首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Senescent cells are present in premalignant lesions and sites of tissue damage and accumulate in tissues with age. In vivo identification, quantification and characterization of senescent cells are challenging tasks that limit our understanding of the role of senescent cells in diseases and aging. Here, we present a new way to precisely quantify and identify senescent cells in tissues on a single‐cell basis. The method combines a senescence‐associated beta‐galactosidase assay with staining of molecular markers for cellular senescence and of cellular identity. By utilizing technology that combines flow cytometry with high‐content image analysis, we were able to quantify senescent cells in tumors, fibrotic tissues, and tissues of aged mice. Our approach also yielded the finding that senescent cells in tissues of aged mice are larger than nonsenescent cells. Thus, this method provides a basis for quantitative assessment of senescent cells and it offers proof of principle for combination of different markers of senescence. It paves the way for screening of senescent cells for identification of new senescence biomarkers, genes that bypass senescence or senolytic compounds that eliminate senescent cells, thus enabling a deeper understanding of the senescent state in vivo.  相似文献   

2.
Fat tissue, frequently the largest organ in humans, is at the nexus of mechanisms involved in longevity and age‐related metabolic dysfunction. Fat distribution and function change dramatically throughout life. Obesity is associated with accelerated onset of diseases common in old age, while fat ablation and certain mutations affecting fat increase life span. Fat cells turn over throughout the life span. Fat cell progenitors, preadipocytes, are abundant, closely related to macrophages, and dysdifferentiate in old age, switching into a pro‐inflammatory, tissue‐remodeling, senescent‐like state. Other mesenchymal progenitors also can acquire a pro‐inflammatory, adipocyte‐like phenotype with aging. We propose a hypothetical model in which cellular stress and preadipocyte overutilization with aging induce cellular senescence, leading to impaired adipogenesis, failure to sequester lipotoxic fatty acids, inflammatory cytokine and chemokine generation, and innate and adaptive immune response activation. These pro‐inflammatory processes may amplify each other and have systemic consequences. This model is consistent with recent concepts about cellular senescence as a stress‐responsive, adaptive phenotype that develops through multiple stages, including major metabolic and secretory readjustments, which can spread from cell to cell and can occur at any point during life. Senescence could be an alternative cell fate that develops in response to injury or metabolic dysfunction and might occur in nondividing as well as dividing cells. Consistent with this, a senescent‐like state can develop in preadipocytes and fat cells from young obese individuals. Senescent, pro‐inflammatory cells in fat could have profound clinical consequences because of the large size of the fat organ and its central metabolic role.  相似文献   

3.
Senescent cells accumulate with age in vertebrates and promote aging largely through their senescence‐associated secretory phenotype (SASP). Many types of stress induce senescence, including genotoxic stress. ERCC1‐XPF is a DNA repair endonuclease required for multiple DNA repair mechanisms that protect the nuclear genome. Humans or mice with reduced expression of this enzyme age rapidly due to increased levels of spontaneous, genotoxic stress. Here, we asked whether this corresponds to an increased level of senescent cells. p16Ink4a and p21Cip1 mRNA were increased ~15‐fold in peripheral lymphocytes from 4‐ to 5‐month‐old Ercc1?/? and 2.5‐year‐old wild‐type (WT) mice, suggesting that these animals exhibit a similar biological age. p16Ink4a and p21Cip1 mRNA were elevated in 10 of 13 tissues analyzed from 4‐ to 5‐month‐old Ercc1?/? mice, indicating where endogenous DNA damage drives senescence in vivo. Aged WT mice had similar increases of p16Ink4a and p21Cip1 mRNA in the same 10 tissues as the mutant mice. Senescence‐associated β–galactosidase activity and p21Cip1 protein also were increased in tissues of the progeroid and aged mice, while Lamin B1 mRNA and protein levels were diminished. In Ercc1?/Δ mice with a p16Ink4a luciferase reporter, bioluminescence rose steadily with age, particularly in lung, thymus, and pancreas. These data illustrate where senescence occurs with natural and accelerated aging in mice and the relative extent of senescence among tissues. Interestingly, senescence was greater in male mice until the end of life. The similarities between Ercc1?/? and aged WT mice support the conclusion that the DNA repair‐deficient mice accurately model the age‐related accumulation of senescent cells, albeit six‐times faster.  相似文献   

