首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The principal products of the photooxidation of 7,12-dimethylbenz[a]-anthracene (DMBA) in aqueous solutions by photooxidation induced by laboratory lighting have been characterized by high performance liquid chromatograms (HPLC), ultraviolet and mass spectrograms and by comparisons with authentic samples. The products identified were the 7,12-epidioxy-7,12-dihydro-7-12-dimethyl-, 7,12-dione, 7-hydroxymethyl-12-methyl-, 12-hydroxymethyl-7-methyl-, 7-formyl-12-methyl-, 12-formyl-7-methyl-, and 12-hydroxy-12-methyl-7-one derivatives of benz[a]-anthracene. The HPLC profile of products is similar to that obtained from oxidation of DMBA by 'one-electron' reagents, singlet oxygen, or liver microsomal metabolism. The first points of attack are the 7- and 12- positions. The mechanism of photooxidation appears to be generation of singlet oxygen by photodynamic effect of DMBA. None of the products is photosensitizing, however.  相似文献   

2.
7,12-Dimethylbenz[a]anthracene and its 3,4-, 5,6-, 8,9- and 10,11-dihydrodiols have been tested for mutagenicity towards S. typhimurium TA100 in the presence of rat-liver post-mitochondrial supernatants from Aroclor-treated rats. At non-toxic concentrations, the non-K-region 3,4-dihydrodiol was six-fold more active than the parent hydrocarbon. At these concentrations, the 8,9-dihydrodiol showed some mutagenic activity, but the 5,6- and 10,11-dihydrodiols were inactive.  相似文献   

3.
Summary Six strains of fungi grown on Sabouraud dextrose broth in the presence of 7,12-dimethylbenz[a]anthracene (DMBA) were surveyed for their ability to metabolize DMBA. Experiments with [14C]DMBA indicated that the extent of formation of organic-soluble metabolites ranged from 6 to 28% after 5 days of incubation, depending on the organism tested. The yields of water-soluble metabolites also varied, and ranged from 1 to 33% after 5 days.Cunninghamella elegans ATCC 36112 andSyncephalastrum racemosum UT-70 exhibited the highest DMBA-metabolizing activity among the organisms surveyed.S. racemosum metabolized DMBA primarily to 7-hydroxymethyl-12-methylbenz[a]anthracene (7-OHM-12-MBA)_ and 7,12-dihydroxymethylbenz[a]anthracene (7,12-diOHMBA). Minor metabolites included 7-OHM-12-MBA-trans-5,6-, 8,9- and 10,11-dihydrodiols, and glucuronide and sulfate conjugates of phenolic derivatives of DMBA. In contrast, the major DMBA metabolites produced byC. elegans were water-soluble. The predominant organic-soluble metabolites produced byC. elegans included 7-OHM-12-MBA-trans-5,6-, 8,9- and 10,11-dihydrodiols. DMBA-trans-3,4-dihydrodiol was also detected. Circular dichroism spectral analysis revealed that the major enantiomer of the 7-OHM-12-MBA-trans-8,9-dihydrodiol formed by each organism has anS,S absolute configuration, while the major enantiomers of the 5,6-, 10,11- and 3,4-dihydrodiols had anR,R configuration. The mutagenic activity of extracts fromS. racemosum exposed to DMBA were determined inSalmonella typhimurium TA98. The mutagenicity of DMBA decreased by 36% over a period of 5 days as 33% of the compound was metabolized. Comparison of these results with previously reported results in mammalian systems suggests that there are similarities and differences between the fungal and mammalian oxidation of DMBA and that the overall balance of fungal metabolism is towards a detoxification rather than a bioactivation pathway.  相似文献   

