首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The copolymeric structure of dermatan sulfate chains synthesized by skin fibroblasts has been examined. Chains initiated onto exogeneousp-nitrophenyl--D-xylopyranoside or attached to protein in a large proteoglycan, PG-L, and two small proteoglycans, PG-S1 and PG-S2, have been compared by using high resolution electrophoresis and gel chromatography of oligosaccharides generated by specific enzymatic or chemical degradations. The results confirm that chains attached to PG-L are glucuronate-rich, whereas novel findings indicate that chains attached to either of the two PG-S variants yield closely similar oligosaccharide maps, have approximately equal glucuronate and iduronate content and contain over 90% 4-sulfated disaccharide repeating units. Dermatan sulfate chains built onto xyloside at concentrations of 50 µm and below have a copolymeric structure similar to that of chains from the two PG-S variants. These findings indicate that the polymer-modifying machinery can generate chains with extended iduronate-containing repeats also when the xylose primer is not linked to core protein.  相似文献   

2.
Dermatan sulfate proteoglycans were isolated from adult bovine sclera and adult bovine articular cartilage. Their immunological relationships were studied by enzyme-linked immunosorbent assays using polyclonal antibodies raised against the large and small dermatan sulfate proteoglycans from sclera and a polyclonal and monoclonal antibody directed against the small dermatan sulfate proteoglycans from cartilage. The small dermatan sulfate proteoglycans from sclera and cartilage displayed immunological cross-reactivity while there was no convincing evidence of shared epitope(s) with the larger dermatan sulfate proteoglycans, nor did these larger proteoglycans share any common epitopes with each other. A hyaluronic acid binding region was detected immunologically on the larger scleral dermatan sulfate proteoglycan but was absent from the larger dermatan sulfate proteoglycan of cartilage and both the small dermatan sulfate proteoglycans. These antibodies were used in immunofluorescence microscopy to localize the scleral proteoglycans and molecules containing these epitopes in the eye. The large scleral dermatan sulfate proteoglycan was restricted to sclera while molecules related to the small scleral and cartilage proteoglycans were found in the sclera, anterior uveal tract, iris, and cornea. Amino acid sequencing of the amino-terminal regions of the core proteins of the small dermatan sulfate proteoglycans from sclera and articular cartilage showed that all the first 14 amino acids analyzed were identical and the same as reported earlier for the small bovine skin and tendon dermatan sulfate proteoglycans. These studies demonstrate that the larger dermatan sulfate proteoglycans of sclera and cartilage are chemically unrelated to each other and to the smaller dermatan sulfate proteoglycans isolated from these tissues. The latter have closely related core proteins and probably represent a molecule with a widespread distribution in which the degree of epimerization of glucuronic acid and iduronic acid varies between tissues.  相似文献   

3.
6B6 is a monoclonal antibody raised against a purified small dermatan sulfate proteoglycan from human ovarian fibroma capsule, has Although it been widely used as an anti-decorin monoclonal antibody, its epitope has not yet been characterized at the molecular level. Here, we show that 6B6 is specific to decorin. The antibody recognized human, mouse, and bovine decorin core protein, but not biglycan. Using recombinant decorin domains, we determined that the epitope lies within the region of amino acid residues 50-65, termed the cysteine cluster region. Cross-reactivity among species further narrowed it down to a primary sequence of residues 57-65. We also established the conditions for immunostaining. 6B6 stained both frozen and fixed sections. Whereas the glycosaminoglycan chain of decorin inhibited access of the antibody in immunoblotting, pretreatment of tissue sections with chondrotinase ABC did not affect the intensity of staining, suggesting that the glycosaminoglycan chain is integrated and the Cys cluster region oriented outside of the collagen fibrils in the tissue. When 6B6 was applied to enzyme-linked immunosorbent assay, a concentration as low as 0.5 microg/ml of decorin was detectable by either direct or sandwich ELISA. 6B6 is thus a sensitive and reliable antibody to study functions of decorin from various aspects.  相似文献   

