首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rudrabhatla P  Rajasekharan R 《Biochemistry》2004,43(38):12123-12132
Serine/threonine/tyrosine (STY) protein kinase from peanut is developmentally regulated and is induced by abiotic stresses. In addition, STY protein kinase activity is regulated by tyrosine phosphorylation. Kinetic mechanism of plant dual specificity protein kinases is not studied so far. Recombinant STY protein kinase occurs as a monomer in solution as shown by gel filtration chromatography. The relative phosphorylation rate of kinase against increasing enzyme concentrations follows a first-order kinetics indicating an intramolecular phosphorylation mechanism. Moreover, the active recombinant STY protein kinase could not transphosphorylate a kinase-deficient mutant of STY protein kinase. Molecular docking studies revealed that the tyrosine kinase inhibitors bind the protein kinase at the same region as ATP. STY protein kinase activity was inhibited by the tyrosine kinase inhibitors, and the inhibitor potency series against the recombinant STY protein kinase was tyrphostin > genistein > staurosporine. The inhibition constant (K(i)), and the IC(50) value of STY protein kinase for tyrosine kinase inhibitors with ATP and histone are discussed. All the inhibitors competed with ATP. Genistein was an uncompetitive inhibitor with histone, whereas staurosporine and tyrphostin were linear mixed type noncompetitive inhibitors with histone. Molecular docking and kinetic analysis revealed that Y148F mutant of the "ATP-binding loop" and Y297F mutant of the "activation loop" showed a dramatic increase in K(i) values for genistein and tyrphostin with respect to wild-type STY protein kinase. Data presented here provide the direct evidence on the mechanism of inhibition of plant protein kinases by tyrosine kinase inhibitors. This study also suggests that tyrosine kinase inhibitors may be useful in unraveling the plant tyrosine phosphorylation signaling cascades.  相似文献   

2.
Superoxide production by human neutrophils stimulated with FMLP and soluble aggregated human IgG were inhibited in a dose dependent manner by two kinds of tyrosine kinase inhibitors, erbstatin and genistein. Superoxide production stimulated with surface bound IgG, however, was scarcely inhibited by either inhibitor. Protein tyrosine phosphorylation studies with immunoblotting revealed specific tyrosine phosphorylation of a 40 Kd protein by soluble aggregated and surface bound IgG, and that of a 39 Kd protein, as well as the 40 Kd protein, by FMLP. These were all inhibited by the tyrosine kinase inhibitors. These data suggest that superoxide production induced by FMLP and soluble aggregated IgG are, at least in part, tyrosine kinase dependent, but the tyrosine kinases and/or substrates of tyrosine kinases involved may be different. In addition, tyrosine kinase independent pathways are also suggested to be involved in superoxide production by stimulation with surface bound IgG.  相似文献   

3.
MOTIVATION: According to the models of divergent molecular evolution, the evolvability of new protein function may depend on the induction of new phenotypic traits by a small number of mutations of the binding site residues. Evolutionary relationships between protein kinases are often employed to infer inhibitor binding profiles from sequence analysis. However, protein kinases binding profiles may display inhibitor selectivity within a given kinase subfamily, while exhibiting cross-activity between kinases that are phylogenetically remote from the prime target. The emerging insights into kinase function and evolution combined with a rapidly growing number of publically available crystal structures of protein kinases complexes have motivated structural bioinformatics analysis of sequence-structure relationships in determining the binding function of protein tyrosine kinases. RESULTS: In silico profiling of Imatinib mesylate and PD-173955 kinase inhibitors with protein tyrosine kinases is conducted on kinome scale by using evolutionary analysis and fingerprinting inhibitor-protein interactions with the panel of all publically available protein tyrosine kinases crystal structures. We have found that sequence plasticity of the binding site residues alone may not be sufficient to enable protein tyrosine kinases to readily evolve novel binding activities with inhibitors. While evolutionary signal derived solely from the tyrosine kinase sequence conservation can not be readily translated into the ligand binding phenotype, the proposed structural bioinformatics analysis can discriminate a functionally relevant kinase binding signal from a simple phylogenetic relationship. The results of this work reveal that protein conformational diversity is intimately linked with sequence plasticity of the binding site residues in achieving functional adaptability of protein kinases towards specific drug binding. This study offers a plausible molecular rationale to the experimental binding profiles of the studied kinase inhibitors and provides a theoretical basis for constructing functionally relevant kinase binding trees.  相似文献   

