首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) induces airway smooth muscle cell (SMC) relaxation, but the underlying mechanism is not well understood. Consequently, we investigated the effects of NO on airway SMC contraction, Ca2+ signaling, and Ca2+ sensitivity in mouse lung slices with phase-contrast and confocal microscopy. Airways that were contracted in response to the agonist 5-hydroxytryptamine (5-HT) transiently relaxed in response to the NO donor, NOC-5. This NO-induced relaxation was enhanced by zaprinast or vardenafil, two selective inhibitors of cGMP-specific phosphodiesterase-5, but blocked by ODQ, an inhibitor of soluble guanylyl cyclase, and by Rp-8-pCPT-cGMPS, an inhibitor of protein kinase G (PKG). Simultaneous measurements of airway caliber and SMC [Ca2+]i revealed that airway contraction induced by 5-HT correlated with the occurrence of Ca2+ oscillations in the airway SMCs. Airway relaxation induced by NOC-5 was accompanied by a decrease in the frequency of these Ca2+ oscillations. The cGMP analogues and selective PKG activators 8Br-cGMP and 8pCPT-cGMP also induced airway relaxation and decreased the frequency of the Ca2+ oscillations. NOC-5 inhibited the increase of [Ca2+]i and contraction induced by the photolytic release of inositol 1,4,5-trisphosphate (IP3) in airway SMCs. The effect of NO on the Ca2+ sensitivity of the airway SMCs was examined in lung slices permeabilized to Ca2+ by treatment with caffeine and ryanodine. Neither NOC-5 nor 8pCPT-cGMP induced relaxation in agonist-contracted Ca2+-permeabilized airways. Consequently, we conclude that NO, acting via the cGMP–PKG pathway, induced airway SMC relaxation by predominately inhibiting the release of Ca2+ via the IP3 receptor to decrease the frequency of agonist-induced Ca2+ oscillations.  相似文献   

2.
We investigated the mechanism of guanosine 3′,5′-monophosphate (cGMP) production in rabbit parotid acinar cells. Methacholine, a muscarinic cholinergic agonist, stimulated cGMP production in a dose-dependent manner but not isoproterenol, a β-adrenergic receptor stimulant. Methacholine-stimulated cGMP production has been suggested to be coupled to Ca2+ mobilization, because intracellular Ca 2+ elevating reagents, such as thapsigargin and the Ca2+ ionophore A23187, mimicked the effect of methacholine. The cGMP production induced by Ca2+ mobilization has also been suggested to be coupled to nitric oxide (NO) generation because the effects of methacholine, thapsigargin and A23187 on cGMP production were blocked by NG-nitro-L-arginine methyl ester (L-NAME), a specific inhibitor of nitric oxide synthase (NOS), and hemoglobin, a scavenger of nitric oxide (NO). Sodium nitroprusside (SNP), a NO donor, stimulated cGMP production. Furthermore, methacholine stimulated NO generation, and NOS activity in the cytosolic fraction in rabbit parotid acinar cells was exclusively dependent on Ca2+. These findings suggest that cGMP production induced by the activation of muscarinic cholinergic receptors is coupled to NO generation via Ca2+ mobilization.  相似文献   

3.
The effect of iron nitrosyl complexes, NO donors, of a general formula [Fe2(L)2(NO)4] with functional sulfur-containing ligands (L-3-nitro-phenol-2-yl, 4-nitro-phenol-2-yl, or 1-methyl-tetrazol-5-yl) on the activity of sarcoplasmic reticulum Ca2+-ATPase and cyclic guanosine monophosphate phosphodiesterase (cGMP PDE) was studied. The test complexes uncoupled the hydrolytic and transport functions of Ca2+- ATPase, thus disturbing the balance of Ca2+ ions in cells, which may affect the formation of thrombi and adhesion of metastatic cells to the endothelium of capillaries. They also inhibited the activity of cGMP PDE, thereby contributing to the accumulation of the second messenger cGMP. The studied iron nitrosyl complexes can be considered as potential drugs.  相似文献   

