首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In sublethally irradiated mice, thymus repopulation is due first to the proliferation of surviving thymocytes followed by the multiplication of bone marrow derived prothymocytes. The migration of bone marrow cells to the thymus after a single sublethal whole-body X irradiation was studied by using fluorescein isothiocyanate as a cell marker. Irradiation increases the permissiveness of the thymus to the immigration of bone marrow cells. Furthermore, the post-Rx regenerating bone marrow cells exhibit migration capacities greater than the normal ones. The radiation induced changes in the bone marrow thymus interaction might play an important role in thymus regeneration after sublethal irradiation.  相似文献   

2.
The role of thymus and bone marrow-derived cells in the in vitro response to the dinitrophenyl (DNP) determinant was studied using the millipore filter well technique for spleen organ cultures. Antibodies to DNP were assayed by the technique of inactivation of DNP-coupled T-4 bacteriophage. It was found that spleens of mice total-body irradiated at 750 R, treated with bone marrow and thymus cells after exposure and immunized against rabbit serum albumin (RSA) were able to produce antibodies to DNP when challenged in vitro with DNP-RSA. Such a response was not produced by spleen explants from x-irradiated mice treated with either thymus or bone marrow cells. Neither were antibodies to DNP produced by spleens of animals repopulated with thymus and bone marrow cells, but not immunized with the carrier. This carrier effect was manifested when the irradiated mice were treated with RSA and thymus cells 6–8 days before administration of the bone marrow cells. Yet, such an effect was not observed when the RSA and bone marrow cells were given 6–8 days before injection of the thymus cells. Thus, the thymus-derived cells appear to play the role of cells sensitive to the carrier (RSA), whereas the bone marrow seems to be involved in the production of antibodies.  相似文献   

3.
Spleen explants from mice tolerant to rabbit serum albumin (RSA) failed to react in vitro to dinitrophenyl (DNP)-RSA; antibodies to DNP were, however, produced by such spleens, when stimulated with α-DNP-poly(Lys). To study the function of T and B cells in recognition of carrier determinants, spleen explants from X-irradiated mice, which had been inoculated with combinations of thymus and bone marrow cells from normal and from RSA tolerant donors, were tested for their reactivity in vitro to the DNP-RSA conjugate. A significant response was obtained only by spleens of mice containing bone marrow and thymus from normal donors. Spleens of mice treated with thymus from tolerant and bone marrow from normal or with thymus from normal and bone marrow from tolerant donors did not respond to DNP-RSA. The absence of the response to DNP-RSA by tolerant B cells combined with normal T cells was unexpected. It could not be attributed to binding of the tolerogen to B cells which would have prevented the interaction with T-cells. Neither could the result be attributed to an inhibition of normal cells by RSA-tolerant B-cells. θ-positive cells in the bone marrow are not the cells controlling the recognition of carrier determinants in the B population, since elimination of θ-positive cells did not affect the reactivity of spleens repopulated with B and T cells. Nor are bone marrow macrophages responsible for the lack of reactivity in spleens containing tolerant B cells, since normal macrophages did not restore reactivity. Hence, the production of antibodies to DNP is based on the recognition of carrier determinants not only by T cells, as previously established, but also by B cells. Whether this indicates a B-B in addition to the T-B cell cooperation is an inviting possibility.  相似文献   

4.
Embryonic bone marrow of normal and hormonally bursectomized chicks was examined for the presence of hematopoietic precursor cells capable of migrating to the thymus and bursa and of differentiating into functional T and B cells, respectively. Following transfer of chromosomally marked bone marrow of normal and in ovo bursectomized 14-day-old embryos to 14-day-old γ-irradiated embryonic recipients, donor cells proliferated in the marrow, thymus, and bursa of recipients, and differentiated to PHA- and Con A-responsive T cells as well as to dextran sulfate- and anti-immunoglobulin-responsive B cells. In contrast, when marrow of 2-day-old hatched normal and in ovo-bursectomized donors was transferred to 14-day-old embryonic recipients, donor cells repopulated only the marrow and thymus of recipients which was followed by differentiation to Con A- or PHA-responsive T cells, but the same donor cells failed to proliferate in the bursa and there was no differentiation to functional B cells of donor type. The data were fitted to a model of T- and B-cell differentiation from the stem cell level and they suggest the presence of separate populations of committed precursor T (PT) and precursor B (PB) cells in the marrow of normal and in ovo bursectomized embryos with a bursa-independent selective disappearance of PB cells from the marrow during the late embryonic period.  相似文献   