4.
Endogenous protein kinase inhibitors are essential for a wide range of physiological functions. These endogenous inhibitors may mimic peptide substrates as in the case of the heat-stable protein kinase inhibitor (PKI), or they may mimic nucleotide triphosphates. Natural product inhibitors, endogenous to the unique organisms producing them, can be potent exogenous inhibitors against foreign protein kinases. Balanol is a natural product inhibitor exhibiting low nanomolar Ki values against serine and threonine specific kinases, while being ineffective against protein tyrosine kinases. To elucidate balanol's specific inhibitory effects and provide a basis for understanding inhibition-regulated biological processes, a 2.1 A resolution crystal structure of balanol in complex with cAMP-dependent protein kinase (cAPK) was determined. The structure reveals conserved binding regions and displays extensive complementary interactions between balanol and conserved cAPK residues. This report describes the structure of a protein kinase crystallized with a natural ATP mimetic in the absence of metal ions and peptide inhibitor.  相似文献   

5.
We screened 1680 spatially separated compounds of a diverse combinatorial library of 1,4-benzodiazepines for their ability to inhibit the kinase activity of protein tyrosine kinases Src, Yes, Abl, Lck, Csk, and fibroblast growth factor receptor. This screening yielded novel ligands for the protein tyrosine kinase Src. In the 1, 4-benzodiazepine-2-one scaffold, the preferred substituent at position R(1) was 4-hydroxyphenylmethyl or a 3-indolemethyl derived from a tyrosine or tyrptophan used in building the benzodiazepine, while the substituent at R(2), introduced by alkylating agents, was preferably aromatic in nature. The preferred ring structure introduced on the bicyclic ring of the scaffold by acid chlorides was a p-hydroxy phenyl group. The lead compound, designated as N-L-Yaa, has a L-4-hydroxyphenylmethyl ring at R(1) and a biphenylmethyl substituent at R(2). The compound has an IC(50) of 73 microM against Src, 2- to 6-fold lower than against other protein tyrosine kinases and >10-fold lower than against other nucleotide-utilizing enzymes. The mechanism of binding of N-L-Yaa to Src is mixed against the peptidic substrate with a K(i) of 35 microM and noncompetitive against ATP-Mg with a K(i) of 17 microM. Multiple inhibition analysis of the lead compound in the presence of other competitive inhibitors demonstrated that the binding of the lead compound is nonexclusive to the other competitive inhibitor. The inhibitor was found to be nontoxic to the AFB-13-human fibroblasts cells and inhibited the colony formation of HT-29 colon adenocarcinoma cells that are dependent on Src activity.  相似文献   

6.
Cross-linking the antigen receptor on B cells results in a rapid increase in protein tyrosine kinase activity as detected by increased phosphorylation on tyrosine residues of multiple proteins. Although the identity of most of this substrates remains unknown, some have been proposed. One possible substrate of the antigen receptor-associated kinase is phospholipase C (PLC). Since multiple isoforms of PLC have been identified, we have studied which isoforms are targets of the antigen receptor. PLC-gamma 1 and PLC-gamma 2 but not PLC-beta 1 or PLC-delta 1 were detected in human B cells. Immunoprecipitation with antibodies against PLC-gamma 1 or PLC-gamma 2 and subsequent Western blotting with anti-phosphotyrosine antibodies revealed that both PLC-gamma 1 and PLC-gamma 2 are tyrosine phosphorylated in stimulated but not in resting B cells. This was confirmed by experiments whereby B cell lysates were immunoprecipitated with anti-phosphotyrosine antibody and subsequently blotted with antibodies against PLC-gamma 1 or PLC-gamma 2. Further, the specific protein tyrosine kinase inhibitors, tyrphostins, which block phospholipase-C activation and proliferation of B cells also inhibited tyrosine phosphorylation on both PLC-gamma 1 and PLC-gamma 2. We conclude that both isoforms PLC-gamma 1 and PLC-gamma 2 are targets of the antigen receptor-associated protein tyrosine kinase.  相似文献   

7.
The Janus family of protein tyrosine kinases (JAKs) regulate cellular processes involved in cell growth, differentiation and transformation through their association with cytokine receptors. However, compared with other kinases, little is known about cellular regulators of the JAKs. We have recently identified a JAK-binding protein (JAB) that inhibits JAK signaling in cells. In the studies presented here we demonstrate that JAB specifically binds to the tyrosine residue (Y1007) in the activation loop of JAK2, whose phosphorylation is required for activation of kinase activity. Binding to the phosphorylated activation loop requires the JAB SH2 domain and an additional N-terminal 12 amino acids (extended SH2 subdomain) containing two residues (Ile68 and Leu75) that are conserved in JAB-related proteins. An additional N-terminal 12-amino-acid region (kinase inhibitory region) of JAB also contributes to high-affinity binding to the JAK2 tyrosine kinase domain and is required for inhibition of JAK2 signaling and kinase activity. Our studies define a novel type of regulation of tyrosine kinases and might provide a basis for the design of specific tyrosine kinase inhibitors.  相似文献   