4.
A chondroitin sulfate - dermatan sulfate proteoglycan was isolated from bovine aorta intima by extraction of the tissue by 4 M guanidine hydrochloride. The proteoglycan was purified by CsCl isopycnic centrifugation followed by gel filtration and ion-exchange chromatography. The proteoglycan had 21.9% protein, 22.1% uronate, 21.4% hexosamine and 10.8% sulfate. Glycosaminoglycan chains obtained from the proteoglycan by β-elimination were resolved by gel filtration into two fractions, one containing chondroitin 6-sulfate with an approximate molecular weight of 49 000 and the other containing chondroitin 4-sulfate and dermatan sulfate in a proportion of 2:1 with an approximate molecular weight of 37 000. Digestion of the proteoglycan by chondroitinase ABC or AC yielded a protein core with similar composition and behavior in gel filtration and SDS-polyacrylamide gel electrophoresis. An approximate molecular weight of 180 000 was estimated for the core protein. Dermatan sulfate chains with an approximate molecular weight of 10 000 were observed only in the digest of chondroitinase AC. Limited trypsin hydrolysis of the proteoglycan yielded three peptide fragments containing chondroitin 6-sulfate, chondroitin 4-sulfate and dermatan sulfate in varied proportions. A tentative structure for the proteoglycan was suggested.  相似文献   

5.
Collagen XIV, a fibril-associated collagen with interrupted triple helices, is expressed in differentiated soft connective tissues and in cartilage. However, a cellular receptor for this protein has not been identified. Here we show that human placental collagen XIV, isolated by a mild and simple two-step method, serves as adhesive protein for a variety of mesenchymal and some epithelial cells. Cell adhesion could be inhibited by preincubation of the collagen XIV substrate with heparin or with the chondroitin/dermatan sulfate proteoglycan decorin and by pretreatment of cells with chondroitinase ABC or heparinase III, suggesting a cell membrane proteoglycan as receptor. Affinity chromatography of125I-labeled fibroblast cell surface proteins on collagen XIV–Sepharose yielded a chondroitin/dermatan sulfate proteoglycan with a molecular mass of 97–105 kDa after chondroitinase ABC digestion and of 60–70 kDa after further treatment withN-glycosidase F. The eluates contained also some high-molecular-weight material that was susceptible to digestion with heparinase but no detectable integrins. Immunoprecipitation with a specific monoclonal antibody identified the prominent chondroitin/dermatan sulfate proteoglycan as a member of the CD44 family. The interaction between collagen XIV and cells appears to be finely tuned, since matrix-associated glycosaminoglycans, and particularly proteoglycans like decorin, could compete with cells for the binding site(s) on collagen XIV under physiological conditions.  相似文献   

6.
A chondroitin sulfate-dermatan sulfate proteoglycan was isolated from bovine aorta intima by extraction of the tissue by 4 M guanidine hydrochloride. The proteoglycan was purified by CsCl isopycnic centrifugation followed by gel filtration and ion-exchange chromatography. The proteoglycan had 21.9% protein, 22.1% uronate, 21.4% hexosamine and 10.8% sulfate. Glycosaminoglycan chains obtained from the proteoglycan by beta-elimination were resolved by gel filtration into two fractions, one containing chondroitin 6-sulfate with an approximate molecular weight of 49 000 and the other containing chondroitin 4-sulfate and dermatan sulfate in a proportion of 2:1 with an approximate molecular weight of 37 000. Digestion of the proteoglycan by chondroitinase ABC or AC yielded a protein core with similar composition and behavior in gel filtration and SDS-polyacrylamide gel electrophoresis. An approximate molecular weight of 180 000 was estimated for the core protein. Dermatan sulfate chains with an approximate molecular weight of 10 000 were observed only in the digest of chondroitinase AC. Limited trypsin hydrolysis of the proteoglycan yielded three peptide fragments containing chondroitin 6-sulfate, chondroitin 4-sulfate and dermatan sulfate in varied proportions. A tentative structure for the proteoglycan was suggested.  相似文献   