5.
Degeneration and regeneration of bone marrow was measured by nucleated cell number changes and of thymus and spleen by weight changes in adult female inbred SwisS mice given a single sub-lethal dose of methyl methanesulphonate (MMS), ethyl methanesulphonate (EMS), N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), or N-ethyl-N-nitrosourea (ENUA).Significant cell number decreases of the bone marrow were observed only following ENUA, the only one of the four agents capable of enhancing thymoma development in these mice. ENUA also caused the greatest significant weight decrease of the thymus and the spleen. Return to normal occurred before the 20th day of the experiment.It is suggested that bone marrow and thymus regeneration is an essential step in thymoma development.  相似文献   

6.
Delayed-type hypersensitivity (DH) to Listeria antigens was induced in inbred C3Hf/Umc mice by intravenous injection of a sublethal dose of viable Listeria monocytogenes. Bone marrow, spleen, and lymph node cells from the immune mice were capable of passive transfer of DH to syngeneic neonatally thymectomized or lethally (900 R) irradiated recipients. Immune thymus cells as well as immune serum were ineffective in transferring DH to irradiated animals. In vitro treatment with antitheta isoantibody (anti-θ) and complement abolished the capacity of spleen and bone marrow cells from immune donors to transfer DH to irradiated hosts, indicating the thymus dependency of this cell population. The results with bone marrow indicate the existence of a small, but biologically significant, thymus-dependent population in this tissue.  相似文献   

7.
THE ROLE OF BONE MARROW OF X-IRRADIATED MICE IN THYMIC RECOVERY   总被引:1,自引:0,他引:1  
The influence of the bone marrow on the repopulation of the thymus in X-irradiated mice has been investigated.
It was observed that the thymus and a certain population of bone marrow lymphocytic cells were repopulated in parallel in a cyclic fashion. This occurred either after a single exposure of mice to 400 R or after serial weekly X-ray treatments with 170 R. Lethally irradiated recipients which were grafted with bone marrow cells obtained 12-24 days after four weekly irradiations of donor mice with 170 R also exhibited a cyclic repopulation of both the thymus and the bone marrow lymphocytic population. In contrast, mice which were transplanted with bone marrow cells from unirradiated donors, containing an equal number of stem cells (CFU), exhibited a continuous rather than a cyclic recovery of both cell populations. the bone marrow stem cells of mice recovering from X-irradiation were found to have a decreased proliferative activity, since they produced significantly smaller spleen colonies in lethally irradiated recipients than marrow cells from unirradiated mice.
The results were interpreted as indicating that the bone marrow lymphocytic cells may act as thymic precursor cells and that thymic lymphopoiesis is dependent on the presence of such cells. Evidently, the production of lymphocytic cells will decrease when the stimulus for granulocyte production increases due to the limited proliferative activity of the surviving bone marrow stem cells after irradiation. This may result in a cyclic variation of the production of bone marrow lymphocytic cells and it follows that thymic lymphopoiesis will run parallel.  相似文献   

8.
Growth kinetics of the donor-type thymus cell population after transplantation of bone marrow into irradiated syngeneic recipient mice is biphasic. During the first rapid phase of regeneration, lasting until day 19 after transplantation, the rate of development of the donor cells is independent of the number of bone marrow cells inoculated. the second slow phase is observed only when low numbers of bone marrow cells (2.5 × 104) are transplanted. the decrease in the rate of development is attributed to an efflux of donor cells from the thymus because, at the same time, the first immunologically competent cells are found in spleen. After bone marrow transplantation the regeneration of thymocyte progenitor cells in the marrow is delayed when compared to regeneration of CFUs. Therefore, regenerating marrow has a greatly reduced capacity to restore the thymus cell population. One week after transplantation of 3 × 106 cells, 1% of normal capacity of bone marrow is found. It is concluded that the regenerating thymus cells population after bone marrow transplantation is composed of the direct progeny of precursor cells in the inoculum.  相似文献   

9.
The distribution of 51Cr-labeled lymphoid cells from normal mice and mice immunized against a tumor were compared after intravenous inoculation of the labeled cells into normal syngeneic recipients. Spleen cell preparations from immune donors contained increased percentages of spleen and bone marrow-seeking cells, thus suggesting expansion of these cell populations when immunity to a tumor exists. Homing of labeled normal cells in tumor cell-injected normal animals was somewhat different from that seen in tumor cell-inoculated mice that were immunized against the tumor. In the latter case, accumulations of lymph node and spleen cells in recipient lymph nodes and bone marrow were consistently lower. In contrast, lymphoid cells from animals immunized against the tumor were found to accumulate in virtually the same percentages in lymphoid organs of normal and immune recipients. The behavior of lymphoid cell populations from thymus or bone marrow that consist mainly of precursor cells was unaffected by presence of malignancy and/or tumor immunity.  相似文献   