8.
Various derivatives of thiazolidine-diones have been identified as tyrosine protein kinase inhibitors. The epidermal growth factor (EGF) receptor kinase and c-src kinase were inhibited in vitro with IC50 values in the range of 1-7 microM. The v-abl tyrosine protein kinase was not inhibited by thiazolidine-diones. Inhibition was found to be specific for tyrosine protein kinases. Inhibition of serine/threonine protein kinases was not observed. The active derivatives were shown to inhibit EGF-induced receptor autophosphorylation, either in vitro or in intact cells, and were also found to inhibit growth of the EGF-dependent BALB/MK and A431 cell lines (IC50 1-3 microM). Growth of the interleukin-3-dependent myeloid cell line FDC-P1 was inhibited with equal efficiency. Thus, in these cell lines, members of the c-src kinase family are also potential targets for inhibition by the compounds.  相似文献   

9.
Short chain fatty acids such as sodium butyrate are concentrated in the colonic lumen and may protect against colon carcinogenesis by maintaining colonocytic differentiation, but the mechanisms by which they act are not fully understood. It has recently been suggested that short chain fatty acids modulate cellular tyrosine kinase activity in addition to altering chromatin structure via regulation of histone acetylation and DNA methylation. Therefore, the authors evaluated the influence of tyrosine kinase inhibition on the effects of 10 mM butyrate on human Caco-2 intestinal epithelial differentiation, using alkaline phosphatase and dipeptidyl dipeptidase specific activity as markers of differentiation, and two tyrosine kinase inhibitors, of different mechanisms of action and different effects on Caco-2 brush border enzyme specific activity, to block tyrosine kinase activity. As expected, butyrate stimulated both alkaline phosphatase and dipeptidyl dipeptidase specific activity. The tyrosine kinase inhibitors prevented, and indeed one inhibitor reversed the effects of butyrate on alkaline phosphatase specific activity. However, tyrosine kinase inhibition did not prevent butyrate stimulation of dipeptidyl dipeptidase specific activity. Different pathways are likely to regulate the effects of butyrate on expression of these two brush border enzymes. Butyrate stimulation of alkaline phosphatase, but not dipeptidyl dipeptidase, may involve tyrosine phosphorylation signaling.  相似文献   

10.
Verkhivker GM 《Proteins》2007,66(4):912-929
Understanding and predicting the molecular basis of protein kinases specificity against existing therapeutic agents remains highly challenging and deciphering this complexity presents an important problem in discovery and development of effective cancer drugs. We explore a recently introduced computational approach for in silico profiling of the tyrosine kinases binding specificity with a class of the pyrido-[2,3-d]pyrimidine kinase inhibitors. Computational proteomics analysis of the ligand-protein interactions using parallel simulated tempering with an ensemble of the tyrosine kinases crystal structures reveals an important molecular determinant of the kinase specificity. The pyrido-[2,3-d]pyrimidine inhibitors are capable of dynamically interacting with both active and inactive forms of the tyrosine kinases, accommodating structurally different kinase conformations with a similar binding affinity. Conformational tolerance of the protein tyrosine kinases binding with the pyrido[2,3-d]pyrimidine inhibitors provides the molecular basis for the broad spectrum of potent activities and agrees with the experimental inhibition profiles. The analysis of the pyrido[2,3-d]pyrimidine sensitivities against a number of clinically relevant ABL kinase mutants suggests an important role of conformational adaptability of multitargeted kinase inhibitors in developing drug resistance mechanisms. The presented computational approach may be useful in complementing proteomics technologies to characterize activity signatures of small molecules against a large number of potential kinase targets.  相似文献   

