首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
To determine if the antiprogestagen RU486 has a direct effect on luteal progesterone secretion, whole corpora lutea or dispersed luteal cells were incubated in the presence of RU486. Whole corpora lutea, isolated from rats at day 5 of pseudopregnancy, were incubated individually in hormone-free medium. The concentrations of progesterone and 20 alpha-dihydroprogesterone in the medium plus corpus luteum was measured before and after 24 h of incubation. In the absence of RU486 the concentration of 20 alpha-dihydro-progesterone increased, while that of progesterone remained unchanged. In the presence of RU486 (230 microM) the concentration of both progesterone and 20 alpha-dihydro-progesterone was increased. Dispersed luteal cells were incubated for 24 h in the presence of various amounts of RU486. In the absence and in the presence of 0.2 and 2.3 microM RU486 a high ratio between 20 alpha-dihydro-progesterone and progesterone was found, while in the presence of 23 microM RU486 the concentrations of progesterone and 20 alpha-dihydro-progesterone were equal. 20 alpha-Hydroxysteroid dehydrogenase (20 alpha-HSD) activity measured in luteal homogenates started to increase between 6 and 12 h of incubation. This increase could be prevented after incubation of the corpora lutea in the presence of 23 or 230 microM RU486 for 24 hrs. It is concluded that the progesterone antagonist RU486 can have a direct effect on luteal progesterone production. RU486 prevents the increase in 20 alpha-HSD activity that normally occurs during in vitro incubation. However, since these effects in vitro can only be obtained with high concentrations of RU486, it is unlikely that this antiluteolytic effect plays a role after injection of RU486 in vivo.  相似文献   

4.
Using Chromosorb chromatography and HPLC, we measured the plasma concentrations of RU 486, and its monodemethylated (RU 42633), didemethylated (RU 42848) and alcoholic nondemethylated (RU 42698) metabolites up to 72 h following oral ingestion of 100 mg of RU 486 by five female volunteers. The peak plasma level of RU 486 (4.5 mumol/l) occurred within 1 h after ingestion of the compound; at this point significant amounts of the metabolites were also present in the plasma. After the initial redistribution within 6 h the plasma concentrations of RU 486 and three of its metabolites measured remained stable for 24 h. Concentrations of the monodomethylated metabolite exceeded those of the parent steroid during the time period measured, whereas the concentrations of the didemethylated and alcoholic metabolites were lower than those of RU 486, but still notable. At 72 h the concentrations of all the four steroids were still in the micromolar range. The relative binding affinities of these metabolites to human endometrial and myometrial progesterone receptors as well as to human placental glucocorticoid receptors were determined in vitro. The affinity of RU 486 for the human uterine progesterone receptor (Kd = 1.3 X 10(-9) M for RU 486) was higher than that of progesterone but lower than that of ORG-2058, a potent synthetic progestin. The relative binding affinities of the monodemethylated, alcoholic and didemethylated metabolites to the progesterone receptor were 21, 15 and 9%, respectively, compared with the parent compound RU 486; each was lower than that of progesterone (43%). RU 486 had an approx. 4-fold higher relative binding affinity to the glucocorticoid receptor than dexamethasone. Interestingly, the relative binding affinities of the metabolites studied to the human glucocorticoid receptor exceeded those of dexamethasone or cortisol. Compared with the parent compound RU 486, they were 61, 48 and 45% for the monodemethylated, alcoholic and didemethylated metabolites, respectively; each was higher than that of dexamethasone (23%). The affinity of dexamethasone to the human glucocorticoid receptor was 1.6 X 10(-9) M. These data indicate that the pool of certain metabolites of RU 486 may contribute to a significant extent to the antiprogestagenic (23-33%) and even greater extent to the antiglucocorticoid (47-61%) effects of RU 486.  相似文献   