10.
Murine bone marrow cells can suppress the in vitro primary antibody response of normal spleen cells without apparent cytotoxicity. The bone marrow cells suppress the response to both T-dependent (SRBC) and T-independent (DNP-Ficoll) antigens. When bone marrow cells are fractionated on a sucrose density gradient, the suppressive activity is found in the residue rather than the lymphocyte fraction. The suppressive activity is either unaffected or enhanced by treatment with anti-T- and anti-B-cell serums. Pretreatment of mice with phenylhydrazine which reduces the number of pre-B cells did not reduce the suppressive activity of their bone marrow cells. Suppressive activity is abolished by irradiation of the marrow cells in vitro with 1000 R prior to assay. The activity is present in the marrow of thymus deficient (nude) mice, infant mice, and mice which have been made polycythemic by transfusion. Furthermore, the suppressor cell can phagocytize iron carbonyl particles, is slightly adherent to plastic and Sephadex G-10, and can bind to EA monolayers. We conclude that the suppressor cell is not a mature lymphocyte or granulocyte nor a member of the erythrocytic series, but is likely to be an immature cell possibly of the myeloid series. We speculate on the physiologic role of this cell.  相似文献   

11.
This presentation offers a brief review of the bone marrow-thymus axis in senescence, a putative model for thymocyte differentiation, and recent results of our work on the status of pre-thymic stem cells in aged mice. The data presented here provide further evidence for a thymus endocrine influence on the bone marrow stem cells, specifically lymphocyte precursors. It has been postulated that the thymic hormones may act on lymphocyte precursors in the bone marrow and that the loss of thymic factors during senescence may be a contributing factor to the decreased cellular immune function. This study used Haar's in vitro model to investigate the bone marrow-thymus axis in aged mice. Erythroid-depleted bone-marrow cells from 3-month- and 24-month-old CBA (Thy 1.2) mice were placed in the upper half of a blind-well chamber with thymus supernatant in the lower half. Experimental cells were treated with thymus supernatant for 1 hr prior to migration. This study confirmed that pre-thymic stem cells in aged bone marrow are deficient in their ability to migrate to the thymus supernatant. It also revealed that treatment of the old bone marrow with thymus supernatant, made from neonatal thymus cultures, could dramatically improve the thymus migrating ability of the aged bone-marrow stem cells.  相似文献   

12.
A rat thymic epithelial cell line IT45-R1 has been previously described as secreting soluble molecules that in vitro chemoattract rat hemopoietic precursor cells. The development of such an in vitro migration assay was based on the ability of cells to migrate across polycarbonate filters in Boyden chambers. In the present paper, by using the same strategy, we studied murine bone marrow cells capable of migrating in vitro toward IT45-R1 conditioned medium. The responding cells were shown to represent a minor bone marrow subpopulation characterized by a low capacity to incorporate tritiated thymidine in vitro (less than 10% of control). Moreover, this cell subset was considerably impoverished with respect to granulocyte-macrophage CFU (less than 7% of control) and pluripotent hemopoietic stem cells (less than 12% of control). Potential generation of T cells of donor-type in the lymphoid organs of irradiated recipients was measured by using C57BL/Ka Thy-1.1 and Thy-1.2 congenic mice. Thy-1.1 irradiated mice were injected intrathymically or intravenously with the selectively migrated cell subset of Thy-1.2 donor-type bone marrow cells. The use of an i.v. transfer route allowed us to show that these cells possess thymus-homing and colonization abilities. In a time-course study after intrathymic cell transfer, these migrated cells were able to generate Thy-1.2+ donor-type thymocytes represented by all cortical and medullary cell subsets in a single wave of repopulation from day 20 to day 30 after transfer, with a peak around days 23 to 25. The degree of repopulation closely resembled that seen with unfractionated bone marrow cells in terms of absolute numbers of donor cells per thymus (82% of control, 22 x 10(6) Thy-1.2+ cells) as well as in percent donor cells per thymus (105% of control). Thy-1.2+ cells were also detected in the lymph nodes and the spleens of reconstituted recipient mice. Taken together, these results support the idea that the supernatant of the established thymic epithelium IT45-R1 induces the migration of a murine bone marrow subset that contains hemopoietic stem cells already committed to the lymphoid lineage (i.e., pre-T cells).  相似文献   