4.
Guanosine 3′,5′-monophosphate (cGMP) is an intracellular messenger in various kinds of cell. We investigated the regulation of cGMP production by nitric oxide (NO) in rabbit submandibular gland cells. Methacholine, a muscarinic cholinergic agonist, stimulated cGMP production in a dose- and time-dependent manner, but the α-agonist phenylephrine, substance P and the β-agonist isoproterenol failed to evoke cGMP production. In fura-2-loaded cells, methacholine induced an increase in intracellular Ca2+ ([Ca2+]i) in a concentration-dependent manner, which was similar to that for cGMP production. When the external Ca2+ was chelated with EGTA, methacholine failed to induce cGMP production. Ca2+ ionophore A23187 and thapsigargin, which induce the increase in [Ca2+]i without activation of Ca2+-mobilizing receptors, mimicked the effect of methacholine. cGMP production induced by methacholine, A23187 and thapsigargin was clearly inhibited by NG-nitro- -arginine methylester (L-NAME), a specific inhibitor of nitric oxide synthase (NOS). S-Nitroso-N-acetyl- -penicillamine (SNAP), a NO donor, induced cGMP formation. In the lysate of rabbit submandibular gland cells, Ca2+-regulated nitric oxide synthase activity was detected. These findings suggest that cGMP production induced by the activation of muscarinic cholinergic receptors is regulated by NO generation via the increase in [Ca2+]i.  相似文献   

5.
Behavioral and pharmacological studies in insects have suggested that the nitric oxide (NO)/cyclic GMP (cGMP) signaling pathway is involved in the formation of long-term memory (LTM) associated with olfactory learning. However, the target molecules of NO and the downstream signaling pathway are still not known. In this study, we investigated the action of NO on single voltage-dependent Ca2+ channels in the intrinsic neurons known as Kenyon cells within the mushroom body of the cricket brain, using the cell-attached configuration of the patch-clamp technique. Application of the NO donor S-nitrosoglutathione (GSNO) increased the open probability (NPO) of single Ca2+ channel currents. This GSNO-induced increase was blocked by ODQ, a soluble guanylate cyclase (sGC) inhibitor, suggesting that the NO generated by GSNO acts via sGC to raise cGMP levels. The membrane-permeable cGMP analog 8-Bro-cGMP also increased the NPO of single Ca2+ channel currents. Pretreatment of cells with KT5823, a protein kinase G blocker, abolished the excitatory effect of GSNO. These results suggest that NO augments the activity of single Ca2+ channels via the cGMP/PKG signaling pathway. To gain insight into the physiological role of NO, we examined the effect of GSNO on action potentials of Kenyon cells under current-clamp conditions. Application of GSNO increased the frequency of action potentials elicited by depolarizing current injections, indicating that NO acts as a modulator resulting in a stimulatory signal in Kenyon cells. We discuss the increased Ca2+ influx through these Ca2+ channels via the NO/cGMP signaling cascade in relation to the formation of olfactory LTM.  相似文献   

6.
《Cell calcium》2016,59(6):535-540
In ureteric microvessels the antagonistic relationship between Ca2+ signalling in endothelium and Ca2+ oscillations in myocytes and pericytes of arterioles and venules involves nitric oxide (NO), but the underlying mechanisms are not well understood. In the present study we investigated the effects of carbachol and NO donor SNAP on Ca2+ signalling and vasomotor responses of arterioles and venules in intact urteric microvascular network in situ using confocal microscopy. Vasomotor responses of arterioles and venules induced by AVP correlated with the occurrence of Ca2+ oscillations in the myocytes and pericytes and were not abolished by the removal of Ca2+ from extracellular fluid. Carbachol-induced rise of intracellular Ca2+ in endothelium was accompanied by the termination of the Ca2+ oscillations in myocytes and pericytes. This carbachol-induced inhibitory effect on Ca2+ oscillations in myocytes and pericytes was reversed by ODQ, an inhibitor of soluble guanylyl cyclase (sGC) and by Rp-8-pCPT-cGMPS, an inhibitor of protein kinase G (PKG). Ca2+ oscillations in myocytes and pericytes were also effectively blocked by NO donor SNAP. An Inhibitory effect of SNAP was markedly enhanced by zaprinast, a selective inhibitor of cGMP-specific phosphodiesterase-5, and reversed by sGC inhibitor, ODQ and PKG inhibitor, Rp-8-pCPT-cGMPS. The cGMP analogue and selective PKG activator 8pCPT-cGMP also induced inhibition of the AVP-induced Ca2+ oscillations in myocytes and pericytes. SNAP had no effects on Ca2+ oscillations induced by caffeine in distributing arcade arterioles. Consequently, we conclude that NO- mediated inhibition of Ca2+ oscillations in myocytes and pericytes predominantly recruits the cGMP/PKG dependent pathway. The inhibitory effect of NO/cGMP/PKG cascade is associated with suppressed Ca2+ release from the SR of myocytes and pericytes selectively via the inositol triphosphate receptor (IP3R) channels.  相似文献   