4.
The idea that senescent cells are causally involved in aging has gained strong support from findings that the removal of such cells alleviates many age‐related diseases and extends the life span of mice. While efforts proceed to make therapeutic use of such discoveries, it is important to ask what evolutionary forces might have been behind the emergence of cellular senescence, in order better to understand the biology that we might seek to alter. Cellular senescence is often regarded as an anti‐cancer mechanism, since it limits the division potential of cells. However, many studies have shown that senescent cells often also have carcinogenic properties. This is difficult to reconcile with the simple idea of an anti‐cancer mechanism. Furthermore, other studies have shown that cellular senescence is involved in wound healing and tissue repair. Here, we bring these findings and ideas together and discuss the possibility that these functions might be the main reason for the evolution of cellular senescence. Furthermore, we discuss the idea that senescent cells might accumulate with age because the immune system had to strike a balance between false negatives (overlooking some senescent cells) and false positives (destroying healthy body cells).  相似文献   

5.
Mutations in lamin A (LMNA) are responsible for a variety of human dystrophic and metabolic diseases. Here, we created a mouse model in which progerin, the lamin A mutant protein that causes Hutchinson–Gilford progeria syndrome (HGPS), can be inducibly overexpressed. Muscle‐specific overexpression of progerin was sufficient to induce muscular dystrophy and alter whole‐body energy expenditure, leading to premature death. Intriguingly, sarcolipin (Sln), an endoplasmic reticulum (ER)‐associated protein involved in heat production, is upregulated in progerin‐expressing and Lmna knockout (Lmna?/?) skeletal muscle. The depletion of Sln accelerated the early death of Lmna?/? mice. An examination at the molecular level revealed that progerin recruits Sln and Calnexin to the nuclear periphery. Furthermore, progerin‐expressing myoblasts presented enhanced store‐operated Ca2+ entry, as well as increased co‐localization of STIM1 and ORAI1. These findings suggest that progerin dysregulates calcium homeostasis through an interaction with a subset of ER‐associated proteins, resulting in thermogenic and metabolic abnormalities.  相似文献   

6.
7.
There is strong evidence that most individuals in the elderly population are characterized by inflamm-aging which refers to a subtle increase in the systemic pro-inflammatory environment and impaired innate immune activation. Although a variety of distinct factors are associated with the progression of inflamm-aging, emerging research is demonstrating a dynamic relationship between the processes of cellular senescence and inflamm-aging. Cellular senescence is a recognized factor governing organismal aging, and through a characteristic secretome, accumulating senescent cells can induce and augment a pro-inflammatory tissue environment that provides a rationale for immune system-independent activation of inflamm-aging and associated diseases. There is also accumulating evidence that inflamm-aging or its components can directly accelerate the development of senescent cells and ultimately senescent cell burden in tissues in a likely vicious inflammatory loop. The present review is intended to describe the emerging senescence-based molecular etiology of inflamm-aging as well as the dynamic reciprocal interactions between inflamm-aging and cellular senescence. Therapeutic interventions concurrently targeting cellular senescence and inflamm-aging are discussed and limitations as well as research opportunities have been deliberated. An effort has been made to provide a rationale for integrating inflamm-aging with cellular senescence both as an underlying cause and therapeutic target for further studies.  相似文献   