7.
Heparan sulphate and chondroitin/dermatan sulphate proteoglycans of human skin fibroblasts were isolated and separated after metabolic labelling for 48 h with 35SO4(2-) and/or [3H]leucine. The proteoglycans were obtained from the culture medium, from a detergent extract of the cells and from the remaining ''matrix'', and purified by using density-gradient centrifugation, gel and ion-exchange chromatography. The core proteins of the various proteoglycans were identified by electrophoresis in SDS after enzymic removal of the glycosaminoglycan side chains. Skin fibroblasts produce a number of heparan sulphate proteoglycans, with core proteins of apparent molecular masses 350, 250, 130, 90, 70, 45 and possibly 35 kDa. The major proteoglycan is that with the largest core, and it is principally located in the matrix. A novel proteoglycan with a 250 kDa core is almost entirely secreted or shed into the culture medium. Two exclusively cell-associated proteoglycans with 90 kDa core proteins, one with heparan sulphate and another novel one with chondroitin/dermatan sulphate, were also identified. The heparan sulphate proteoglycan with the 70 kDa core was found both in the cell layer and in the medium. In a previous study [Fransson, Carlstedt, Cöster & Malmström (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 5657-5661] it was suggested that skin fibroblasts produce a proteoglycan form of the transferrin receptor. However, the core protein of the major heparan sulphate proteoglycan now purified does not resemble this receptor, nor does it bind transferrin. The principal secreted proteoglycans are the previously described large chondroitin sulphate proteoglycan (PG-L) and the small dermatan sulphate proteoglycans (PG-S1 and PG-S2).  相似文献   

8.
Myofibroblasts play an important role in fibrogenesis. Myofibroblasts secrete several components of the extracellular matrix, including decorin. To clarify the properties of decorin synthesized by myofibroblasts, we have purified and characterized decorin secreted into culture medium by the myofibroblast cell line MRC-5. Decorin was purified by successive chromatography steps using Hitrap Q and Superdex 200. Purified decorin showed a broad band on SDS-polyacrylamide gel electrophoresis, which was resolved into two smaller molecular weight bands after digestion with chondroitinase ABC. Further digestion with N-glycanase resolved these two bands into a single band, indicating that the N-glycation pattern of decorin is heterogeneous. The N-terminal amino acid sequence analysis of the purified protein and its reactivity towards an antibody raised against a C-terminal peptide of decorin indicate that MRC-5 cells secrete full-length decorin into the culture medium. To characterize the glycosaminoglycan chains attached to decorin, glycosaminoglycans from the purified protein were treated with chondroitinase ACI, chondroitinase ACII, chondroitinase ABC and chondroitinase B. The resulting disaccharides were analyzed by chromatography, which indicated that decorin secreted by MRC-5 cells is a dermatan sulfate proteoglycan. In conclusion, the decorin secreted by MRC-5 cells has similar characteristics to the decorin expressed in several tissues. Thus, culturing MRC-5 cells may be highly useful for studying the role of decorin and myofibroblasts in fibrosis.  相似文献   

9.
Monospecific antibodies to bovine nasal cartilage proteoglycan monomer and link protein were used to demonstrate that immunologically related molecules are present in the bovine eye and associated tissues. With immunofluorescence microscopy, reactions for both proteoglycan and link protein were observed in the sclera, the anterior uveal tract, and the endoneurium of the optic nerve of the central nervous system. Antibody to bovine nasal cartilage proteoglycan also reacted with some connective tissue sheaths of rectus muscle and the perineurium of the optic nerve of the central nervous system. Antibody to proteoglycan purified from rat brain cross-reacted with bovine nasal cartilage proteoglycan, indicating structural similarities between these proteoglycans. ELISA studies and crossed immunoelectrophoresis demonstrated that purified dermatan sulphate proteoglycans isolated from bovine sclera did not react with these antibodies but that the antibody to cartilage proteoglycan reacted with other molecules extracted from sclera. Two molecular species resembling bovine nasal link protein in size and reactivity with antibody were also demonstrated in scleral extracts: the larger molecule was more common. Antibody to link protein reacted with the media of arterial vessels demonstrating the localization of arterial link protein described earlier. Tissues that were unstained for either molecule included the connective tissue stroma of the iris, retina, vitreous body, cornea, and the remainder of the uveal tract. These observations clearly demonstrate that tissues other than cartilage contain molecules that are immunologically related to cartilage-derived proteoglycans and link proteins.  相似文献   