7.
Hydrogen peroxide (H2O2), an active oxygen species, is widely generated in many biological systems and mediates various physiological and biochemical processes in plants. In the present study, we present a signaling network involving H2O2, nitric oxide (NO), calcium (Ca2+), cyclic guanosine monophosphate (cGMP), and the mitogen-activated protein kinase (MAPK) cascade during adventitious rooting in mung bean seedlings. Both exogenous H2O2 and the NO donor sodium nitroprussiate were capable of promoting the formation and development of adventitious roots. H2O2 and NO signaling pathways were elicited in parallel in auxin-induced adventitious rooting. Cytosolic Ca2+ was required for adventitious rooting, and Ca2+ served as a downstream component of H2O2, as well as cGMP or MAPK, signaling cascades. cGMP and MAPK cascades function downstream of H2O2 signaling and depend on auxin responses in adventitious root signaling processes.  相似文献   

8.
The intracellular mechanisms underlying the action of the endogenous vasodilators such as NO/EDRF, adenosine, and prostacyclin acting through cGMP and cAMP, respectively, are not well understood. One important action of cyclic nucleotides in smooth muscle relaxation is to lower the cytosolic Ca2+ concentration by enhanced sequestration into the sarcoplasmic reticulum. The present study was undertaken to elucidate the potential role of phosphorylation of phospholamban, the regulator of sarcoplasmic reticulum Ca2+ pump, for the control of coronary vascular tone by NO/EDRF, adenosine, and prostacyclin. Phospholamban was identified in pig coronary artery preparations by immunofluorescence microscopy, Western blotting and in vitro phosphorylation. Segments of pig coronary artery, with either intact or denuded endothelium, were precontracted with prostaglandin F2α (PGF2α). In endothelium-denuded preparations 3-morpholinosydnonimine (SIN-1), 5′-N-ethylcarboxiamidoadenosine (NECA), and iloprost (ILO) caused both relaxation and phospholamban phosphorylation with the potency: SIN-1 > NECA > ILO. The regulatory myosin light chain was significantly dephosphorylated only by SIN-1. In endothelium-intact pig coronary artery, L-NAME caused additional vasoconstriction and a decrease in phospholamban phosphorylation, while phosphorylation of myosin light chain remained unchanged. An inverse relationship between phospholamban phosphorylation and vessel tone was obtained. Our findings demonstrate significant phospholamban phosphorylation during coronary artery relaxation evoked by NO, prostacyclin, and adenosine receptor activation. Because of the close correlation between phosphorylation of phospholamban and vessel relaxation, we propose that phospholamban phosphorylation is an important mechanism by which endogenous vasodilators, especially endothelial NO/EDRF, control coronary vascular smooth muscle tone. J. Cell. Biochem. 70:49–59, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
Levels of guanosine 3′,5′-cyclic monophosphate (cGMP) were determined by radioimmunoassay in adherence-purified, oil-induced guinea pig peritoneal exudate macrophages, after extraction of the cells with perchloric acid, purification on Dowex AG1-X8, and acetylation. We found that: (i) Basal cGMP levels were strictly dependent on the concentration of extracellular Ca2+ (0.33 ± 0.03 pmol/mg macrophage protein in Ca2+-free medium and 2.49 ± 0.42 pmol/mg in 1.8 mM Ca2+). (ii) The stimulatory effect of Ca2+ on cGMP levels was prevented by tetracaine. (iii) The cGMP content of macrophages was not elevated by incubation with the ionophore A23187 at extracellular Ca2+ concentrations varying between 0 and 1.8 mM. (iv) Macrophage cGMP levels were increased markedly (up to 40-fold) by incubation of the cells with the nitric oxide (NO)-generating agents, sodium azide, hydroxylamine, sodium nitrite, and sodium nitroprusside. (v) Stimulation of cGMP accumulation by NO-generating agents occurred within 30 sec, was Ca2+-independent, and developed in the presence and absence of the phosphodiesterase inhibitor, isobutyl-methylxanthine. (vi) A minimal elevation in the macrophage cGMP level (less than 2-fold) was induced by ascorbic acid but no significant increases were induced by the following agents, found effective in other cells: serotonin, acetylcholine, carbamylcholine, phorbol myristate acetate, arachidonic acid, Superoxide dismutase, and nitrate reductase.  相似文献   