8.
Aging confers increased susceptibility to common pathogens including influenza A virus. Despite shared vulnerability to infection with advancing age in humans and rodents, the relatively long time required for immune senescence to take hold practically restricts the use of naturally aged mice to investigate aging‐induced immunological shifts. Here, we show accelerated aging LmnaDhe mice with spontaneous mutation in the nuclear scaffolding protein, lamin A, replicate infection susceptibility, and substantial immune cell shifts that occur with advancing age. Naturally aged (≥20 month) and 2‐ to 3‐month‐old LmnaDhe mice share near identically increased influenza A susceptibility compared with age‐matched LmnaWT control mice. Increased mortality and higher viral burden after influenza infection in LmnaDhe mice parallel reduced accumulation of lung alveolar macrophage cells, systemic expansion of immune suppressive Foxp3+ regulatory T cells, and skewed immune dominance among viral‐specific CD8+ T cells similar to the immunological phenotype of naturally aged mice. Thus, aging‐induced infection susceptibility and immune senescence are replicated in accelerated aging LmnaDhe mice.  相似文献   

9.
Adipose tissue inflammation and dysfunction are associated with obesity‐related insulin resistance and diabetes, but mechanisms underlying this relationship are unclear. Although senescent cells accumulate in adipose tissue of obese humans and rodents, a direct pathogenic role for these cells in the development of diabetes remains to be demonstrated. Here, we show that reducing senescent cell burden in obese mice, either by activating drug‐inducible “suicide” genes driven by the p16Ink4a promoter or by treatment with senolytic agents, alleviates metabolic and adipose tissue dysfunction. These senolytic interventions improved glucose tolerance, enhanced insulin sensitivity, lowered circulating inflammatory mediators, and promoted adipogenesis in obese mice. Elimination of senescent cells also prevented the migration of transplanted monocytes into intra‐abdominal adipose tissue and reduced the number of macrophages in this tissue. In addition, microalbuminuria, renal podocyte function, and cardiac diastolic function improved with senolytic therapy. Our results implicate cellular senescence as a causal factor in obesity‐related inflammation and metabolic derangements and show that emerging senolytic agents hold promise for treating obesity‐related metabolic dysfunction and its complications.  相似文献   

10.
《Cell metabolism》2021,33(10):1957-1973.e6
  1. Download : Download high-res image (176KB)
  2. Download : Download full-size image
  相似文献   

11.
The study of Hutchinson–Gilford progeria syndrome (HGPS) has provided important clues to decipher mechanisms underlying aging. Progerin, a mutant lamin A, disrupts nuclear envelope structure/function, with further impairment of multiple processes that culminate in senescence. Here, we demonstrate that the nuclear protein export pathway is exacerbated in HGPS, due to progerin‐driven overexpression of CRM1, thereby disturbing nucleocytoplasmic partitioning of CRM1‐target proteins. Enhanced nuclear export is central in HGPS, since pharmacological inhibition of CRM1 alleviates all aging hallmarks analyzed, including senescent cellular morphology, lamin B1 downregulation, loss of heterochromatin, nuclear morphology defects, and expanded nucleoli. Exogenous overexpression of CRM1 on the other hand recapitulates the HGPS cellular phenotype in normal fibroblasts. CRM1 levels/activity increases with age in fibroblasts from healthy donors, indicating that altered nuclear export is a common hallmark of pathological and physiological aging. Collectively, our findings provide novel insights into HGPS pathophysiology, identifying CRM1 as potential therapeutic target in HGPS.  相似文献   

12.
Age‐related diseases such as cancer, cardiovascular disease, kidney failure, and osteoarthritis have universal features: Their incidence rises exponentially with age with a slope of 6–8% per year and decreases at very old ages. There is no conceptual model which explains these features in so many diverse diseases in terms of a single shared biological factor. Here, we develop such a model, and test it using a nationwide medical record dataset on the incidence of nearly 1000 diseases over 50 million life‐years, which we provide as a resource. The model explains incidence using the accumulation of senescent cells, damaged cells that cause inflammation and reduce regeneration, whose level rise stochastically with age. The exponential rise and late drop in incidence are captured by two parameters for each disease: the susceptible fraction of the population and the threshold concentration of senescent cells that causes disease onset. We propose a physiological mechanism for the threshold concentration for several disease classes, including an etiology for diseases of unknown origin such as idiopathic pulmonary fibrosis and osteoarthritis. The model can be used to design optimal treatments that remove senescent cells, suggeting that treatment starting at old age can sharply reduce the incidence of all age‐related diseases, and thus increase the healthspan.  相似文献   

