首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The current classification of parvoviruses is based on virus host range and helper virus dependence, while little data on evolutionary relationships among viruses are available. We identified and analyzed 472 sequences of parvoviruses, among which there were (virtually) full-length genomes of all 41 viruses currently recognized as individual species within the family Parvoviridae. Our phylogenetic analysis of full-length genomes as well as open reading frames distinguished three evolutionary groups of parvoviruses from vertebrates: (i) the human helper-dependent adeno-associated virus (AAV) serotypes 1 to 6 and the autonomous avian parvoviruses; (ii) the bovine, chipmunk, and autonomous primate parvoviruses, including human viruses B19 and V9; and (iii) the parvoviruses from rodents (except for chipmunks), carnivores, and pigs. Each of these three evolutionary groups could be further subdivided, reflecting both virus-host coevolution and multiple cross-species transmissions in the evolutionary history of parvoviruses. No parvoviruses from invertebrates clustered with vertebrate parvoviruses. Our analysis provided evidence for negative selection among parvoviruses, the independent evolution of their genes, and recombination among parvoviruses from rodents. The topology of the phylogenetic tree of autonomous human and simian parvoviruses matched exactly the topology of the primate family tree, as based on the analysis of primate mitochondrial DNA. Viruses belonging to the AAV group were not evolutionarily linked to other primate parvoviruses but were linked to the parvoviruses of birds. The two lineages of human parvoviruses may have resulted from independent ancient zoonotic infections. Our results provide an argument for reclassification of Parvovirinae based on evolutionary relationships among viruses.  相似文献   

2.
Because of the small size and genetic simplicity of small DNA viruses, parvoviruses would appear to be excellent models for studying viral evolution and adaptation. In an earlier publication we hypothesized the evolution of sequences of cellular "junk" DNA into protective interfering transposons. These transposons would interfere with invading pathogenic viruses by competing with the pathogen DNA for replicative enzymes. We speculated that a small, defective parvovirus, the adeno-associated virus (AAV), which usually requires the presence of a pathogenic helper virus to replicate, may have evolved from such a piece of cellular "junk" DNA. Our theory predicted that AAVs, as a consequence of their defective nature, developed under pressures favoring maintenance of their transposon like qualities. In contrast, disease-causing, autonomous, non-defective parvoviruses such as the B19 agent of humans and the canine parvovirus, even though their origins may have been in cellular DNA, would appear to have developed under totally different evolutionary pressures. In this paper we will present evidence for a common ancestry for the defective and autonomous parvoviruses and discuss the divergent paths this evolution may have taken in establishing the two genera.  相似文献   

3.
《Seminars in Virology》1995,6(6):415-418
Molecular epidemiological studies of paruoviruses are complicated by the low levels of variation in the DNA genome of the viruses. Nevertheless, use of restriction enzyme analysis, DNA sequencing and monoclonal antibody analysis of epitope variation has been used to examine the distribution of virus strains in nature. Comparison of canine parvovirus and the related viruses from other carnivores showed that a number of variant strains of the viruses could be identfied by DNA sequence and antigenic analysis. Among CPV isolates some strains replaced previous antigenic types, while other variant antigenic types coexisted in nature. The viruses are apparently able to spread world wide, as most geographically separated viruses are not genetically distinct. The human B19 parvovirus has been examined by restriction enzyme analysis and limited DNA sequencing, and a variety of characteristic strains identified. Some were found world wide, while others were apparently found to be associated with certain countries.  相似文献   

4.
The experimental infectivity and excellent tolerance of some rodent autonomous parvoviruses in humans, together with their oncosuppressive effects in preclinical models, speak for the inclusion of these agents in the arsenal of oncolytic viruses under consideration for cancer therapy. In particular, wild-type parvovirus H-1PV can achieve a complete cure of various tumors in animal models and kill tumor cells that resist conventional anticancer treatments. There is growing evidence that H-1PV oncosuppression involves an immune component in addition to the direct viral oncolytic effect. This article summarizes the recent assessment of H-1PV antineoplastic activity in glioma, pancreatic ductal adenocarcinoma, and non-Hodgkin lymphoma models, laying the foundation for the present launch of a first phase I/IIa clinical trial on glioma patients.  相似文献   