10.
Cyclic guanosine monophosphate (cGMP) is an important secondary messenger synthesized by the guanylyl cyclases which are found in the soluble (sGC) and particular isoforms. In the central nervous system, the nitric oxide (NO)-sensitive sGC isoform is the major enzyme responsible for cGMP synthesis. Phosphodiesterases (PDEs) are enzymes for hydrolysis of cGMP in the brain, and they are mainly isoforms 2, 5, and 9. The NO/cGMP signaling pathway has been shown to play an important role in the process underlying learning and memory. Aging is associated with an increase in PDE expression and activity and a decrease in cGMP concentration. In addition, aging is also associated with an enhancement of neuronal NO synthase, a lowering of endothelial, and no alteration in inducible activity. The observed changes in NMDA receptor density along with the Ca2+/NO/cGMP pathway underscore the lower synaptic plasticity and cognitive performance during aging. This notion is in agreement with last data indicating that inhibitors of PDE2 and PDE9 improve learning and memory in older rats. In this review, we focus on recent studies supporting the role of Ca2+/NO/cGMP pathway in aging and Alzheimer's disease.  相似文献   

11.
Tonic contraction of corpus cavernosum smooth muscle cells (SMCs) maintains the flaccid state of the penis, and relaxation is initiated by nitric oxide (NO), leading to erection. Our aim was to investigate the effect of NO on the smooth muscle cellular response to adrenergic stimulation in corpus cavernosum. Fura-2 fluorescence was used to record intracellular Ca2+ concentration ([Ca2+]i) from freshly isolated SMCs from rat and human. Phenylephrine (PE) transiently elevated [Ca2+]i in the presence and absence of extracellular Ca2+, indicating release from intracellular stores. Whereas the NO donor S-nitroso-N-acetylpenicillamine (SNAP) with sildenafil citrate (SIL) caused no change in basal [Ca2+]i, the PE-induced rise of [Ca2+]i was reversibly inhibited by 27 ± 7% (n = 21, P < 0.005) in rat and by 55 ± 15% (n = 9, P < 0.01) in human SMCs. SNAP and SIL also reduced the contractile response to PE. To investigate the mechanism, we applied mediators alone or in combination. The soluble guanylyl cyclase inhibitor ODQ reduced the effect of SNAP and SIL. SIL, cGMP analogs, and NO donors without SIL did not reduce the PE-induced rise of [Ca2+]i. However, the combination of 8-bromo-cGMP with SNAP reduced the Ca2+ peak by 42 ± 9% (n = 22, P < 0.01). Our results demonstrate that NO and cGMP act synergistically to reduce Ca2+ release from intracellular stores. Reduction of intracellular Ca2+ release may contribute to relaxation of the corpus cavernosum, leading to erection. calcium stores; nitric oxide; sildenafil citrate; inositol 1,4,5-trisphosphate receptor  相似文献   