13.
Sirtuins are stress‐responsive proteins that direct various post‐translational modifications (PTMs) and as a result, are considered to be master regulators of several cellular processes. They are known to both extend lifespan and regulate spontaneous tumor development. As both aging and cancer are associated with altered stem cell function, the possibility that the involvement of sirtuins in these events is mediated by their roles in stem cells is worthy of investigation. Research to date suggests that the individual sirtuin family members can differentially regulate embryonic, hematopoietic as well as other adult stem cells in a tissue‐ and cell type‐specific context. Sirtuin‐driven regulation of both cell differentiation and signaling pathways previously involved in stem cell maintenance has been described where downstream effectors involved determine the biological outcome. Similarly, diverse roles have been reported in cancer stem cells (CSCs), depending on the tissue of origin. This review highlights the current knowledge which places sirtuins at the intersection of stem cells, aging, and cancer. By outlining the plethora of stem cell‐related roles for individual sirtuins in various contexts, our purpose was to provide an indication of their significance in relation to cancer and aging, as well as to generate a clearer picture of their therapeutic potential. Finally, we propose future directions which will contribute to the better understanding of sirtuins, thereby further unraveling the full repertoire of sirtuin functions in both normal stem cells and CSCs.  相似文献   

14.
Understanding the aging process and ways to manipulate it is of major importance for biology and medicine. Among the many aging theories advanced over the years, the concept most consistent with experimental evidence posits the buildup of numerous forms of molecular damage as a foundation of the aging process. Here, we discuss that this concept integrates well with recent findings on cellular senescence, offering a novel view on the role of senescence in aging and age‐related disease. Cellular senescence has a well‐established role in cellular aging, but its impact on the rate of organismal aging is less defined. One of the most prominent features of cellular senescence is its association with macromolecular damage. The relationship between cell senescence and damage concerns both damage as a molecular signal of senescence induction and accelerated accumulation of damage in senescent cells. We describe the origin, regulatory mechanisms, and relevance of various damage forms in senescent cells. This view on senescent cells as carriers and inducers of damage puts new light on senescence, considering it as a significant contributor to the rise in organismal damage. Applying these ideas, we critically examine current evidence for a role of cellular senescence in aging and age‐related diseases. We also discuss the differential impact of longevity interventions on senescence burden and other types of age‐related damage. Finally, we propose a model on the role of aging‐related damage accumulation and the rate of aging observed upon senescent cell clearance.  相似文献   