13.
Studies were carried out to gain an insight into the mechanisms underlying WBH induced radioprotection. The plasma levels of IL-1α, IL-6, TNF-α and GM-CSF, were elevated in WBH treated mice between 2 and 6 h after treatment. The total nucleated cell count of hemopoietic tissues such as spleen, thymus, bone marrow and peripheral blood showed drastic reduction without recovery until death in mice treated with TBI. However, the nucleated cell count in the above tissues showed significant recovery after initial drop in WBH and WBH+TBI treated groups and reached to a normal level by day 7 and day 28, respectively. The total WBC and RBC count in peripheral blood recovered to a control level by day 28 after treatment. Significant number of endogenous spleen colonies were detected, 14 days after TBI in WBH pre-treated mice whereas no such spleen colonies could be detected in TBI treated group. The transplantation of bone marrow derived from control, WBH, TBI and WBH+TBI treated groups of mice to lethally irradiated mice (8 Gy) showed formation of spleen colonies only in mice which received bone marrow from control, WBH and WBH+TBI treated groups. Transplantation of the bone marrow from these groups of mice resulted in prolonged survival of lethally irradiated mice as compared to mice receiving bone marrow from TBI treated mice. These results seem to suggest that WBH induced radioprotection of mice could be due to immunomodulation manifested through induction of cytokines responsible for protection and proliferative response, leading to accelerated recovery from hemopoietic damage-a major cause of radiation induced death.  相似文献   

14.
Spleen and thymus cell populations from normal or allograft tolerant mice have been cultured for 5 days with specific alloantigens and examined for their reactivity in three assay systems. No consistent correlation was observed between the production of cytotoxic T cells (CTL) in these cultures and the ability of such cultured cells to inhibit specifically a CML response from fresh normal spleen cells directed to the priming alloantigens. Furthermore, suppressor cells measured in this latter assay were apparently distinct from those able to inhibit the production of cytotoxic lymphocyte precursors (CTLp) from bone marrow stem cells in lethally irradiated bone marrow protected mice. Velocity sedimentation experiments confirmed that both the precursor and effector cells for the two suppressor systems were physically separable, and were distinct from CTLp or CTL, respectively. Precursor cells for the two suppressor systems investigated belong to the short-lived cortical thymus cell population.  相似文献   

15.
The enzyme TdT was used as a marker with which to study the ontogeny of primitive lymphopoietic cells in NZ strain mice. A marked accumulation of abnormally large, rapidly proliferating TdT+ cells was seen in the subcapsular region of the thymus cortex in the NZB and NZB/W mice. This abnormal accumulation of TdT+ thymocytes was most pronounced in the NZB/W hybrid and persisted for at least the first 16 wk of life. In addition, significantly elevated percentages of TdT+ bone marrow cells (presumptive prothymocytes) were present in NZB, NZW, and NZB/W mice between 1 and 4 wk of age, with the highest mean peak levels occurring in the NZB strain. Treatment of both normal and adrenalectomized BALB/c and NZB/W mice with pharmacologic doses (7 to 10 mg/kg) of PGE1 caused a marked, dose-dependent decrease in thymus weight and thymus cell number within 12 to 18 hr. Histologic and cell separation studies showed that this was due to the selective depletion of PNA+ TdT+ cortical thymocytes. Similarly, PGE1 caused a reversible, dose-dependent decrease in the percentage of TdT+ bone marrow cells. In contrast, PGF2 alpha, which is not therapeutically active against autoimmunity in NZB/W mice, had no detectable effect on TdT+ bone marrow cells or thymocytes in BALB/c or NZB/W mice. These results directly document the existence of abnormalities in the development of lymphopoietic precursor cells in the bone marrow and thymus cortex of NZ strain mice prior to the onset of autoimmune phenomena. The results also raise the possibility that the therapeutic efficacy of exogenous PGE1 in autoimmune NZ strain mice may be related, at least in part, to its ability to rectify the abnormal development of these early lymphoid cells.  相似文献   