12.
The voltage-dependent slow channels in the myocardial cell membrane are the major pathway by which Ca2+ ions enter the cell during excitation for initiation and regulation of the force of contraction of cardiac muscle. The slow channels have some special properties, including functional dependence on metabolic energy, selective blockade by acidosis, and regulation by the intracellular cyclic nucleotide levels. Because of these special properties of the slow channels, Ca2+ influx into the myocardial cell can be controlled by extrinsic factors (such as autonomic nerve stimulation or circulating hormones) and by intrinsic factors (such as cellular pH or ATP level). The slow Ca2+ channels of the heart are regulated by cAMP in a stimulatory fashion. Elevation of cAMP produces a very rapid increase in number of slow channels available for voltage activation during excitation. The probability of a slow channel opening and the mean open time of the channel are increased. Therefore, any agent that increases the cAMP level of the myocardial cell will tend to potentiate Isi, Ca2+ influx, and contraction. The myocardial slow Ca2+ channels are also regulated by cGMP, in a manner that is opposite to that of CAMP. The effect of cGMP is presumably mediated by means of phosphorylation of a protein, as for example, a regulatory protein (inhibitory-type) associated with the slow channel. Preliminary data suggest that calmodulin also may play a role in regulation of the myocardial slow Ca2+ channels, possibly mediated by the Ca2+-calmodulin-protein kinase and phosphorylation of some regulatory-type of protein. Thus, it appears that the slow Ca2+ channel is a complex structure, including perhaps several associated regulatory proteins, which can be regulated by a number of extrinsic and intrinsic factors.VSM cells contain two types of Ca2+ channels: slow (L-type) Ca2+ channels and fast (T-type) Ca2+ channels. Although regulation of voltage-dependent Ca2+ slow channels of VSM cells have not been fully clarified yet, we have made some progress towards answering this question. Slow (L-type, high-threshold) Ca2+ channels may be modified by phosphorylation of the channel protein or an associated regulatory protein. In contrast to cardiac muscle where cAMP and cGMP have antagonistic effects on Ca2+ slow channel activity, in VSM, cAMP and cGMP have similar effects, namely inhibition of the Ca2+ slow channels. Thus, any agent that elevates cAMP or cGMP will inhibit Ca2+ influx, and thereby act to produce vasodilation. The Ca2+ slow channels require ATP for activity, with a K0.5 of about 0.3 mM. C-kinase may stimulate the Ca2+ slow channels by phosphorylation. G-protein may have a direct action on the Ca2+ channels, and may mediate the effects of activation of some receptors. These mechanisms of Ca2+ channel regulation may be invoked during exposure to agonists or drugs, which change second messenger levels, thereby controlling vascular tone.  相似文献   

13.
Nitric oxide (NO) and calcium channel blockers are two agents that can affect gastrointestinal motility. The goal of this work was to study the rabbit intestinal smooth muscle contraction response to (1) sodium nitroprusside (SNP), the NO donor, and its potential mechanism of action, and (2) nifedipine, the l-type Ca2+ channel blocker; to clarify the degree of participation by extra- and intracellular Ca2+ in smooth muscle contraction. We used standard isometric tension and intracellular micro-electrode recordings. To record the activity of the longitudinal smooth muscle of the ileum, segments of 1.5?cm length of the ileum were suspended vertically in organ baths of Krebs solution. The mechanical activity of the isolated ileal longitudinal muscle was recorded. Different substances were added, and the changes produced on spontaneous contraction were recorded. We found that SNP produced significant decrease, while nitric oxide synthase inhibitor produced significant increase in the amplitude of spontaneous contractions. Both apamin, the Ca2+-dependent K+ channel blocker, and methylene blue, the inhibitor of soluble guanylate cyclase, alone, partially decreased relaxation induced by SNP. Addition of both methylene blue and apamine together abolished the inhibitory effect produced by SNP on spontaneous contractions. Nifedipine produced significant decrease in the amplitude of spontaneous contractions. In conclusion, in longitudinal muscle of rabbit ileum, calcium channels blocker are potent inhibitors of spontaneous activity. However, both extracellular and intracellular Ca2+ participates in the spontaneous contractions. NO also has inhibitory effect on spontaneous activity, and this effect is mediated by cGMP generation system and Ca2+-dependent K+ channels.  相似文献   

14.
Carbachol- andthapsigargin-induced changes in cGMP accumulation were highly dependenton extracellular Ca2+ in mouseparotid acini. Inhibition of nitric oxide synthase (NOS) and solubleguanylate cyclase (sGC) resulted in complete inhibition ofagonist-induced cGMP levels. NOS inhibitors reduced agonist-induced Ca2+ release and capacitativeCa2+ entry, whereas the inhibitionof sGC had no effect. The effects of NOS inhibition were not reversedby 8-bromo-cGMP. The NO donor GEA-3162 increased cGMP levels blocked bythe inhibition of sGC. GEA-3162-induced increases inCa2+ release fromryanodine-sensitive stores and enhanced capacitative Ca2+ entry, both of which wereunaffected by inhibitors of sGC but reduced by NOSinhibitors. Results support a role for NO, independent ofcGMP, in agonist-mediated Ca2+release and Ca2+ entry. Datasuggest that agonist-induced Ca2+influx activates a Ca2+-dependentNOS, leading to the production of NO and the release ofCa2+ from ryanodine-sensitivestores, providing a feedback loop by which store-depletedCa2+ channels are activated.

