific P450 isoform may lead to adverse drug-drug interactions (1). From a clinical and pharmacological perspective, it is important to understand the structure, function, and dynamics of P450s.Structural studies of P450s by x-ray crystallography in the past decade have provided us with a wealth of information regarding the structural organization, critical active site residues, and proton delivery pathways of P450s (24). In particular, these structural analyses have consistently shown that certain regions of the P450 structures such as the F/G and B/B′-C loops are extremely flexible and can undergo large conformational changes to accommodate substrates of various sizes, although the overall folding pattern of all P450s is conserved. For instance, an open conformation was observed in the ligand-free CYP2B4 crystal structure, whereas a closed conformation was reported for the CPI-bound CYP2B4 (3, 5). The open-to-closed conformational change involves large motions of the F- and G-helices and the F/G and B/B′-C loops. Based on comparisons of the crystal structures of CYP2B4 bound with inhibitors of different sizes, Zhao et al. (6) identified five plastic regions in P450s, including the B/B′-C loop (PR2) and F/G loop (PR4). Binding of ketoconazole or erythromycin to CYP3A4 led to a large increase in the active site volume (>80% increase) because of conformational changes primarily in the PR4, but interestingly the F- and G-helices moved in the opposite direction (7). These authors proposed that the extreme flexibility of CYP3A4 accounts for its promiscuity, as CYP3A4 metabolizes nearly ∼50% of all clinically used drugs. The complexity of the conformational flexibility and dynamics are also revealed in an MD simulation study of CYP3A4, 2C9 and 2A6 (8). Importantly, this molecular dynamics (MD) simulation study shows that the three-dimensional structure of P450s is more flexible in solution than was observed in the crystal structure.Despite intensive studies of the crystal structures of microsomal P450s, insights into the conformational dynamics of P450s in solution, particularly in relation to their functional importance, are lacking. A laser flash photolysis study of CO rebinding to CYP2E1 in solution revealed that the binding of substrates such as ethanol, pyrazole, and acetaminophen restricts the conformational flexibility of CYP2E1, as the kinetics for the rebinding of CO to ligand-bound CYP2E1 are significantly slower than those for the ligand-free CYP2E1 (9). A solution thermodynamics study of CYP2B4 supports the notion that CYP2B4 is remarkably flexible, as the entropy substantially decreases upon inhibitor binding resulting from reduction of the hydrophobic surface (10). In this study, a de novo disulfide bond is engineered into CYP2B1 and the consequences resulting from the disulfide bonding are examined both experimentally and in silico using MD simulations. To discern the effect of the de novo disulfide bond apart from the Cys mutagenesis, both the single and double Cys variants were characterized in detail. To our knowledge, this is the first report that investigates the consequences of limiting conformational dynamics in a P450 by incorporating a disulfide bond. Our results demonstrate that protein dynamics play an important role in regulating substrate entry/product egress channels and substrate recognition and provide insights that will be valuable for rational drug design and protein engineering.  相似文献   

19.
Human liver microsomes catalyze an efficient 25-hydroxylation of 5β-cholestane-3α,7α,12α-triol. The hydroxylation is involved in a minor, alternative pathway for side-chain degradation in the biosynthesis of cholic acid. The enzyme responsible for the microsomal 25-hydroxylation has been unidentified. In the present study, recombinant expressed human P-450 enzymes have been used to screen for 25-hydroxylase activity towards 5β-cholestane-3α,7α,12α-triol. High activity was found with CYP3A4, but also with CYP3A5 and to a minor extent with CYP2C19 and CYP2B6. Small amounts of 23- and 24-hydroxylated products were also formed by CYP3A4. The Vmax for 25-hydroxylation by CYP3A4 and CYP3A5 was 16 and 4.5 nmol/(nmol×min), respectively. The Km was 6 μM for CYP3A4 and 32 μM for CYP3A5. Cytochrome b5 increased the hydroxylase activities. Human liver microsomes from ten different donors, in which different P-450 marker activities had been determined, were incubated with 5β-cholestane-3α,7α,12α-triol. A strong correlation was observed between formation of 25-hydroxylated 5β-cholestane-3α,7α,12α-triol and CYP3A levels (r2=0.96). No correlation was observed with the levels of CYP2C19. Troleandomycin, a specific inhibitor of CYP3A4 and 3A5, inhibited the 25-hydroxylase activity of pooled human liver microsomes by more than 90% at 50 μM. Tranylcypromine, an inhibitor of CYP2C19, had very little effect on the conversion. From these results, it can be concluded that CYP3A4 is the predominant enzyme responsible for 25-hydroxylation of 5β-cholestane-3α,7α,12α-triol in human liver microsomes.  相似文献   

20.
We report quantitative estimates of the parameters for metabolism of bromodichloromethane (BDCM) by recombinant preparations of hepatic cytochrome P450s (CYPs) from rat and human. Earlier work identified CYP2E1, CYP2B1/2 and CYP1A2 as activating enzymes necessary for hepatotoxicity in rat. In order to extend an existing PBPK model for rat to include a capability for extrapolation to humans, it is necessary to evaluate quantitatively the principal metabolic pathways in both species. We have conducted in vitro experiments using recombinant preparations of the three rat CYP isoenzymes mentioned above and for CYP2C11 and CYP3A1 as well. Similar experiments have been performed with human recombinant isoenzymes for CYP2E1, CYP1A2, CYP2A6, CYP2B6, CYP2D6 and CYP3A4. Results indicate that the principal metabolizing enzymes in rat are those identified previously, CYP2E1, CYP2B1/2 and CYP1A2. CYP3A1 may also have some activity. In human, CYP2E1, CYP1A2 and CYP3A4 show substantial activity, and CYP2A6 also measurably metabolizes BDCM. In both species, CYP2E1 is the low K(m) isoenzyme, with K(m) approximately 27-fold lower than those for the isoenzymes with the next lowest K(m). In addition, the metabolic parameters, K(m) and k(cat), for rat and human CYP2E1 were nearly identical. The metabolic parameters for CYP1A2, the only other isoenzyme active in both species, were not similar across species. In addition, calculations based on the kinetic constants obtained are compared to results from two in vivo experiments to show that the in vitro kinetic data is relevant to in vivo exposures. We conclude that although several CYPs metabolize BDCM, at low concentration/exposure, BDCM metabolism is dominated by CYP2E1 in both rat and human, but that other isoenzymes can be important at higher concentrations. We further conclude that the kinetic data are consistent with existing in vivo results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号