4.
The metabolites of 7,12-dimethylbenz[a]anthracene (DMBA), a carcinogenic polycyclic aromatic hydrocarbon, in cultures of Cunninghamella elegans were isolated by high-pressure liquid chromatography and characterized by UV spectroscopy and mass spectrometry. The major metabolites were DMBA-trans-8,9-dihydrodiol and DMBA-trans-3,4-dihydrodiol. The 7-hydroxymethyl and the 12-hydroxymethyl derivatives of these dihydrodiol metabolites were also formed. The metabolic profile described in this report contrasts with those obtained in our earlier experiments in which the incubation of DMBA with Pseudomonas aeruginosa and Penicillium notatum produced no dihydrodiol metabolites but only methyl-hydroxylated metabolites.  相似文献   

5.
The metabolism of the polycyclic aromatic hydrocarbon (PAH) 7,12-dimethylbenz[a]anthracene (DMBA) was studied in murine lymphocytes. This carcinogen has previously been shown to be immunosuppressive to lymphocytes regardless of their ability to be induced via the Ah locus and receptor. Experiments were designed to quantify the generation of metabolites of DMBA by lymphocytes incubated with [14C]DMBA and to ascertain whether radioactivity was covalently bound to cellular macromolecules in DMBA-exposed lymphocytes. No significant metabolism of DMBA was detected in culture supernatants, except when cultures were incubated in the presence of Arochlor-induced rat liver 9000 x g supernatants (S9). Covalent binding of 14C to cellular macromolecules was enhanced approximately eightfold in the presence of S9. Inhibition of monooxygenase activity by alpha-naphthoflavone did not modulate the immunosuppressive character of DMBA. Furthermore, addition of S9 did not amplify or ablate DMBA-mediated suppression of lymphocyte proliferation to the mitogen concanavalin A (Con A). Selected metabolites of DMBA were evaluated for immunosuppressive effects in cultures stimulated with mitogens and cellular alloantigens. 7-Hydroxymethyl-12-methylbenz[a]anthracene (OHMe) and 5,6-dihydro-5,6-dihydroxybenz[a]anthracene (Diol) were found to cause only slightly greater suppression of lymphocyte responses than DMBA. Thus, it appears that metabolites of DMBA were not responsible for the immunosuppression observed in lymphocyte cultures and that lymphocytes were not equipped to metabolize any significant amount of DMBA. These data lend support to the hypothesis that parent compound alone is responsible for the immunosuppressive effects observed in murine lymphocyte culture.  相似文献   

6.
The effect of route of administration on the outcome of the mouse micronucleus test was evaluated in 2 laboratories by administering a model chemical, 7,12-dimethylbenz[a]anthracene (DMBA) by intraperitoneal injection (i.p.) and oral gavage administration (p.o.) to males of 2 mouse strains, MS/Ae and CD-1. On the basis of a small-scale acute toxicity study and a pilot micronucleus test, a full-scale micronucleus test was performed with a 48-h sampling time at doses of 25, 50, 100, and 200 mg/kg by both administration routes in the 2 strains. At each dose level and in both strains, higher frequencies of micronucleated polychromatic erythrocytes (MNPCEs) were found after use of the i.p. route. In the MS/Ae strain, a linear, positive dose response was obtained by both routes. In the CD-1 strain, the maximum response was reached at 100 mg/kg and a downturn occurred at 200 mg/kg by both routes. The comparison of maximum responses indicated that MS/Ae was the higher responder for both routes of application. Although DMBA induced micronuclei more efficiently by the i.p. route than after oral administration on a mg/kg base, this route-related difference was reversed in both strains when the comparison was made on the basis of LD50 values and when the maximum responses were neglected.  相似文献   

7.
8.
L K Wong  J Dru  L S Lin    J Knapp 《Applied microbiology》1983,46(5):1239-1242
The metabolites of 7,12-dimethylbenz[a]anthracene (DMBA), a carcinogenic polycyclic aromatic hydrocarbon, in cultures of Cunninghamella elegans were isolated by high-pressure liquid chromatography and characterized by UV spectroscopy and mass spectrometry. The major metabolites were DMBA-trans-8,9-dihydrodiol and DMBA-trans-3,4-dihydrodiol. The 7-hydroxymethyl and the 12-hydroxymethyl derivatives of these dihydrodiol metabolites were also formed. The metabolic profile described in this report contrasts with those obtained in our earlier experiments in which the incubation of DMBA with Pseudomonas aeruginosa and Penicillium notatum produced no dihydrodiol metabolites but only methyl-hydroxylated metabolites.  相似文献   