5.
《Seminars in Virology》1995,6(5):271-281
Both ends of the linear single-stranded parvoviral DNA genome contain short palindromic sequences which form duplex hairpins containingcis-acting information required for replication and encapsidation. DNA synthesis is primed directly by the 3′ end, and genomes are replicated through multimeric duplex intermediates by unidirectional, leading-strand synthesis. Unit-length genomes are excised from these concatemers, and their telomeres replicated, by the viral NS1 protein, which introduces a single-strand nick into specific origin sequences, becoming covalently attached to the 5′ end at the nick and providing a 3′ hydroxyl which primes synthesis of a new copy of the telomere. Progeny DNA synthesis requires ongoing replication and is dependent upon packaging.  相似文献   

6.
Public databases of nucleotide sequences contain exponentially increasing amounts of sequence data from mammalian genomes. Through the use of large-scale bioinformatic screening for sequences homologous to exogenous mammalian viruses, we found several sequences related to human and animal parvoviruses (PVs) in the Parvovirus and Dependovirus genera within genomes of several mammals, including rats, wallabies, opossums, guinea pigs, hedgehogs, African elephants, and European rabbits. However, phylogenetic analysis of these endogenous parvovirus (EnPV) sequences demonstrated substantial genetic divergence from exogenous mammalian PVs characterized to date. Entire nonstructural and capsid gene sequences of a novel EnPV were amplified and genetically characterized from rat (Rattus norvegicus) genomic DNA. Rat EnPV sequences were most closely related to members of the genus Parvovirus, with >70% and 65% amino acid identities to nonstructural and capsid proteins of canine parvovirus, respectively. Integration of EnPV into chromosome 5 of rats was confirmed by PCR cloning and sequence analysis of the viral and chromosomal junctions. Using inverse PCR, we determined that the rat genome contains a single copy of rat EnPV. Considering mammalian phylogeny, we estimate that EnPV integrated into the rat genome less than 30 million years ago. Comparative phylogenetic analysis done using all known representative exogenous parvovirus (ExPV) and EnPV sequences showed two major genetic groups of EnPVs, one genetically more similar to genus Parvovirus and the other genetically more similar to the genus Dependovirus. The full extent of the genetic diversity of parvoviruses that have undergone endogenization during evolution of mammals and other vertebrates will be recognized only once complete genomic sequences from a wider range of classes, orders, and species of animals become available.  相似文献   

7.
Replicating parvoviruses that target colon cancer cells   总被引:5,自引:0,他引:5       下载免费PDF全文
  相似文献   

8.
Parvoviridae is a family of the smallest viruses known with a wide variety of hosts. The capsid structure of the Aedes albopictus C6/36 cell densovirus (C6/36 DNV) at 1.2-nm resolution was obtained by elec-tron cryomicroscopy (cryoEM) and three-dimensional (3D) image reconstruction. Structure compari-sons between the C6/36 DNV and other parvoviruses reveal that the degree of structural similarity be-tween C6/36 DNV and the human parvovirus B19 is higher than that between C6/36 DNV and other in-sect parvoviruses. The amino acid sequence comparisons of structural and non-structural proteins also reveal higher levels of similarity between C6/36 DNV and parvovirus B19 than those between C6/36 DNV and other parvoviruses. These findings indicate that C6/36 DNV is closely related to the human virus B19, and the former might evolve from the human species other than from other insect viruses.  相似文献   

9.
Parvoviridae is a family of the smallest viruses known with a wide variety of hosts. The capsid structure of the Aedes albopictus C6/36 cell densovirus (C6/36 DNV) at 1.2-nm resolution was obtained by electron cryomicroscopy (cryoEM) and three-dimensional (3D) image reconstruction. Structure comparisons between the C6/36 DNV and other parvoviruses reveal that the degree of structural similarity between C6/36 DNV and the human parvovirus B19 is higher than that between C6/36 DNV and other insect parvoviruses. The amino acid sequence comparisons of structural and non-structural proteins also reveal higher levels of similarity between C6/36 DNV and parvovirus B19 than those between C6/36 DNV and other parvoviruses. These findings indicate that C6/36 DNV is closely related to the human virus B19, and the former might evolve from the human species other than from other insect viruses.  相似文献   