10.
Two species of dermatan sulfate proteoglycans, called DS-PGI and DS-PGII, have been isolated from mature bovine articular cartilages. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis at low ionic strength in 0.01 M phosphate the dermatan sulfate proteoglycans appeared as a single polydisperse species whose molecular weight ranged from 80,000 to 140,000. The dermatan sulfate proteoglycans eluted as a single peak on Sepharose CL-4B chromatography in 4 M guanidine hydrochloride and showed no tendency to separate into two components. Following chondroitinase AC and ABC digestion, a core protein was obtained whose molecular weight was 45,000. However, what appeared to be a single dermatan sulfate proteoglycan was consistently separated into two species of distinctly different mobilities by sodium dodecyl sulfate-polyacrylamide gel electrophoresis at high ionic strength in 0.375 M Tris. The molecular weight of the smaller species (DS-PGII) ranged from 87,000 to 120,000. The molecular weight of the larger species (DS-PGI) ranged from 165,000 to 285,000. DS-PGI self-associates in 0.375 M Tris, while DS-PGII does not. This phenomenon was exploited to separate DS-PGI and DS-PGII by preparative electrophoresis on 5 to 20% gradient slab gels. The immunological identities of the individual species, DS-PGI and DS-PGII, were examined by enzyme-linked immunosorbent assay using polyclonal antiserum to cartilage-specific proteoglycan monomer from bovine articular cartilage and polyclonal and monoclonal antibodies to DS-PGII. The polyclonal antiserum to cartilage-specific proteoglycan monomer did not react with DS-PGI or DS-PGII, indicating that DS-PGI and DS-PGII possess different core proteins from cartilage-specific proteoglycan monomer. Polyclonal and monoclonal antibodies raised against the mixture of DS-PGI and DS-PGII reacted strongly with DS-PGII, but weakly or not at all with DS-PGI. These results suggest that DS-PGI and DS-PGII possess different core proteins and may represent two different species of dermatan sulfate proteoglycans.  相似文献   

11.
Studies have been initiated to identify various cell surface and matrix components of normal human skin through the production and characterization of murine monoclonal antibodies. One such antibody, termed PG-4, identifies both cell surface and matrix antigens in extracts of human foetal and adult skin as the dermatan sulfate proteoglycans, decorin and biglycan, and the chondroitin sulfate proteoglycan versican. Treatment of proteoglycans with chondroitinases completely abolishes immunoreactivity for all of these antigens which suggests that the epitope resides within their glycosaminoglycan chains. Further evidence for the carbohydrate nature of the epitope derives from competition studies where protein-free chondroitin sulfate chains from shark cartilage react strongly; however, chondroitin sulfate chains from bovine tracheal cartilage fail to exhibit a significant reactivity, an indication that the epitope, although present in some chondroitin sulfate chains, does not consist of random chondroitin 4- or 6-sulfate disaccharides. The presence of the epitope on dermatan sulfate chains and on decorin was also demonstrated using competition assays. Thus, PG-4 belongs to a class of antibodies that recognize native epitopes located within glycosaminoglycan chains. It differs from previously described antibodies in this class in that it identifies both chondroitin sulfate and dermatan sulfate proteoglycans. These characteristics make PG-4 a useful monoclonal antibody probe to identify the total population of proteoglycans in human skin.  相似文献   