9.
A common impurity of 7,12-dimethylbenz[alpha]anthracene was more effective than 7,12-dimethylbenz[alpha]anthracene in inducing morphological alterations, and in causing an increase in glucose uptake, DNA synthesis and cell number in chick-embryo fibroblasts. Gradual morphological transformation follows the increase in DNA synthesis after 2 days when either primary or secondary cultures are treated with 3 microgram of the compound/ml. The compound, isolated from 7,12-dimethylbenz[alpha]anthracene by alumina column chromatography, was characterized by t.l.c., mass spectroscopy, carbon-hydrogen analysis, u.v. and nuclear-magnetic-resonance spectroscopy and thermal decomposition. It was the photo-oxidation product of 7,12-dimethylbenz[alpha]anthracene, 7,12-epidioxy-7,12-dimethylbenz[alpha]anthracene. It is suggested that some of the biological effects observed after treatment of cultures with 7,12-dimethylbenz[alpha]anthracene may be due in part to the presence of the photo-oxidation product.  相似文献   

10.
The binding of metabolites of the polycyclic aromatic hydrocarbon (PAH) 7,12-dimethylbenz[a]anthracene (DMBA) to protein in rat testis seminiferous tubules was studied. Treatment of cultured seminiferous tubule segments with DMBA resulted in very little binding to protein, suggesting that the seminiferous epithelium from rat testis lacks the cytochrome P-450-dependent monooxygenase(s) required for DMBA metabolism. In contrast, Leydig cells from rat testis contain monooxygenase systems which catalyze the metabolism of PAH, such as DMBA. This metabolic activation of DMBA was localized in both mitochondria and microsomes derived from Leydig cells and was decreased by inhibitors of the cytochrome P-450 system and by free radical scavengers, suggesting that the metabolism involved both cytochrome P-450 and free radical-dependent pathways. In the presence of whole Leydig cells or microsomes prepared from Leydig cells, the covalent binding of DMBA metabolites to protein of rat testis seminiferous tubules was increased 5- and 13-fold, respectively. These results suggest that DMBA is metabolized primarily in rat testis Leydig cells and that part of the produced metabolites find their way to the seminiferous epithelium, where they undergo further metabolism producing reactive metabolites, possibly cation radicals and diolepoxides, which interfere with the functions of spermatogonia and spermatocytes by modifying key proteins covalently.  相似文献   

11.
The mechanisms of regulation of ovarian 7,12-dimethylbenz[a]anthracene (DMBA) hydroxylase were investigated with respect to hormonal requirements and effects of the antiestrogen tamoxifen and known inducers of cytochrome P-450. The DMBA hydroxylase is increased endogenously about 3-fold in the proestrus phase as compared to the metestrus/diestrus phases (M. Bengtsson and J. Rydstrom, Science, 219 (1983) 1437-1438). A similar effect was caused by the gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) whereas pregnant mare's serum gonadotropin (PMSG) brought about a 3-7-fold increase, suggesting that the estrus cycle-dependence of the DMBA hydroxylase was due directly or indirectly to gonadotropins. In contrast, differentiation of granulosa/theca cells to corpus luteum cells after ovulation, caused by administration of human chorionic gonadotropin (hCG), led to a marked decrease in activity. The activity was not specific for DMBA since substitution of this hydrocarbon for benzo[a]pyrene (BP) as substrate gave similar results. A possible role of estrogens in this context was investigated by the administration of tamoxifen simultaneous with gonadotropin treatment, which caused a partial inhibition of the hydroxylase activity. Both estradiol and 3-methyl-cholanthrene (MC) increased DMBA hydroxylase but the effects of these agents were not additive. In contrast, the effects of estradiol and MC were partially additive to that of gonadotropin. On the basis of these results, it is proposed that the rat ovary contains one or several aryl hydrocarbon hydroxylases located in the granulosa/theca cells which are regulated by estrogens, MC and beta-naphthoflavone (BNF) and that the role of gonadotropins is to proliferate granulosa/theca cells.  相似文献   