16.
A role for CCR9 in T lymphocyte development and migration   总被引:14,自引:0,他引:14  
CCR9 mediates chemotaxis in response to CCL25/thymus-expressed chemokine and is selectively expressed on T cells in the thymus and small intestine. To investigate the role of CCR9 in T cell development, the CCR9 gene was disrupted by homologous recombination. B cell development, thymic alphabeta-T cell development, and thymocyte selection appeared unimpaired in adult CCR9-deficient (CCR9(-/-)) mice. However, competitive transplantation experiments revealed that bone marrow from CCR9(-/-) mice was less efficient at repopulating the thymus of lethally irradiated Rag-1(-/-) mice than bone marrow from littermate CCR9(+/+) mice. CCR9(-/-) mice had increased numbers of peripheral gammadelta-T cells but reduced numbers of gammadeltaTCR(+) and CD8alphabeta(+)alphabetaTCR(+) intraepithelial lymphocytes in the small intestine. Thus, CCR9 plays an important, although not indispensable, role in regulating the development and/or migration of both alphabeta(-) and gammadelta(-) T lymphocytes.  相似文献   

17.
Induction of central deletional T cell tolerance by gene therapy   总被引:4,自引:0,他引:4  
Transgenic mice expressing an alloreactive TCR specific for the MHC class I Ag K(b) were used to examine the mechanism by which genetic engineering of bone marrow induces T cell tolerance. Reconstitution of lethally irradiated mice with bone marrow infected with retroviruses carrying the MHC class I gene H-2K(b) resulted in lifelong expression of K(b) on bone marrow-derived cells. While CD8 T cells expressing the transgenic TCR developed in control mice reconstituted with mock-transduced bone marrow, CD8 T cells expressing the transgenic TCR failed to develop in mice reconstituted with H-2K(b) transduced bone marrow. Analysis of transgene-expressing CD8 T cells in the thymus and periphery of reconstituted mice revealed that CD8 T cells expressing the transgenic TCR underwent negative selection in the thymus of mice reconstituted with K(b) transduced bone marrow. Negative selection induced by gene therapy resulted in tolerance to K(b). Thus, genetic engineering of bone marrow can be used to alter T cell education in the thymus by inducing negative selection.  相似文献   

18.
Bone marrow T cells. II. Thymic dependency   总被引:3,自引:0,他引:3  
Mouse bone marrow contains cells capable of responding in vitro to the T cell mitogens PHA and Con A. These cellular responses are not demonstrable in the marrow of athymic nude mice (when compared with heterozygous littermates) and are depressed 47% in the marrow of neonatally thymectomized LAF1 mice (when compared with sham-operated littermates). Therefore, the population of “bone marrow T cells” is thymus dependent.  相似文献   

19.
Cell transfer studies in cyclophosphamide-induced tolerance   总被引:1,自引:0,他引:1  
Thymectomized, irradiated adult CBA mice were restored with various combinations of bone marrow and thymus cells from nontolerant animals and from animals made tolerant to sheep erythrocytes or to hemocyanin with the drug cyclophosphamide. Mice reconstituted with tolerant marrow and thymus responded as well as those that received nontolerant cells. Thus it is concluded that the tolerant state of the transferred marrow and thymus cells is not a significant factor in the tolerant state of the recipient, and that antigenic diversity is restored in the interaction and proliferation of bone marrow and thymus cells that follow transfer.Thymectomized irradiated mice restored with thymocytes, in contrast to unoperated animals, require multiple antigen injections to demonstrate comparable immune response, but develop tolerance normally when treated with cyclophosphamide and antigen. Reconstitution with tolerant marrow and thymus cells resembles the recovery of immune responsiveness seen after lethal irradiation of tolerant mice; in both instances a complete breakdown of immunological tolerance is observed.  相似文献   

20.
Rabbits were immunized with ovalbumin emulsified in complete Freund's adjuvant subcutaneously or with ovalbumin (OA) in saline intravenously. They were skin tested at intervals of time in order to determine the optimal sensitization time for the induction of the delayed skin reaction. The rabbits were also sacrificed and cell suspensions were prepared from the following organs: spleen, thymus, bone marrow, lymph nodes (popliteal), appendix, sacculus rotundus, and Peyer's patches. Peritoneal exudate cells were also obtained. These cell suspensions were tested for their ability to be inhibited in their migration in vitro by the specific sensitizing antigen. It was observed that the migration of all of the cell suspensions except for the bone marrow and peritoneal exudate cells could be inhibited by OA, but not by BGG, a non-cross-reacting antigen. Inhibition of migration was most marked at 3–4 weeks postsensitization and was negligible by 8–12 weeks, at a time when the delayed skin reaction was as extensive as in the early postsensitization period. Furthermore, the migration of cells of rabbits immunized with OA in saline intravenously was also markedly inhibited. It is concluded that, in the rabbit, different cell pathways are operative in the induction of the delayed skin reaction, on the one hand, and the facilitation of migration inhibition, on the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号