12.
The biosynthesis of interstitial collagens (types I and III) and proteoglycans was studied in fibroblasts isolated from the parietal layer of bovine pericardium. Confluent cultures were labeled with Na2 35SO4 for proteoglycans or 14C-proline for collagens. The proteoglycans synthesized by pericardial fibroblasts were purified by DEAE-Sephacel chromatography and further fractionated into three components by gelfilitration. Two minor high molecular weight proteoglycans were shown by SDS-PAGE to be resistant to chondroitinase ABC and AC, and partially degraded by nitrous acid. The major, low molecular weight proteoglycan had a core protein of 45 kDa and is considered to be a dermatan sulfate/chondroitin sulfate proteoglycan since it was resistant to nitrous acid, but digested partially by chondroitinase AC and completely by ABC. The pericardial fibroblasts synthesized predominantly type I collagen and low amounts (about 10%) of type III collagen which was detected by delayed reduction on SDS-PAGE. The data show that pericardial fibroblasts synthesize the same macromolecules that can be extracted from the intact tissue and suggest that the proteoglycan may play a structural as well as physiological role.  相似文献   

13.
Human embryonic skin fibroblasts were pretreated with transforming growth factor-beta (TGF-beta) for 6 h and then labeled with [35S]sulphate and [3H]leucine for 24 h. Radiolabeled proteoglycans from the culture medium and the cell layer were isolated and separated by isopycnic density-gradient centrifugation, followed by gel, ion-exchange and hydrophobic-interaction chromatography. The major proteoglycan species were examined by polyacrylamide gel electrophoresis in sodium dodecyl sulphate before and after enzymatic degradation of the polysaccharide chains. The results showed that TGF-beta increased the production of several different 35S-labelled proteoglycans. A large chondroitin/dermatan sulphate proteoglycan (with core proteins of approximately 400-500 kDa) increased 5-7-fold and a small dermatan sulphate proteoglycan (PG-S1, also termed biglycan, with a core protein of 43 kDa) increased 3-4-fold both in the medium and in the cell layer. Only a small effect was observed on another dermatan sulphate proteoglycan, PG-S2 (also named decorin). These observations are generally in agreement with results of other studies using similar cell types. In addition, we have found that the major heparan sulphate proteoglycan of the cell layer (protein core approximately 350 kDa) was increased by TGF-beta treatment, whereas all the other smaller heparan sulphate proteoglycans with protein cores from 250 kDa to 30 kDa appeared unaffected. To investigate whether TGF-beta also influences the glycosaminoglycan (GAG) chain-synthesizing machinery, we also characterized GAGs derived from proteoglycans synthesized by TGF-beta-treated cells. There was generally no increase in the size of the GAG chains. However, the dermatan sulphate chains on biglycan and decorin from TGF-beta treated cultures contained a larger proportion of D-glucuronosyl residues than those derived from untreated cultures. No effect was noted on the 4- and 6-sulphation of the GAG chains. By the use of p-nitrophenyl beta-D-xyloside (an initiator of GAG synthesis) it could be demonstrated that chain synthesis was also enhanced in TGF-beta-treated cells (approximately twofold). Furthermore, the dermatan sulphate chains synthesized on the xyloside in TGF-beta-treated fibroblasts contained a larger proportion of D-glucuronosyl residues than those of the control. These novel findings indicate that TGF-beta affects proteoglycan synthesis both quantitatively and qualitatively and that it can also change the copolymeric structure of the GAG by affecting the GAG-synthesizing machinery. Altered proteoglycan structure and production may have profound effects on the properties of extracellular matrices, which can affect cell growth and migration as well as organisation of matrix fibres.  相似文献   

14.
Monoclonal antibodies were raised against proteoglycan core protein isolated after chondroitinase ABC digestion of human articular cartilage proteoglycan monomer. Characterization of one of the monoclonal antibodies (1/20/5-D-4) indicated that it specifically recognized an antigenic determinant in the polysaccharide structure of both corneal and skeletal keratan sulfate. Enzyme immunoassay analyses indicated that the mouse monoclonal IgG1 recognized keratan sulfate in native proteoglycan aggregate and proteoglycan monomer preparations isolated from hyaline cartilages of a wide variety of animal species (human, monkey, cow, sheep, chicken, and shark cartilage). The 1/20/5-D-4 monoclonal antibody did not recognize antigenic determinants on proteoglycan isolated from Swarm rat chondrosarcoma. This finding is consistent with several biochemical analyses showing the absence of keratan sulfate in proteoglycan synthesised by this tissue. A variety of substructures isolated after selective cleavage of bovine nasal cartilage proteoglycan (Heineg?rd, D., and Axelsson, J. (1977) J. Biol. Chem. 252, 1971-1979) were used as competing antigens in radioimmunoassays to characterize the specificity of the 1/20/5-D-4 immunoglobulin. Substructures derived from the keratan sulfate attachment region of the proteoglycan (keratan sulfate peptides) showed the strongest inhibition. Both corneal and skeletal keratan sulfate peptides as competing antigens in radioimmunoassays showed similar inhibition when compared on the basis of their glucosamine content. Therefore, the 1/20/5-D-4 monoclonal antibody appears to recognize a common determinant in their polysaccharide moieties. Chemical desulfation of the keratan sulfate reduced the antigenicity of the glycosaminoglycan. The antibody did not recognize determinants present in dermatan sulfate, heparin, heparin sulfate, or hyaluronic acid.  相似文献   