11.
12.
Protein kinases 1988: a current perspective   总被引:19,自引:0,他引:19  
This review focuses on several recent developments in the field of protein kinases. In the area of protein serine/threonine kinases, much has been learned recently about protein kinase C structure and function. Novel lipid mediators, both stimulatory and inhibitory, have been discovered, and kinase has been shown to be an increasingly large family of gene products. Heterogeneity of cellular localization and function has been documented. Calcium/calmodulin-dependent protein kinases are now believed to consist of at least five enzymes, which range from those with extreme substrate specificity such as phosphorylase kinase and myosin light-chain kinases to calcium calmodulin kinase II, with several known substrates. Several of these enzymes appear to be important in synaptic transmission and, for calcium/calmodulin kinase III, in the regulation of protein synthesis. Several new examples of pseudosubstrate prototopes as endogenous kinase inhibitors have been described, including regions intrinsic to kinase primary sequences, which could serve as constitutive inhibitors of enzyme activity. In the field of protein tyrosine kinases, new enzyme species are being discovered at a rapid rate. There are several well-documented examples of kinase autophosphorylation on tyrosine leading to stimulation of catalytic activity. For the growth factor receptors with intrinsic protein tyrosine kinase activity, it now seems clear that kinase catalytic activity is necessary for most hormone effects on cells, with the general exceptions of ligand binding and, possibly, receptor cycling. Finally, several groups have recently described a close association between protein tyrosine kinases and a phosphatidylinositol kinase activity, a link that might eventually explain some of the initial steps in signal transduction that occur after kinase activation.  相似文献   

13.
We have studied the osmotically induced gene expression (measured as chloramphenicol acetyl transferase (CAT) reporter gene expression) in rat smooth muscle cell primary cultures (rSMC), under the control of osmotic response elements (ORE). It was found that osmotically induced gene expression is sensitive to signal transduction inhibitors and activators. In particular, protein kinase C inhibition by calphostin C prevented gene expression by osmotic response. On the other hand, receptor tyrosine kinase inhibition has been shown to produce an enhancement of gene expression. This suggests that tyrosine kinase receptor activation exerts an inhibitory action on ORE induced gene expression. Gene expression was also induced by treating cells with PD098059, a specific inhibitor of mitogen-activated protein kinase kinase. Moreover, the same inhibitors and activators have been shown to affect the hyperosmosis induced expression of aldose reductase gene.  相似文献   

14.
Abstract: To study cross-talk mechanisms in rat pinealocytes, the role of tyrosine kinase or kinases in the regulation of adrenergic-stimulated cyclic AMP production was investigated. Both norepinephrine- and isoproterenol-stimulated cyclic AMP accumulation were increased by two distinct tyrosine kinase inhibitors, genistein or erbstatin, in a concentration-dependent manner. A similar increase was observed with two other inhibitors, tyrphostin B44 and herbimycin. In contrast, daidzein, an inactive analogue of genistein, was ineffective; whereas vanadate, a phosphotyrosine phosphatase inhibitor, reduced the adrenergic-stimulated cyclic AMP accumulation. The tyrosine kinase inhibitors were effective in potentiating the cholera toxin-or forskolin-stimulated cyclic AMP accumulation, indicating that their sites of action are at the postreceptor level. Neither an activator nor inhibitors of protein kinase C influenced the potentiation of the cyclic AMP responses by genistein, suggesting that the potentiation effect by tyrosine kinase inhibitors does not involve the phospholipase C/protein kinase C pathway. However, when the phosphodiesterase was inhibited by isobutylmethylxanthine, genistein failed to potentiate and vanadate did not inhibit the adrenergic-stimulated cyclic AMP accumulation, indicating that the phosphodiesterase is a probable site of action for these inhibitors. These results suggest that cyclic AMP metabolism in the pinealocytes is tonically inhibited by tyrosine kinase acting on the cyclic AMP phosphodiesterase.  相似文献   

15.
16.
L-Selectin-mediated rolling of leukocytes on endothelial cells is an important step for lymphocyte homing and an early event in the immune response to pathogens or inflammatory stimuli. We have previously elucidated intracellular signaling cascades upon L-selectin engagement resulting in activation of Ras, Rac and JNK as well as cytoskeletal changes, oxygen release, ceramide synthesis and receptor capping. Activation of the src-tyrosine kinase p56lck is followed by phosphorylation of the L-selectin molecule and MAP-K. Here we show a tyrosine kinase dependent phosphorylation of the Cbl adapter protein after L-selectin engagement in lymphocytes. Phosphorylation of Cbl was absent in Jurkat cells that are pharmacologically treated with tyrosine kinase inhibitors and in lck-deficient JCaM cells. There is an activation induced association of tyrosine phosphorylated Cbl with Grb2 and CrkL, respectively, but not CrkII. Therefore, the adapter protein Cbl plays a role in L-selectin signaling and might modulate immune function by the specific recruitment of signaling molecules to multiprotein complexes.  相似文献   