  相似文献   

15.
Oxothiazolidine carboxylic acid is a prodrug of cysteine that acts as an anti-diabetic agent via insulin secretion and the formation of the Ca2+-mobilizing second messenger, cyclic ADP-ribose (cADPR). Here we show that a hybrid compound, arginine thiazolidine carboxylate (ATC), increases cytoplasmic Ca2+ in pancreatic β-cells, and that the ATC-induced Ca2+ signals result from the sequential formation of two Ca2+-mobilizing second messengers: nicotinic acid adenine dinucleotide phosphate (NAADP) and cADPR. Our data demonstrate that ATC has potent insulin-releasing properties, due to the additive action of its two components; thiazolidine carboxylate (TC) and L-arginine. TC increases glutathione (GSH) levels, resulting in cAMP production, followed by a cascade pathway of NAADP/nitric oxide (NO)/cGMP/cADPR synthesis. L-arginine serves as the substrate for NO synthase (NOS), which results in cADPR synthesis via cGMP formation. Neuronal NOS is specifically activated in pancreatic β-cells upon ATC treatment. These results suggest that ATC is an ideal candidate as an anti-diabetic, capable of modulating the physiological Ca2+ signalling pathway to stimulate insulin secretion.  相似文献   

16.
Nitric oxide (NO) diffuses as short‐lived messenger through the plasma membrane and serves, among many other functions, as an activator of the cGMP synthesizing enzyme soluble guanylyl cyclase (sGC). In view of recent genetic investigations that postulated a retrograde signal from the larval muscle fibers to the presynaptic terminals, we looked for the presence of an NO/cGMP signaling system at the neuromuscular junction (NMJ) of Drosophila melanogaster larvae. Application of NO donors induced cGMP immunoreactivity in the presynaptic terminals but not the postsynaptic muscle fibers at an identified NMJ. The NO‐induced cGMP immunoreactivity was sensitive to a specific inhibitor (ODQ) of the sGC. Since presynaptic terminals which were surgically isolated from the central nervous system are capable of synthesizing cGMP, we suggest that an NO‐sensitive guanylyl cyclase is present in the terminal arborizations. Using a fluorescent dye that is known to stain recycling synaptic vesicles, we demonstrate that NO donors and membrane permeant cGMP analogues cause vesicle release at the NMJ. Moreover, the NO‐induced release could be blocked by the specific inhibitor of the sGC. A destaining of synaptic terminals after NO exposure in Ca2+‐free solution in the presence of cobalt chloride as a channel blocker suggested that NO stimulates Ca2+‐independent vesicle release at the NMJ. The combined immunocytochemical and exocytosis imaging experiments imply the involvement of cGMP and NO in the regulation of vesicle release at the NMJ of Drosophila larvae. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 337–346, 1999  相似文献   

17.
Methyl jasmonate (MeJA) signalling shares several signal components with abscisic acid (ABA) signalling in guard cells. Cyclic adenosine 5′‐diphosphoribose (cADPR) and cyclic guanosine 3′,5′‐monophosphate (cGMP) are second messengers in ABA‐induced stomatal closure. In order to clarify involvement of cADPR and cGMP in MeJA‐induced stomatal closure in Arabidopsis thaliana (Col‐0), we investigated effects of an inhibitor of cADPR synthesis, nicotinamide (NA), and an inhibitor of cGMP synthesis, LY83583 (LY, 6‐anilino‐5,8‐quinolinedione), on MeJA‐induced stomatal closure. Treatment with NA and LY inhibited MeJA‐induced stomatal closure. NA inhibited MeJA‐induced reactive oxygen species (ROS) accumulation and nitric oxide (NO) production in guard cells. NA and LY suppressed transient elevations elicited by MeJA in cytosolic free Ca2+ concentration ([Ca2+]cyt) in guard cells. These results suggest that cADPR and cGMP positively function in [Ca2+]cyt elevation in MeJA‐induced stomatal closure, are signalling components shared with ABA‐induced stomatal closure in Arabidopsis, and that cADPR is required for MeJA‐induced ROS accumulation and NO production in Arabidopsis guard cells.  相似文献   