15.
16.
The size and immunological reactivity of the primary gene products of a small non-aggregating dermatan sulfate proteoglycan from bovine and monkey arterial smooth muscle cells were examined after cell-free translation of mRNA. Antisera against the dermatan sulfate proteoglycans from bovine articular cartilage, DSPG II [Rosenberg et al. J. Biol. Chem. 260, 6304 (1985)] and human skin fibroblasts [Glossl et al. J. Biol. Chem. 259, 14144 (1984)] were used to show that the unmodified smooth muscle precursor core protein was immunologically related to both the cartilage and fibroblast core proteins. The size of the precursor core proteins within each species was identical regardless of the tissue source. Comparison of the precursor core proteins synthesized by primate and bovine cells revealed that the bovine core proteins were approximately 1500 Da larger than the primate core proteins as determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. A similar size difference was observed when the mature core proteins of monkey smooth muscle cells and bovine articular chondrocytes were compared after removal of the glycosaminoglycan chains. These results indicate that arterial smooth muscle cells synthesize a dermatan sulfate proteoglycan whose core protein is similar to, if not the same as, the cartilage and fibroblast dermatan sulfate proteoglycan core proteins. These core proteins may be encoded by the same gene that has diverged in size during speciation.  相似文献   

17.
Knowledge on fish matrix biology is important to ensure optimal fish -quality, -growth and -health in aquaculture. The aquaculture industry face major challenges related to matrix biology, such as inflammations and malformations. Atlantic cod skeletal muscle was investigated for collagen I, decorin, biglycan, and lumican expression and distribution by real-time PCR, immunohistochemical staining and Western blotting. Immunohistochemical staining and Western immunoblotting were also performed using antibodies against glycosaminoglycan side chains of these proteoglycans, in addition to fibromodulin. Real-time PCR showed highest mRNA expression of lumican and collagen I. Collagen I and proteoglycan immunohistochemical staining revealed distinct thread-like structures in the myocommata, with the exception of fibromodulin, which stained in dense structures embedded in the myocommata. Chondroitinase AC-generated epitopes stained more limited than cABC-generated epitopes, indicating a stronger presence of dermatan sulfate than chondroitin sulfate in cod muscle. Lumican and keratan sulfate distribution patterns were strong and ubiquitous in endomysia and myocommata. Western blots revealed similar SLRPs sizes in cod as are known from mammals. Staining of chondroitin/dermatan sulfate epitopes in Western blots were similar in molecular size to those of decorin and biglycan, whereas staining of keratan sulfate epitopes coincided with expected molecular sizes of lumican and fibromodulin. In conclusion, lumican was a major proteoglycan in cod muscle with ubiquitous distribution overlapping with keratan sulfate. Other leucine-rich proteoglycans were also present in cod muscle, and Western blot using antibodies developed for mammalian species showed cross reactivity with fish, demonstrating similar structures and molecular weights as in mammals.  相似文献   