12.
The metabolism of 3H-labelled 7,12-dimethylbenz[a]anthracene (DMBA) and of 7-hydroxymethyl-12-methylbenz[a]anthracene (7-OHM-12-MBA) into solvent- and water-soluble and protein-bound derivatives has been examined in rat liver and adrenal homogenates and in rat adrenocortical cells in culture. Although the overall extents of metabolism of the substrates by the two types of homogenate were similar, there was twice as much binding to protein in incubations with the 7-hydroxymethyl derivative. Rat adrenal cells in culture metabolized DMBA more extensively than 7-OHM-12-MBA and converted much more of the parent hydrocarbon into water-soluble derivatives. Both hydrocarbons were metabolized to yield dihydrodiols that were separated and identified by high performance liquid chromatography (HPLC). The 8,9-dihydrodiol was the major dihydrodiol formed from DMBA but, with 7-OHM-12-MBA as substrate, metabolism was diverted to the 10,11- and 3,4-positions in adrenal and hepatic preparations respectively. The viability of rat adrenocortical cells in culture, as measured by trypan blue exclusion, did not appear to be affected by treatment with DMBA, 7-OHM-12-MBA, the sulphate ester of 7-OHM-12-MBA or by 3,4-dihydro-3,4-dihydroxy-7-hydroxymethyl-12-methylbenz[a]anthracene.  相似文献   

13.
The degradation of 7,12-dimethylbenz[a]anthracene (DMBA), a carcinogenic polycyclic aromatic hydrocarbon, by cultures of Mycobacterium vanbaalenii PYR-1 was studied. When M. vanbaalenii PYR-1 was grown in the presence of DMBA for 136 h, high-pressure liquid chromatography (HPLC) analysis showed the presence of four ethyl acetate-extractable compounds and unutilized substrate. Characterization of the metabolites by mass and nuclear magnetic resonance spectrometry indicated initial attack at the C-5 and C-6 positions and on the methyl group attached to C-7 of DMBA. The metabolites were identified as cis-5,6-dihydro-5,6-dihydroxy-7,12-dimethylbenz[a]anthracene (DMBA cis-5,6-dihydrodiol), trans-5,6-dihydro-5,6-dihydroxy-7,12-dimethylbenz[a]anthracene (DMBA trans-5,6-dihydrodiol), and 7-hydroxymethyl-12-methylbenz[a]anthracene, suggesting dioxygenation and monooxygenation reactions. Chiral stationary-phase HPLC analysis of the dihydrodiols showed that DMBA cis-5,6-dihydrodiol had 95% 5S,6R and 5% 5R,6S absolute stereochemistry. On the other hand, the DMBA trans-5,6-dihydrodiol was a 100% 5S,6S enantiomer. A minor photooxidation product, 7,12-epidioxy-7,12-dimethylbenz[a]anthracene, was also formed. The results demonstrate that M. vanbaalenii PYR-1 is highly regio- and stereoselective in the degradation of DMBA.  相似文献   