18.
Thapsigargin (TG), a plant-derived sesquiterpene lactone, inhibits several isoforms of both the sarcoplasmic and endoplasmic reticulum Ca2+-ATPases. Thus, intracellular Ca2+ stores found in the endoplasmic reticulum can be released by this compound. The mammalian sperm acrosome reaction (AR) depends on influx of extracellular Ca2+. However, few reports have presented evidence for the involvement of putative Ca2+ stores and intracellular Ca2+ mobilization in the AR. Thus, we designed experiments to evaluate the effect of TG on the hamster sperm AR. Thapsigargin stimulated—in a dose-dependent manner—the AR of spermatozoa previously capacitated for at least 3 hr, not affecting sperm motility. A maximal stimulatory effect was apparent 3 min after addition of TG to spermatozoa previously capacitated for 4 hr and was dependent on external Ca2+ since ethyleneglycol-bis-(b-amino-ethyl ether) N,N′-tetra-acetic acid added 1 min before TG completely inhibited AR stimulation. The Ca2+ channel blockers diltiazem and nifedipine also abolished the TG-stimulatory effect when added to capacitated spermatozoa 10 min before the inhibitor. In addition, the trypsin inhibitors p-nitrophenyl-p′-guanidine-benzoate hydrochloride and benzamidine added to the sperm suspensions 10 min before TG inhibited by 70–80% the TG-induced AR. These results indicate that putative Ca2+ stores release may be involved in stimulation of extracellular Ca2+ influx required for the occurrence of the AR. In addition, a sperm trypsin-like protease may be part of the mechanism by which TG induces the hamster sperm AR. Mol. Reprod. Dev. 51:84–91, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
Sodium nitroprusside (SNP) is an endothelium-independent relaxant agent and its effect is attributed to its direct action on the vascular smooth muscle (VSM). Endothelium modulates the vascular tone through the release of vasoactive agents, such as NO. The aim of this study was to investigate the contribution of the endothelium on SNP vasorelaxation, NO release and Ca2+ mobilization. Vascular reactivity experiments showed that endothelium potentiates the SNP-relaxation in rat aortic rings and this effect was abolished by l-NAME. SNP-relaxation in intact endothelium aorta was inhibited by NOS inhibitors for the constitutive isoforms (cNOS). Furthermore, endogenous NO is involved on the SNP-effect and this endogenous NO is released by cNOS. Moreover, Ca2+ mobilization study shows that l-NAME inhibited the reduction of Ca2+-concentration in VSM cells and reduced the increase in Ca2+-concentration in endothelial cells induced by SNP. This enhancement in Ca2+-concentration in the endothelial cells is due to a voltage-dependent Ca2+ channels activation. The present findings indicate that the relaxation and [Ca2+]i decrease induced by SNP in VSM cells is potentiated by endothelial production of NO by cNOS-activation in rat aorta.  相似文献   

20.
Lau CW  Chen ZY  Wong CM  Yao X  He Z  Xu H  Huang Y 《Life sciences》2004,75(10):1149-1157
Acteoside and other phenylethanoid glycoside are contained in many plants that are widely used in traditional Chinese herbal medicine. Acteoside possesses multiple biological actions. Its effect on the vascular system is, however, incompletely understood. This study was aimed to investigate the role of endothelial [Ca2+]i, nitric oxide (NO), and cyclic GMP in acteoside-induced inhibition of endothelial NO-mediated relaxation in rat aorta. Acteoside reduced endothelial NO-dependent relaxation induced by acetylcholine (Ach) or A23187. Acteoside inhibited Ach-stimulated increase in tissue content of cyclic GMP in endothelium-intact rings. L-NNA abolished the stimulatory effect of Ach. Treatment with acteoside significantly suppressed bradykinin-induced increase in [Ca2+]i of cultured rat aortic endothelial cells. Acute exposure to acteoside (30 μM) did not affect the expression of eNOS mRNA in endothelium-intact rings. In summary, acteoside impairs endothelial NO-mediated aortic relaxation partially through inhibition of agonist-induced endothelial Ca2+ mobilization and Ca2+-dependent NO production and subsequent suppression of cyclic GMP formation. This novel pharmacological action if occurring in small vessels in vivo, may contribute to the reported anti-inflammatory effect of acteoside against NO-mediated vascular permeability-related acute edema.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号