17.
In vitro erythroid differentiation of mouse erythroleukemia (MEL) cells was induced by combinations of topoisomerase and protein kinase inhibitors. Neither inhibitor alone exhibited inducing activity. Although inhibitors of topoisomerases I and II were equally effective in the synergistic induction of erythroid differentiation, only inhibitors of tyrosine kinases, not of serine/threonine kinases, exhibited synergistic activity. The erythroid differentiation induced by the combination of topoisomerase and protein tyrosine kinase inhibitors was distinguished from that induced by typical erythroid inducing agents such as DMSO or HMBA by (1) earlier hemoglobin accumulation in the cells and (2) insensitivity to specific inhibitors (dexamethasone and sodium orthovanadate) of MEL cell differentiation.  相似文献   

18.
Abstract: Activation of tyrosine kinases is established as an important mechanism for controlling growth cone motility and neurite outgrowth. We have tested the effects of a range of tyrosine kinase inhibitors on neurite outgrowth from postnatal day 4 cerebellar granule cells cultured over confluent monolayers of 3T3 fibroblasts. The only agent that had any effect was herbimycin A, which stimulated neurite outgrowth. The response is shown to be attributable to a direct effect of this tyrosine kinase inhibitor on neurones. The neurite outgrowth response to herbimycin A was inhibited by two other tyrosine kinase inhibitors, which on their own did not affect neurite outgrowth. The data suggest that the response to herbimycin A reflects either a direct or indirect activation of one or more protein tyrosine kinases. Independent signalling events downstream from tyrosine kinase activation underlying the neurite outgrowth response to herbimycin A include increased activity of protein kinase C and calcium influx into neurones through both N-and L-type calcium channels.  相似文献   

19.
The purpose of this study was to determine whether protein tyrosine kinase, a ubiquitous family of intracellular signaling enzymes that regulates endothelial cell function, modulates bradykinin- and substance P-induced increase in macromolecular efflux from the intact hamster cheek pouch microcirculation. Using intravital microscopy, I found that suffusion of bradykinin or substance P (each, 0.5 and 1.0 microM) onto the cheek pouch elicited significant, concentration-dependent leaky site formation and increase in clearance of fluorescein isothiocyanate-dextran (FITC-dextran; molecular mass, 70 kDa; P < 0.05). These responses were significantly attenuated by suffusion of genistein (1.0 microM) or tyrphostin 25 (10 microM), two structurally unrelated, nonspecific protein tyrosine kinase inhibitors (P < 0.05). Conceivably, the kinase(s) involved in this process could be agonist specific because genistein was more effective than tyrphostin 25 in attenuating bradykinin-induced responses while the opposite was observed with substance P. Both inhibitors had no significant effects on adenosine (0.5 M)-induced responses (P > 0.5). Collectively, these data suggest that the protein tyrosine kinase metabolic pathway modulates, in part, the edemagenic effects of bradykinin and substance P in the intact hamster cheek pouch microcirculation in a specific fashion.  相似文献   

20.
Instead of blocking oocyte maturation as it does in most animals, cAMP causes oocytes of marine nemertean worms to initiate maturation (=germinal vesicle breakdown, "GVBD"). To characterize cAMP-induced GVBD in nemerteans, inhibitors of tyrosine kinase signaling were tested on Cerebratulus sp. oocytes that had been incubated in cAMP-elevating drugs versus seawater (SW) alone. Such tests yielded similar results for Src-like tyrosine kinase blockers, as the inhibitors prevented mitogen-activated protein kinase (MAPK) activation without stopping either GVBD or maturation-promoting factor (MPF) activation in both SW and cAMP-elevating treatments. Alternatively, genistein, a general tyrosine kinase antagonist, and piceatannol, an inhibitor of the tyrosine kinase Syk, reduced GVBD and MAPK/MPF activities in SW-, but not cAMP-induced maturation. Similarly, inhibitors of the human epidermal growth factor receptor-2 (HER-2) tyrosine kinase prevented GVBD and MAPK/MPF activations in oocytes treated with SW, but not with cAMP-elevating drugs. Antagonists of either protein tyrosine phosphatases (PTPs) or the dual-specificity phosphatase Cdc25 also reduced GVBD and MAPK/MPF activities in SW-treated oocytes without generally affecting cAMP-induced maturation. Collectively, these data suggest cAMP triggers GVBD via pathways that do not require MAPK activation or several components of tyrosine kinase signaling. In addition, such differences in tyrosine kinase cascades, coupled with the dissimilar patterns of Ser/Thr kinase signaling described in the accompanying study, indicate that nemertean oocytes are capable of utilizing multiple mechanisms to activate MPF during GVBD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号