5.
D F Skafar 《Biochemistry》1991,30(45):10829-10832
The binding mechanism of the antagonist RU486 to the progesterone receptor was compared with that of the agonists progesterone and R5020. Both progesterone and RU486 bound to the receptor with a Hill coefficient of 1.2, indicating the binding of each ligand is positive cooperative. However, when each ligand was used to compete with [3H]progesterone for binding to the receptor at receptor concentrations near 8 nM, at which the receptor is likely a dimer, the competition curve for RU486 was significantly steeper than the curves for progesterone and R5020 (p less than 0.001). This indicated that a difference in the binding mechanism of RU486 and progesterone can be detected when both ligands are present. In contrast, at receptor concentrations near 1 nM, at which the receptor is likely a monomer, the competition curves for all three ligands were indistinguishable (p = 0.915). These results indicate that RU486 and agonists have different binding mechanisms for the receptor and further suggest that this difference may be related to site-site interactions within the receptor.  相似文献   

6.
To create a strategy for inducible gene targeting we developed a Cre-lox recombination system which responds to the synthetic steroid RU 486. Several fusions between Cre recombinase and the hormone binding domain (HBD) of a mutated human progesterone receptor, which binds RU 486 but not progesterone, were constructed. When tested in transient expression assays recombination activities of all fusion proteins were responsive to RU 486, but not to the endogenous steroid progesterone. However, the observed induction of recombination activity by the synthetic steroid varied between the different fusion proteins. The fusion with the highest activity in the presence of RU 486 combined with low background activity in the absence of the steroid was tested after stable expression in fibroblast and embryonal stem (ES) cells. We could demonstrate that its recombination activity was highly dependent on RU 486. Since the RU 486 doses required to activate recombination were considerably lower than doses displaying anti-progesterone effects in mice, this system could be used as a valuable tool for inducible gene targeting.  相似文献   

7.
8.
The effects of RU 486 on the modulation of LH release by progesterone were investigated in cultured anterior pituitary cells from ovariectomized adult female rats. The inhibitory effect of progesterone on LH secretion was demonstrable in estrogen-treated pituitary cells, in which addition of 10(-6) M progesterone to cells cultured in the presence of 10(-9) M estradiol for 52 h reduced the LH response to GnRH (10(-11) to 10(-7) M). When RU 486 was superimposed upon such combined treatment with estradiol and progesterone, the suppressive effect of progesterone on GnRH-induced LH release was completely abolished. The converse (facilitatory) effect of progesterone on LH secretion was observed in pituitary cells pretreated with 10(-9) M estradiol for 48 h and then with 10(-6) M progesterone for 4 h. When RU 486 was added together with progesterone during the 4 h treatment period, the facilitatory effect of progesterone was blocked and LH release fell to below the corresponding control value. The direct effect of RU 486 on LH secretion in the absence of exogenous progesterone was evaluated in cells cultured in the absence or presence of 10(-9) M estradiol and then treated for 4 to 24 h with increasing concentrations of RU 486 (10(-12) to 10(-5) M) and stimulated with GnRH (10(-9) M) during the last 3 h of incubation. In estrogen-deficient cultures, 4 h exposure to RU 486 concentrations of 10(-6) M and above decreased the LH response to GnRH by up to 50%. In cultures pretreated with 10(-9) M estradiol, GnRH-stimulated LH responses was inhibited by much lower RU 486 concentrations, of 10(-9) M and above. After 24 h of incubation the effects of RU 486 were similar in control and estradiol-pretreated pituitary cell cultures. Thus, RU 486 alone has a significant inhibitory effect on LH secretion that is enhanced in the presence of estrogen. The antiprogestin is also a potent antagonist of both the inhibitory and the facilitatory actions of progesterone upon pituitary gonadotropin release in vitro.  相似文献   