15.
衰老是一个新兴的重要研究领域,随着该领域相关知识的积累和技术的进步,人们逐渐意识到衰老本身可以被针对性地干预,实现延长寿命并且延缓衰老相关疾病的发生发展,具有重要的科学和现实意义.引起个体衰老的众多因素中,衰老细胞的积累被认为是导致器官衰老发生退行性变,最终引起衰老相关疾病的重要原因.近年来,多项研究表明,清除体内衰老细胞可以延缓多种衰老相关疾病的发生,直接证明了衰老细胞是导致衰老相关疾病的重要原因之一,为治疗衰老相关疾病提供了新靶点.细胞衰老是由于损伤积累诱发了细胞周期抑制通路的激活,细胞永久地退出细胞增殖周期.衰老细胞会发生细胞形态、转录谱、蛋白质稳态、表观遗传以及代谢等系列特征的改变,同时衰老细胞对凋亡发生抵抗从而在体内多器官组织积累.衰老细胞会激活炎症因子分泌通路,导致组织局部非感染性炎症微环境,进而导致器官退行性变及多种衰老相关疾病的发生发展.因此针对衰老细胞对凋亡抵抗的特性,多个研究小组通过筛选小分子化合物库,发现某些化合物能够选择性清除衰老细胞,这些小分子化合物被称为"senolytics",意为"衰老细胞杀伤性化合物".衰老细胞杀伤性化合物在多种衰老相关疾病动物模型中能够延缓疾病的发展并延长哺乳动物寿命.因此,靶向杀伤衰老细胞对多种衰老相关疾病的治疗从而提高健康寿命具有重要的临床应用前景.除靶向杀伤衰老细胞策略以外,干细胞移植、基因编辑、异体共生等策略在抗衰老研究发展中也具有重要意义,具有启发性.本文通过汇总近期衰老细胞清除领域的重要进展和多种抗衰老策略,将细胞衰老研究发展史做简要梳理,就细胞衰老与衰老相关疾病的关系作一综述,重点讨论衰老细胞在多种衰老相关疾病中作为治疗靶点的应用潜力,并就其局限性和进一步的研究方向进行探讨.  相似文献   

16.
The age-related decline in immunity reduces the effectiveness of vaccines in older adults. Immunosenescence is associated with chronic, low-grade inflammation, and the accumulation of senescent cells. The latter express Bcl-2 family members (providing resistance to cell death) and exhibit a pro-inflammatory, senescence-associated secretory phenotype (SASP). Preexisting senescent cells cause many aging-related disorders and therapeutic means of eliminating these cells have recently gained attention. The potential consequences of senescent cell removal on vaccine efficacy in older individuals are still ignored. We used the Bcl-2 family inhibitor ABT-263 to investigate the effects of pre-vaccination senolysis on immune responses in old mice. Two different ovalbumin (OVA)-containing vaccines (containing a saponin-based or a CpG oligodeoxynucleotide adjuvant) were tested. ABT-263 depleted senescent cells (apoptosis) and ablated the basal and lipopolysaccharide-induced production of SASP-related factors in old mice. Depletion of senescent cells prior to vaccination (prime/boost) had little effect on OVA-specific antibody and T-cell responses (slightly reduced and augmented, respectively). We then used a preclinical melanoma model to test the antitumor potential of senolysis before vaccination (prime with the vaccine and OVA boost by tumor cells). Surprisingly, ABT-263 treatment abrogated the vaccine's ability to protect against B16 melanoma growth in old animals, an effect associated with reduced antigen-specific T-cell responses. Some, but not all, of the effects were age-specific, which suggests that preexisting senescent cells were partly involved. Hence, depletion of senescent cells modifies immune responses to vaccines in some settings and caution should be taken when incorporating senolytics into vaccine-based cancer therapies.  相似文献   

17.
The p63 gene regulates thymic epithelial cell (TEC) proliferation, whereas FoxN1 regulates their differentiation. However, their collaborative role in the regulation of TEC homeostasis during thymic aging is largely unknown. In murine models, the proportion of TAp63+, but not ΔNp63+, TECs was increased with age, which was associated with an age-related increase in senescent cell clusters, characterized by SA-β-Gal+ and p21+ cells. Intrathymic infusion of exogenous TAp63 cDNA into young wild-type (WT) mice led to an increase in senescent cell clusters. Blockade of TEC differentiation via conditional FoxN1 gene knockout accelerated the appearance of this phenotype to early middle age, whereas intrathymic infusion of exogenous FoxN1 cDNA into aged WT mice brought only a modest reduction in the proportion of TAp63+ TECs, but an increase in ΔNp63+ TECs in the partially rejuvenated thymus. Meanwhile, we found that the increased TAp63+ population contained a high proportion of phosphorylated-p53 TECs, which may be involved in the induction of cellular senescence. Thus, TAp63 levels are positively correlated with TEC senescence but inversely correlated with expression of FoxN1 and FoxN1-regulated TEC differentiation. Thereby, the p63-FoxN1 regulatory axis in regulation of postnatal TEC homeostasis has been revealed.  相似文献   