14.
Micronucleus assays using mouse peripheral blood stained vitally on acridine orange (AO)-coated slides were evaluated at two laboratories with 7,12-dimethylbenz[a]anthracene (DMBA) and compared with the standard bone marrow assay. DMBA was administered by single intraperitoneal injection to CD-1 mice at doses ranging from 5 to 80 mg/kg, then 5 microliters of peripheral blood was sampled from a tail vein at 24, 48, 72, 96, and 120 h after treatment. Similar incidences of micronucleated young erythrocytes were observed in peripheral blood reticulocytes and bone marrow polychromatic erythrocytes. The dose response of micronucleated reticulocytes was delayed compared to that of micronucleated polychromatic erythrocytes. The dose-response curves after treatment with DMBA differed depending on the sampling times, which revealed the difficulty of obtaining accurate dose-response relations in the micronucleus assay. The present result demonstrated that the simple and rapid AO supravital staining method is a valuable and easier method for obtaining dose- and time-response data for quantification of micronucleus induction by chemicals.  相似文献   

15.
C Forbes 《Mutation research》1980,79(3):231-237
One of the most potent carcinogens, 7,12-dimethylbenz[a]anthracene (DMBA), was tested for the induction of mutations in 2 strains of Drosophila melanogaster. Larvae were fed mixtures containing DMBA, peanut oil and solubilizing agents in darkness. After emergence the males were mated with Basc or FM7a females to test for sex-linked lethals. For Canton-S males, all DMBA treatments produced highly significant increases in mutation frequencies over controls. DMBA was slightly mutagenic for Oregon-R males.  相似文献   

16.
7,12-Dimethylbenz[a]anthracene (7,12-DMBA) is a member of the polycyclic aromatic hydrocarbons with a severe carcinogenic effect. In this study, nitrate levels and ADA (Adenosine deaminase) activity in the liver homogenates of mice were measured and the effect of free radicals induced by 7,12-DMBA on inducible nitric oxide synthase (iNOS) and ADA activity were investigated. Antioxidant effects of melatonin were also compared. Three groups of mice were included in the study. The first served as control, the second was treated only with 7,12-DMBA and the third was treated with 7,12-DMBA + melatonin. Spectrophotometric methods were used at all measurements. Data were analyzed using Kruskal-Wallis Variance Analysis Test and Mann-Whitney U Test that were applied to the groups. The nitrate concentrations of mouse liver were as follows: 4.98 +/- 0.63 micro mol/L in the control group (n = 10), 8.23 +/- 1.58 micro mol/L (higher than control group, p < 0.05) in the 7,12-DMBA-treated group (n = 10), and 6.43 +/- 0.57 micro mol/L (lower than 7,12-DMBA-treated group, p < 0.05) in the 7,12-DMBA + melatonin-treated group (n = 10). Liver ADA activities were measured to be 4.14 +/- 0.674 U/L in the control group, 6.25 +/- 1.261 U/L (higher than control group, p < 0.05) in the 7,12-DMBA-treated group, and 4.93 +/- 0.916 U/L (lower than 7,12-DMBA-treated group, p < 0.05) in the 7,12-DMBA+melatonin-treated group. Differences between free nitrite levels were no significantly. Results demonstrated that nitrate levels and ADA activities were increased by means of free radicals induced by 7,12-DMBA. Melatonin inhibited the 7,12-DMBA induced increase that was observed in the activities of ADA enzyme and nitrate levels. It is concluded that determination of ADA activity and nitrate levels can be useful in the assessment of liver damage caused by toxic chemicals.  相似文献   

17.
The enantiomers of 7,12-dimethylbenz[a]anthracene (DMBA) 5,6-epoxide were directly resolved by normal-phase high-performance liquid chromatography with an ionically bonded chiral stationary phase. The absolute configurations of the resolved enantiomers were determined by comparison of circular dichroism spectra of the methanolysis products formed from the epoxide enantiomers with that of a DMBA trans-5,6-dihydrodiol enantiomer of known absolute stereochemistry. DMBA 5R,6S-epoxide is hydrated by rat liver microsomal epoxide hydrolase predominantly (95%) to a 5S,6S-dihydrodiol. The results indicate that the 5S,6S-dihydrodiol formed from the metabolism of DMBA by microsomes prepared from the livers of 3-methylcholanthrene-treated rats is predominantly derived from a 5R,6S-epoxide intermediate.  相似文献   