9.
C Hurd  V K Moudgil 《Biochemistry》1988,27(10):3618-3623
We have examined and compared the binding characteristics of the progesterone agonist R5020 [promegestone, 17,21-dimethylpregna-4,9(10)-diene-3,20-dione] and the progesterone antagonist RU486 [mifepristone, 17 beta-hydroxy-11 beta-[4-(dimethylamino) phenyl]-17 alpha-(prop-1-ynyl)-estra-4,9-dien-3-one] in calf uterine cytosol. Both steroids bound cytosol macromolecule(s) with high affinity, exhibiting Kd values of 5.6 and 3.6 nM for R5020 and RU486 binding, respectively. The binding of the steroids to the macromolecule(s) was rapid at 4 degrees C, showing saturation of binding sites at 1-2 h for [3H]progesterone and 2-4 h for both [3H]R5020 and [3H]RU486. Addition of molybdate and glycerol to cytosol increased the extent of [3H]R5020 binding. The extent of [3H]RU486 binding remained unchanged in the presence of molybdate, whereas glycerol had an inhibitory effect. Molybdate alone or in combination with glycerol stabilized the [3H]R5020- and [3H]RU486-receptor complexes at 37 degrees C. Although the rate of association of [3H]RU486 with the cytosolic macromolecule was slower than that of [3H]R5020, its dissociation from the ligand-macromolecule complex was significantly slower than [3H]R5020. Competitive steroid binding analysis revealed that [3H]progesterone, [3H]R5020, and [3H]RU486 compete for the same site(s) in the uterine cytosol, suggesting that all three bind to the progesterone receptor (PR). Sedimentation rate analysis showed that both steroids were bound to a molecule that sediments in the 8S region. The 8S [3H]R5020 and [3H]RU486 peaks were abolished by excess radioinert progesterone, RU486, or R5020.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The role of progesterone in the regulation of the preovulatory surge in gonadotropins and ovulation was examined in this study by use of a potent antagonist of progesterone, RU 486 (17 beta-hydroxy-11 beta-[4-dimethyl-aminophenyl]-17 alpha- [prop-1-ynyl]estra-4,9-diene-3-one). The immature rat primed with pregnant mare's serum gonadotropin (PMSG) and the cycling adult animal were the models used to verify the role of progesterone. When RU 486 (200 micrograms/rat) was given as a single dose on the morning of proestrus, there was a significant reduction in the preovulatory surge levels of gonadotropins and ovulation in both animal models. Serum progesterone levels in both models at the time of death on the evening of proestrus were unaltered upon treatment with RU 486. RU 486 did not have any effect on gonadotropin levels in immature rats 7 days after castration. These results show that the actin of RU 486 on the preovulatory gonadotropin surge is due to an antagonism of the action of progesterone on the hypothalamic-pituitary axis. Thus, a role for progesterone in modulating the preovulatory surge of gonadotropins and, consequently, ovulation is strongly suggested.  相似文献   

11.
Ovarian cells of pregnant rats were cultured with synthetic progestins (R5020, R2323), dexamethasone and RU486. Progesterone and 20 alpha-hydroxy-pregn-4-en-3-one (20 alpha-dihydroprogesterone) in the medium were measured by specific radioimmunoassay. Both R5020 and R2323 increased concentrations of these intrinsic progestins. RU486 decreased concentrations of progesterone, however, the addition of R5020 or R2323 counteracted this action. Immature hypophysectomized rats treated with pregnant mare serum gonadotropin (PMS) and human chorionic gonadotropin (hCG) were administered with RU486; the serum levels of progesterone and 20 alpha-dihydroprogesterone tended to decrease. R5020 and R2323 inhibited the effect of 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD), whereas RU486 did not. Inhibition of the cholesterol side chain cleavage enzyme (CSCC) by RU486 was more marked than that by R5020 or R2323. These results show that RU486 decreases progesterone synthesis in cultured ovarian cells. A part of the mechanism may involve an inhibition of CSCC.  相似文献   