18.
A 1.6-kb cDNA clone was isolated by screening a library prepared from chick corneal mRNA with a cDNA clone to bovine decorin. The cDNA contained an open reading frame coding for a M(r) 39,683 protein. A 19-amino-acid match with sequence from the N-terminus of core protein from the corneal chondroitin/dermatan sulfate proteoglycan confirmed the clone as a corneal proteoglycan and the homology with human and bovine decorin confirmed its identity as decorin. Structural features of the deduced sequence include a 16-amino-acid signal peptide, a 14-amino-acid propeptide, cysteine residues at the N- and C-terminal regions, and a central leucine-rich region (comprising 63% of the protein) containing nine repeats of the sequence LXXLXLXXNXL/I. Chick decorin contains three variations of this sequence that are tandemly linked to form a unit and three units tandemly linked to form the leucine-rich region. The presence of beta bend amino acids flanking the units may serve to delineate the units as structural elements of the leucine-rich region. Sequence homology within the repeats and the spacing of the repeats suggest that this region arose by duplication. Chick decorin primarily differs from mammalian decorins in the 19-amino-acid sequence that starts the N-terminus of the core protein. Within this region, the serine that serves as a potential acceptor for the chondroitin/dermatan sulfate side chain is preceded by a glycine instead of being followed by a glycine as it is in the mammalian decorins and all other mammalian proteoglycans.  相似文献   

19.
Knowledge of the nature of pericardial connective tissue components is incomplete. To gain a better understanding of the composition of this tissue, bovine parietal pericardium was extracted with 4 M guanidine hydrochloride yielding a proteoglycan-containing protein mixture. This was fractionated by a three-step chromatographic procedure with the resultant purification of a 75-110 Kd proteoglycan. The purified proteoglycan was susceptible to chondroitinase ABC digestion but resistant to chondroitinase AC and nitrous acid degradation suggesting the presence of dermatan sulfate glycosaminoglycan(s). This is the first reported isolation of a proteoglycan from parietal pericardium.  相似文献   

20.
A large Mr chondroitin sulfate proteoglycan was extracted from the media of human aorta under dissociative conditions and purified by density-gradient centrifugation, ion-exchange chromatography, and gel filtration chromatography. Removal of a contaminating dermatan sulfate proteoglycan was accomplished by reduction, alkylation and rechromatography on the gel filtration column. After chondroitinase ABC treatment, the proteoglycan core was separated from a residual heparan sulfate proteoglycan by a third gel filtration chromatography step. As assessed by radioimmunoassay, the isolated proteoglycan core was free of link protein, but possessed epitopes that were recognized by antisera against the hyaluronic acid binding region of bovine cartilage proteoglycan as well as those that were weakly recognized by anti-keratan sulfate antisera. Following beta-elimination of the protein core, the liberated low Mr oligosaccharides were partially resolved by Sephadex G-50 chromatography, and their primary structure was determined by 500-MHz1H NMR spectroscopy in combination with compositional sugar analysis. The N-glycosidic carbohydrate chains, which were obtained as glycopeptides, were all biantennary glycans containing NeuAc and Fuc; microheterogeneity in the NeuAc----Gal linkage was detected in one of the branches. The N-glycosidic glycans have the following overall structure: (Formula: see text). The majority of the O-glycosidic carbohydrate chains bound to the protein core were found to be of the mucin type. They were obtained as glycopeptides and oligosaccharide alditols, and possessed the following structures: NeuAc alpha(2----3)Gal beta(1----3)GalNAc-ol, [NeuAc alpha(2----3)Gal beta(1----3)[NeuAc alpha(2----6)]GalNAc-ol, and NeuAc alpha-(2----3) Gal beta(1----3)[NeuAc alpha(2----3)Gal beta(1----4)GlcNAc beta(1----6)] GalNAc-ol. The remainder of the O-glycosidic carbohydrate chains bound to the isolated proteoglycan were the hexasaccharide link regions of the chondroitin sulfate chains that remained after chondroitinase ABC treatment of the native molecule. These latter glycans, which were obtained as oligosaccharide alditols, had the following structure (with GalNAc free of sulfate or containing sulfate bound at either C-4 or C-6): delta 4,5GlcUA beta(1----3)GalNAc beta(1----4)GlcUA beta(1----3)Gal beta(1----3)Gal beta(1----4)Xyl-ol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号