18.
Cardiovascular disease is the leading cause of death in individuals over 60 years old. Aging is associated with an increased prevalence of coronary artery disease and a poorer prognosis following acute myocardial infarction (MI). With age, senescent cells accumulate in tissues, including the heart, and contribute to age‐related pathologies. However, the role of senescence in recovery following MI has not been investigated. In this study, we demonstrate that treatment of aged mice with the senolytic drug, navitoclax, eliminates senescent cardiomyocytes and attenuates profibrotic protein expression in aged mice. Importantly, clearance of senescent cells improved myocardial remodelling and diastolic function as well as overall survival following MI. These data provide proof‐of‐concept evidence that senescent cells are major contributors to impaired function and increased mortality following MI and that senolytics are a potential new therapeutic avenue for MI.  相似文献   

19.
Joint morphogenesis involves signaling pathways and growth factors that recur in the adult life with less redundancy to safeguard joint homeostasis. Loss of such homeostasis due to abnormal signaling networks as in aging could lead to diseases such as osteoarthritis. Stem cells are the cellular counterpart and targets of the morphogenetic signals, and they function to maintain the tissues by ensuring replacement of cells lost to physiological turnover, injury, aging, and disease. Mesenchymal stem cells (MSCs) are key players in regenerative medicine for their ability to differentiate toward multiple lineages such as cartilage and bone, but they age along the host body and senesce when serially passaged in culture. Understanding correlations between aging and its effects on MSCs is of the utmost importance to explain how aging happens and unravel the underlying mechanisms. The investigation of the MSC senescence in culture will help in developing more efficient and standardized cell culture methods for cellular therapies in skeletal regenerative medicine. An important area to explore in biomedical sciences is the role of endogenous stem cell niches in joint homeostasis, remodeling, and disease. It is anticipated that an understanding of the stem cell niches and related remodeling signals will allow the development of pharmacological interventions to support effective joint tissue regeneration, to restore joint homeostasis, and to prevent osteoarthritis.  相似文献   

20.
Aging results in an elevated burden of senescent cells, senescence-associated secretory phenotype (SASP), and tissue infiltration of immune cells contributing to chronic low-grade inflammation and a host of age-related diseases. Recent evidence suggests that the clearance of senescent cells alleviates chronic inflammation and its associated dysfunction and diseases. However, the effect of this intervention on metabolic function in old age remains poorly understood. Here, we demonstrate that dasatinib and quercetin (D&Q) have senolytic effects, reducing age-related increase in senescence-associated β-galactosidase, expression of p16 and p21 gene and P16 protein in perigonadal white adipose tissue (pgWAT; all p ≤ 0.04). This treatment also suppressed age-related increase in the expression of a subset of pro-inflammatory SASP genes (mcp1, tnf-α, il-1α, il-1β, il-6, cxcl2, and cxcl10), crown-like structures, abundance of T cells and macrophages in pgWAT (all p ≤ 0.04). In the liver and skeletal muscle, we did not find a robust effect of D&Q on senescence and inflammatory SASP markers. Although we did not observe an age-related difference in glucose tolerance, D&Q treatment improved fasting blood glucose (p = 0.001) and glucose tolerance (p = 0.007) in old mice that was concomitant with lower hepatic gluconeogenesis. Additionally, D&Q improved insulin-stimulated suppression of plasma NEFAs (p = 0.01), reduced fed and fasted plasma triglycerides (both p ≤ 0.04), and improved systemic lipid tolerance (p = 0.006). Collectively, results from this study suggest that D&Q attenuates adipose tissue inflammation and improves systemic metabolic function in old age. These findings have implications for the development of therapeutic agents to combat metabolic dysfunction and diseases in old age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号