12.
13.
In the absence of progesterone (P), the anti-P at the receptor RU486 reduces basal and GnRH-stimulated LH secretion both in vivo and in vitro, demonstrating the existence of a ligand-independent activation of progesterone receptor (LIAPR). The aim of the present study was to determine which component of the intracellular LH secretory pathway activated by GnRH is responsible for LIAPR. To do this, anterior pituitary dispersed cells from female rats in proestrus, cultured in the presence of 17beta-estradiol, were incubated with activators or inhibitors of PKC, cAMP-PKA signalling pathways or intracellular calcium (Ca2+) traffic, in the presence or absence of RU486. Results showed that RU486 reduced both GnRH- and the PKC activator PMA-induced LH secretion. In GnRH-stimulated cells incubated with the PKC inhibitor BIS-I or treated with PMA "overnight", RU486 had no effect on reduced LH secretion, nor on stimulated LH secretion elicited by the Ca2+ ionophore ionomycin. Moreover, when GnRH- or PMA-treated cells were co-incubated with 1 microM of the L-type Ca2+ channel blocker nifedipine or the intracellular Ca2+ chelator BAPTA-AM, RU486 potentiated the expected inhibition of these drugs on LH secretion. Activation (forskolin, 8-Br-cAMP) or inhibition (MDL-12,330A) of the cAMP-PKA signalling cascade affected neither the GnRH- and PMA-induced increase of LH secretion nor the reduction of LH secretion due to RU486. Taken together, the data point to the existence of a Ca2+ -independent PKC-PR cross-talk mechanism as part of the intracellular signalling of GnRH-stimulated LH secretion.  相似文献   

14.
We previously reported, using a coimmunoprecipitation assay, that the B form (PR-B) of the human progesterone receptor from T47D human breast cancer cells dimerizes in solution with the A receptor (PR-A) and that the extent of dimerization correlates with receptor binding activity for specific DNA sequences [DeMarzo, A.M., Beck, C.A., O?ate, S.A., & Edwards, D.P. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 72-76]. This suggested that solution dimerization is an intermediate step in the receptor activation process. The present study has tested the effects of the progesterone antagonist RU486 on solution dimerization of progesterone receptors (PR). As determined by the coimmunoprecipitation assay, RU486 binding did not impair dimerization of receptors; rather, the antagonist promoted more efficient solution dimerization than the progestin agonist R5020. This enhanced receptor dimerization correlated with a higher DNA binding activity for transformed receptors bound with RU486. RU486 has been shown previously to produce two other alterations in the human PR when compared with R5020. PR-RU486 complexes in solution exhibit a faster sedimentation rate (6 S) on salt-containing sucrose density gradients than PR-R5020 complexes (4 S), and PR-DNA complexes have a faster electrophoretic mobility on gel-shift assays in the presence of RU486. We presently show that the 6 S PR-RU486 complex is a receptor monomer, not a dimer. The increased sedimentation rate and increased mobility on gel-shift assays promoted by RU486 were also observed with recombinant PR-A and PR-B separately expressed in insect cells from baculovirus vectors. These results suggest that RU486 induces a distinct conformational change both in PR monomers in solution and in dimers bound to DNA. We also examined whether conformational changes in PR induced by RU486 would prevent a PR polypeptide bound to RU486 from heterodimerization with another PR polypeptide bound to R5020. To evaluate this, PR-A and PR-B that were separately bound to R5020 or RU486 in whole cells were mixed in vitro. PR-A-RU486 was capable of dimerization with PR-B-R5020, and this was demonstrated for heterodimers both formed in solution and bound to specific DNA. The capability to form heterodimers in vitro raises the possibility that the antagonist action of RU486 in vivo could in part be imposed in a dominant negative fashion through heterodimerization between one receptor subunit bound to an agonist and another bound to RU486.  相似文献   