10.
One hundred fifteen wolf (Canis lupus) feces were collected between 1980 and 1984 from northeastern Minnesota and were examined for canine parvovirus by negative contrast electron microscopy. Of these, seven (6%) samples revealed the presence of parvovirus. Some of these viruses were able to grow in cell cultures forming intranuclear inclusion bodies and giant cells.  相似文献   

11.
12.
13.
Yin  Xiuchen  Zhang  Shumei  Gao  Youlan  Li  Jinzhe  Tan  Shuyi  Liu  Hongyu  Wu  Xiaoying  Chen  Yuhuan  Liu  Ming  Zhang  Yun 《Virology journal》2012,9(1):1-7

Background

Ebola viruses (EBOVs) cause severe hemorrhagic fever with a high mortality rate. At present, there are no licensed vaccines or efficient therapies to combat EBOV infection. Previous studies have shown that both humoral and cellular immune responses are crucial for controlling Ebola infection. CD8+ T cells play an important role in mediating vaccine-induced protective immunity. The objective of this study was to identify H-2d-specific T cell epitopes in EBOV glycoproteins (GPs).

Results

Computer-assisted algorithms were used to predict H-2d-specific T cell epitopes in two species of EBOV (Sudan and Zaire) GP. The predicted peptides were synthesized and identified in BALB/c mice immunized with replication-deficient adenovirus vectors expressing the EBOV GP. Enzyme-linked immunospot assays and intracellular cytokine staining showed that the peptides RPHTPQFLF (Sudan EBOV), GPCAGDFAF and LYDRLASTV (Zaire EBOV) could stimulate splenoctyes in immunized mice to produce large amounts of interferon-gamma.

Conclusion

Three peptides within the GPs of two EBOV strains were identified as T cell epitopes. The identification of these epitopes should facilitate the evaluation of vaccines based on the Ebola virus glycoprotein in a BALB/c mouse model.  相似文献   

14.
In addition to the well known “classical” porcine parvovirus (PPV1; responsible for reproductive failure of susceptible sows) several new porcine parvoviruses have been recognized (PPV2, PPV3 and PPV4) in recent years. The genetic variation, characteristics and evolutionary factors shaping these novel PPVs were studied by comparing the complete capsid (cap) genes of PPVs from domestic pigs and wild boars. Using Bayesian coalescent methods we estimated the rate of nucleotide substitution for PPV2, PPV3 and PPV4 to be of the order of 3.86 × 10?4–8.23 × 10?4 subs site?1 year?1, similar to those commonly measured for RNA viruses, although this rate in case of PPV2 is probably influenced by frequent recombination events. Given such rapid evolutionary dynamics, it is likely that novel PPVs will continue to improve their capacity to spread among Suidae hosts worldwide. The mean time to the most recent common ancestor for the sampled genetic diversity of the newly discovered porcine parvoviruses was estimated. The results indicated that novel PPVs originated within approximately the last 70 years. Incongruent phylogenetic relationships of several strains suggested recombination events supported by several recombination-detecting methods and by split-decomposition phylogenetic networks. Analyses of the selective constraints acting on each codon suggest that some regions of PPV cap genes were under positive selection. This study showed that inter- and intraspecies recombination and diversifying selection pressures are prevalent across the cap genes of novel PPVs, and beside host switching and gene flow are important driving forces of their evolution and may be significant factors in the emergence of new viral variants.  相似文献   

15.
Mink parvoviruses and interferons: in vitro studies.   总被引:1,自引:0,他引:1       下载免费PDF全文
Although interferons can inhibit the replication of a number of viruses, little is known about their ability to inhibit parvovirus replication. Therefore, in vitro experiments were done to determine if Aleutian disease virus and mink enteritis virus, two autonomously replicating mink parvoviruses, induced interferon, were sensitive to the effects of interferon, or inhibited the production of interferon. The results indicated that these parvoviruses neither induced nor were sensitive to the effects of interferon. Furthermore, preexisting parvovirus infections did not inhibit poly(I).poly(C)-induced interferon production. This independence from the interferon system may, therefore, be a general property of the autonomously replicating parvoviruses.  相似文献   