18.
Isolation of hydrocarbon-deoxyribonucleoside products from the DNA of mouse embryo cells exposed to 7,12-dimethylbenz[a]anthracene permits both fluorescence excitation and emission spectra to be recorded. Comparison of these spectra with those of various model compounds indicates that 7,12-dimethylbenz[a]anthracene, one of the most potent of the hydrocarbon carcinogens, is metabolically activated for DNA binding through the generation of a diol-oxide in the 1,2,3,4-ring.  相似文献   

19.
When benz[a] anthracene was oxidised in a reaction mixture containing ascorbic acid, ferrous sulphate and EDTA, the non-K-region dihydrodiols, trans-1,2-dihydro-1,2-dihydroxybenz[a] anthracene and trans-3,4-dihydro-3,4-dihydroxybenz[a] anthracene together with small amounts of the 8,9- and 10,11-dihydrodiols were formed. When oxidised in a similar system, 7,12-dimethylbenz[a] anthracene yielded the K-region dihydrodiol, trans-5,6-dihydro-5,6-dihydroxy-7,12-dimethylbenz[a] anthracene and the non-K-region dihydrodiols, trans-3,4-dihydro-3,4-dihydroxy-7,12-dimethylbenz[a] anthracene, trans-8,9-dihydro-8,9-dihydroxy-7,12-dimethylbenz[a] anthracene, trans-10,11-dihydro-10,11-dihydroxy-7,12-dimethylbenz[a] anthracene and a trace of the 1,2-dihydrodiol. The structures and sterochemistry of the dihydrodiols were established by comparisons of their UV spectra and chromatographic characteristics using HPLC with those of authentic compounds or, when no authentic compounds were available, by UV, NMR and mass spectral analysis. An examination by HPLC of the dihydrodiols formed in the metabolism, by rat-liver microsomal fractions, of benz[a] anthracene and 7,12-dimethylbenz[a] anthracene was carried out. The metabolic dihydriols were identified by comparisons of their chromatographic and UV or fluorescence spectral characteristics with compounds of known structures. The principle metabolic dihydriols formed from both benz[a] anthracene and 7,12-dimethylbenz[a] anthracene were the trans-5,6- and trans-8,9-dihydrodiols. The 1,2- and 10,11-dihydrodiols were identified as minor products of the metabolism of benz [a] anthracene and the tentative identification of the trans-3,4-dihydriol as a metabolite was made from fluorescence and chromatographic data. The minor metabolic dihydriols formed from 7,12-dimethylbenz[a] anthracene were the trans-3,4-dihydrodiol and the trans-10,11-dihydriol but the trans-1,2-dihydrodiol was not detected in the present study.  相似文献   

20.
Cultured human fetal aortic smooth muscle cells derived from the abdominal aorta converted benzo[a]pyrene (BaP) and 7,12-dimethylbenz[a]anthracene (DMBA) via cytochrome P-450-dependent monooxygenation to metabolites detectable by both a highly sensitive radiometric assay and high pressure liquid chromatography (HPLC). Cells incubated with 3H-BaP transformed this substrate primarily to phenols. 14C-DMBA was converted to metabolites that cochromatographed with 12-hydroxymethyl-7-methylbenz[a]anthracene, 7-hydroxymethyl-12-methylbenz-[a]anthracene, 7,12-dihydroxymethylbenz[a]anthracene, and trans-8,9-dihydrodiol-7,12-DMBA. Exposure of cells in culture to 13 μM 1,2-benz[a]anthracene resulted in increased oxidative metabolism of both BaP and DMBA. In the case of BaP, total phenol formation was increased, while with DMBA all metabilities detected by HPLC were increased. Support for the potential role of metabolism of polycyclic aromatic hydrocarbons by aortic smooth muscle cells in the etiology of atherosclerosis was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号