15.
RU486 is a recently described antiprogesterone. In order to be able to understand its mechanism of action it is necessary to analyze its effect on a discrete gene product. We show here that the induction of uteroglobin mRNA by progesterone in the rabbit endometrium may be a suitable model for such studies since RU486 totally inhibits this effect without itself exerting any agonistic activity. Moreover, RU486, which does not bind to the estrogen receptor and is devoid of general antiestrogenic activity, partially inhibits the induction by estradiol of uteroglobin mRNA. Studies of the interaction between [3H]RU486 and the progesterone receptor have been undertaken with the aim of understanding the antagonistic effect of this compound. The binding to DNA-cellulose of heat-activated [3H]RU486-receptor complexes was slightly decreased (37%) when compared with that of the agonist [3H]R5020-receptor complexes (47%). Detailed analysis of this difference showed that it was due to both a decreased activation of complexes and to a diminished affinity of activated complexes towards DNA. The change in activation was shown by the fact that at high concentrations of DNA, where all activated complexes are bound, agonist-receptor complexes were bound to DNA in higher proportion than antagonist-receptor complexes. Moreover a difference was also observed when studying the binding of agonist-receptor and antagonist-receptor complexes to charged resins (phosphocellulose, DEAE-cellulose) which are known to discriminate between activated and non-activated complexes. Decreased affinity to DNA of antagonist-receptor complexes was shown by studying their binding at various concentrations of DNA, either in crude cytosol or after isolating a homogenous population of activated-receptor complexes by DNA-cellulose chromatography and by comparing the salt extraction from DNA-cellulose of agonist-receptor and antagonist-receptor complexes. Both effects (decreased activation and diminished affinity towards DNA) were relatively moderate and could account only for a small decrease in the agonistic activity of RU486. Thus, the fact that this compound is a complete antagonist without any agonistic activity can only be explained by a defect in some further step of hormone action as, for instance in the specific interaction with the regulatory regions of the uteroglobin gene. No immunological difference could be detected between [3H]R5020-receptor and [3H]RU486-receptor complexes, both interacted with the five monoclonal antibodies raised against purified R5020-receptor complexes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Effect of RU 486 on luteal function in the early pregnant rat   总被引:1,自引:0,他引:1  
A dose of 30 mg RU 486/kg, an antiprogesterone, was administered to pregnant rats on Day 2 (Group 1) or Day 4 (Group 2) of pregnancy. RU 486 significantly changed serum progesterone and oestradiol concentrations and luteal 3 beta-HSD and 20 alpha-HSD activities in Group 1, and implantation was significantly inhibited. The luteal 3 beta-HSD activity in Group 2 rats on Day 6 was significantly (P less than 0.01) lower than the control value (7.5 +/- 0.6 and 10.1 +/- 0.6 mU/mg protein respectively). This decline in the 3 beta-HSD activity was followed by a marked decrease in the serum progesterone concentration, resulting in a significant decrease of the progesterone/oestradiol ratio and implantation was completely inhibited. The 20 alpha-HSD activity, which could not be detected on Day 6 in the control rats, was twice as great in Group 2 than in Group 1 rats (17.5 +/- 1.2 and 7.4 +/- 3.1 mU/mg protein respectively). Ultrastructural examination of corpora lutea of Group 2 rats confirmed luteolysis. These results suggest that RU 486 has a luteolytic effect and its anti-implantation effect is concomitant with luteolysis of the corpora lutea of pregnancy.  相似文献   

17.
Pharmacokinetics and metabolism of RU 486   总被引:4,自引:0,他引:4  
The effects of dose on the initial pharmacokinetics and metabolism of an antiprogesterone steroid RU 486 (mifepristone) were studied in healthy female volunteers after administration of RU 486 as a single dose of 50-800 mg. The concentrations of RU 486 and its monodemethylated, dimethylated and hydroxylated non-demethylated metabolites were measured specifically after Chromosorb-column chromatography by HPLC. Their relative binding affinities to the human uterine progesterone receptor were also determined. Micromolar concentrations of the parent compound in blood were reached within the first hour after oral administration. The pharmacokinetics of RU 486 followed two distinct patterns in a dose-dependent fashion. With a low dose of 50 mg the pharmacokinetics followed an open two-compartment model with a half-life of over 27 h. With the doses of 100-800 mg the initial redistribution phase of 6-10 h was followed by zero-order kinetics up to 24 h or more. Importantly, after ingestion of doses higher than 100 mg of RU 486 there were no significant differences in plasma concentrations of RU 486 within the first 48 h, with the exception of plasma RU 486 concentrations at 2 h. After single oral administration of 200 mg unchanged RU 486 was found 10 days later in two subjects. The elimination phase half-life with this dose, calculated between day 5 and 6, was 24 h. Micromolar concentrations of monodemethylated, didemethylated and non-demethylated hydroxylated metabolites were measured within 1 h after oral administration of RU 486. In contrast to plasma RU 486 concentrations, circulating plasma concentrations of metabolites increased in a dose-dependent fashion. With higher doses the metabolite concentrations were close to, or even in excess to the parent compound. The relative binding affinities of RU 486, monodemethylated, didemethylated and hydroxylated metabolites (progesterone = 100%) to the human progesterone receptor were 232, 50, 21, and 36, respectively. The existence of a high affinity-limited capacity serum binding protein would explain the long half-life and the observed diverging dose-dependent pharmacokinetics. The extravasation of RU 486 after the saturation of serum binding sites would explain the blunted serum peak concentrations of RU 486 with higher doses. The return of the drug back to circulation thereafter explains the zero-order kinetics. High concentrations of circulating metabolites capable of binding to the progesterone receptor suggest a significant contribution of these steroids in the overall antiprogestational action.  相似文献   