16.
The autonomous parvovirus Minute Virus of Mice (MVM) induces specific changes in the cytoskeleton filaments of infected permissive cells, causing in particular the degradation of actin fibers and the generation of "actin patches." This is attributed to a virus-induced imbalance between the polymerization factor N-WASP (Wiscott-Aldrich syndrome protein) and gelsolin, a multifunctional protein cleaving actin filaments. Here, the focus is on the involvement of gelsolin in parvovirus propagation and virus-induced actin processing. Gelsolin activity was knocked-down, and consequences thereof were determined for virus replication and egress and for actin network integrity. Though not required for virus replication or progeny particle assembly, gelsolin was found to control MVM (and related H1-PV) transport from the nucleus to the cell periphery and release into the culture medium. Gelsolin-dependent actin degradation and progeny virus release were both controlled by (NS1)/CKIIalpha, a recently identified complex between a cellular protein kinase and a MVM non-structural protein. Furthermore, the export of newly synthesized virions through the cytoplasm appeared to be mediated by (virus-modified) lysomal/late endosomal vesicles. By showing that MVM release, like entry, is guided by the cytoskeleton and mediated by vesicles, these results challenge the current view that egress of non-enveloped lytic viruses is a passive process.  相似文献   

17.
Bats, a globally distributed group of mammals with high ecological importance, are increasingly recognized as natural reservoir hosts for viral agents of significance to human and animal health. In the present study, we evaluated pools of blood samples obtained from two phylogenetically distant bat families, in particular from flying foxes (Pteropodidae), Eidolon helvum in West Africa, and from two species of New World leaf-nosed fruit bats (Phyllostomidae), Artibeus jamaicensis and Artibeus lituratus in Central America. A sequence-independent virus discovery technique (VIDISCA) was used in combination with high throughput sequencing to detect two novel parvoviruses: a PARV4-like virus named Eh-BtPV-1 in Eidolon helvum from Ghana and the first member of a putative new genus in Artibeus jamaicensis from Panama (Aj-BtPV-1). Those viruses were circulating in the corresponding bat colony at rates of 7-8%. Aj-BtPV-1 was also found in Artibeus lituratus (5.5%). Both viruses were detected in the blood of infected animals at high concentrations: up to 10E8 and to 10E10 copies/ml for Aj-BtPV-1 and Eh-BtPV-1 respectively. Eh-BtPV-1 was additionally detected in all organs collected from bats (brain, lungs, liver, spleen, kidneys and intestine) and spleen and kidneys were identified as the most likely sites where viral replication takes place. Our study shows that bat parvoviruses share common ancestors with known parvoviruses of humans and livestock. We also provide evidence that a variety of Parvovirinae are able to cause active infection in bats and that they are widely distributed in these animals with different geographic origin, ecologies and climatic ranges.  相似文献   

18.
Liu H  Fu Y  Xie J  Cheng J  Ghabrial SA  Li G  Peng Y  Yi X  Jiang D 《Journal of virology》2011,85(19):9863-9876
Parvoviruses infect humans and a broad range of animals, from mammals to crustaceans, and generally are associated with a variety of acute and chronic diseases. However, many others cause persistent infections and are not known to be associated with any disease. Viral persistence is likely related to the ability to integrate into the chromosomal DNA and to establish a latent infection. However, there is little evidence for genome integration of parvoviral DNA except for Adeno-associated virus (AAV). Here we performed a systematic search for homologs of parvoviral proteins in publicly available eukaryotic genome databases followed by experimental verification and phylogenetic analysis. We conclude that parvoviruses have frequently invaded the germ lines of diverse animal species, including mammals, fishes, birds, tunicates, arthropods, and flatworms. The identification of orthologous endogenous parvovirus sequences in the genomes of humans and other mammals suggests that parvoviruses have coexisted with mammals for at least 98 million years. Furthermore, some of the endogenized parvoviral genes were expressed in eukaryotic organisms, suggesting that these viral genes are also functional in the host genomes. Our findings may provide novel insights into parvovirus biology, host interactions, and evolution.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号