18.
A steroid binding protein (Mr = 110,000) has previously been identified in the plasma membrane of Xenopus laevis oocytes by photoaffinity labeling with [3H]R5020. In order to further characterize this steroid receptor, the photoaffinity labeled receptor protein was solubilized with 0.1% Brij 35. The solubilized labeled receptor yielded an approximate mol. wt of 102,000 +/- 2,000 by sucrose density gradient centrifugation, suggesting that the solubilized receptor exists as a monomer. RU 486, a synthetic progestin antagonist for mammalian cytosolic receptor systems, inhibited up to 70% of [3H] R5020 photoaffinity binding to the 110,000-Dalton receptor with an IC50 of 5 microM and induced germinal vesicle breakdown (GVBD) with an EC50 of 9.0 +/- 0.6 microM. GVBD induced by RU 486 was slower than with progesterone, and RU 486 was less powerful than progesterone. Micromolar concentrations of RU 486 also potentiated GVBD induced by sub-optimal concentrations of progesterone or R5020. Furthermore, RU 486 inhibited oocyte plasma membrane adenylate cyclase with an apparent IC50 of 7.5 +/- 2.5 microM. The close correlation of the EC50 value for RU 486 induction of GVBD with the IC50 values for inhibition of [3H]R5020 photoaffinity labeling of the 110,000-Dalton receptor and inhibition of adenylate cyclase activity further supports the physiological significance of the oocyte plasma membrane steroid receptor.  相似文献   

19.
Progesterone and several progesterone metabolites are capable of inhibiting uterine contractility. Some progesterone metabolites have shown little or no affinity for the progesterone receptor but have been found to be potent modulators of the GABAA receptor system. This study examined whether the inhibition of uterine contraction by progesterone and its metabolites was progesterone receptor-mediated or gamma amino butyric acidA (GABAA) receptor-mediated. Uterine contractions were measured in annular rings of uterine tissue, 5 mm in length, from diestrous II rats, under a fixed tension of 1 gram. The steroids tested were 3 beta-hydroxy-5 beta-pregnan-20-one (6 micrograms/ml), 5 beta-pregnane-3,20-dione (10 micrograms/ml), 3 alpha-hydroxy-5 alpha-pregnan- 20-one (3 alpha,5 alpha-THP, 27.5 micrograms/ml), and progesterone (40 micrograms/ml). All compounds significantly inhibited spontaneous uterine contractions when compared to controls. No effect was seen by either 16 micrograms/ml of the progesterone antagonist, RU486, or 32 micrograms/ml of the GABAA antagonist, pictrotoxin, when administered alone. However, when uterine tissues were exposed to a combination of the steroid and the antagonist, the effect of 3 beta-hydroxy-5 beta-pregnan-20-one and 3 alpha,5 alpha-THP was blocked by picrotoxin but not by RU486, indicating that the action of these steroids was mediated through the GABAA system. The effect of 5 beta-pregnane-3,20-dione and progesterone was effectively blocked by RU486 but not by picrotoxin, suggesting that their actions were mediated through the progesterone receptor system. These results indicate that multiple mechanisms exist in the uterus for inhibiting uterine contractility by progesterone and its metabolites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号