首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In terrestrial endotherms, evaporation is a significant mechanism of water loss in hot environments. Although water is passively lost by evaporation, individuals can regulate it at different levels. Inhabiting a relatively stable environment characterized by mild ambient temperature (Ta) and high humidity can ensure a balanced water budget. Many fossorial rodents are well adapted to live in such conditions. In this study, evaporative water loss (EWL) of fossorial rodent species with different degree of adaptations to underground life (from strictly subterranean to those with regular surface activity) was evaluated. By measuring EWL, the specific contribution of either evaporative or non-evaporative components of heat loss can be determined. With the exception of the silvery mole-rat (Heliophobius argenteocinereus), in all tested rodents EWL is relatively stable below and within the thermoneutral zone (TNZ). As Tas increase above TNZ, EWL increases as does total thermal conductance, but conductance increases several times more than EWL. In addition, non-evaporative routes seem to be more important than evaporative heat loss in the analyzed species. No clear pattern of EWL in relation to a species degree of fossoriality or sociality was detected. In this context, atmosphere of burrows could affect EWL, since the high humidity found inside tunnels can establish limits on evaporation to favor water rather than thermal balance.  相似文献   

2.
Small animals need efficient water conservation mechanisms for survival and reproduction, which is relevant for the spiders that have large book lungs with large respiratory surface. If lung evaporation is relevant to limit water loss, adjustments of the spiracle opening to metabolic demands should be expected. In this study, we measured the metabolic rate and total evaporative water loss mediated by the opening of the spiracles in the migalomorph spider Paraphysa parvula, a resident of fluctuating Mediterranean environments of the mountains of central Chile. We found that the metabolism of P. parvula was similar to other Theraphosidae and low compared to other arthropods. Carbon dioxide production and evaporative water loss increased with temperature, particularly at 40 °C. The total evaporative water loss at 40 °C increased dramatically to about 10 times that found with the lower temperatures. Thus, 40 °C will be the limit temperature for this species after which evaporative water loss starts to become damaging, so it has to avoid it. The exposition to hypercapnic environments had as a consequence an increase in evaporative water loss and the involvement of the book lungs in this loss was about 60%. The possibility of losing water could condition this species to seek temperate and oxygenated shelters under rocks.  相似文献   

3.
Abstract Maintaining appropriate water balance is a constant challenge for terrestrial mammals, and this problem can be exacerbated in desiccating environments. It has been proposed that natural selection has provided desert-dwelling mammals physiological mechanisms to reduce rates of total evaporative water loss. In this study, we evaluated the relationship between total evaporative water loss and body mass in mammals by using a recent phylogenetic hypothesis. We compared total evaporative water loss in 80 species of arid-zone mammals to that in 56 species that inhabit mesic regions, ranging in size from 4 g to 3,500 kg, to test the hypothesis that mammals from arid environments have lower rates of total evaporative water loss than mammals from mesic environments once phylogeny is taken into account. We found that arid species had lower rates of total evaporative water loss than mesic species when using a dichotomous variable to describe habitat (arid or mesic). We also found that total evaporative water loss was negatively correlated with the average maximum and minimum environmental temperature as well as the maximum vapor pressure deficit of the environment. Annual precipitation and the variable Q (a measure of habitat aridity) were positively correlated with total evaporative water loss. These results support the hypothesis that desert-dwelling mammals have lower rates of total evaporative water loss than mesic species after controlling for body mass and evolutionary relatedness regardless of whether categorical or continuous variables are used to describe habitat.  相似文献   

4.
Hummingbirds represent an end point for small body size and water flux in vertebrates. We explored the role evaporative water loss (EWL) plays in management of their large water pool and its use in dissipating metabolic heat. We measured respiratory evaporative water loss (REWL) in hovering hummingbirds in the field (6 species) and over a range of speeds in a wind tunnel (1 species) using an open-circuit mask respirometry system. Hovering REWL during the active period was positively correlated with operative temperature (Te) likely due to some combination of an increase in the vapor-pressure deficit, increase in lung ventilation rate, and reduced importance of dry heat transfer at higher Te. In rufous hummingbirds (Selasphorus rufus; 3.3 g) REWL during forward flight at 6 and 10 m/s was less than half the value for hovering. The proportion of total dissipated heat (TDH) accounted for by REWL during hovering at Te > 40 °C was < 40% in most species. During forward flight in S. rufus the proportion of TDH accounted for by REWL was ~ 35% less than for hovering. REWL in hummingbirds is a relatively small component of the water budget compared with other bird species (< 20%) so cutaneous evaporative water loss and dry heat transfer must contribute significantly to thermal balance in hummingbirds.  相似文献   

5.
Human activities often replace native forests with warmer, modified habitats that represent novel thermal environments for biodiversity. Reducing biodiversity loss hinges upon identifying which species are most sensitive to the environmental conditions that result from habitat modification. Drawing on case studies and a meta‐analysis, we examined whether observed and modelled thermal traits, including heat tolerances, variation in body temperatures, and evaporative water loss, explained variation in sensitivity of ectotherms to habitat modification. Low heat tolerances of lizards and amphibians and high evaporative water loss of amphibians were associated with increased sensitivity to habitat modification, often explaining more variation than non‐thermal traits. Heat tolerances alone explained 24–66% (mean = 38%) of the variation in species responses, and these trends were largely consistent across geographic locations and spatial scales. As habitat modification alters local microclimates, the thermal biology of species will likely play a key role in the reassembly of terrestrial communities.  相似文献   

6.
Proper adjustment of thermoregulatory mechanisms ensures the survival of mammals when they are subjected to seasonal changes in their natural environment. To understand the physiological and ecological adaptations of Eothenomys olitor, we measured their metabolic rate, thermal conductance, body temperature (Tb) and evaporative water loss at a temperature range of 5–30 °C in summer. The thermal neutral zone (TNZ) of E. olitor was 20–27.5 °C, and the mean body temperature was 35.81±0.15 °C. Basal metabolic rate (BMR) was 2.81±0.11 ml O2/g h and mean minimum thermal conductance (Cm) was 0.18±0.01 ml O2/g h °C. Evaporative water loss (EWL) in E. olitor increased when the ambient temperature increased. The maximal evaporative water loss was 6.74±0.19 mg H2O/g h at 30 °C. These results indicated that E. olitor have relatively high BMR, low body temperature, low lower critical temperature, and normal thermal conductance. EWL plays an inportant role in temperature regulation. These characteristics are closely related to the living habitat of the species, and represent its adaptive strategy to the climate of the Yunnan-Kweichow Plateau, a low-latitude, high-altitude region where annual temperature fluctuations are small, but daily temperature fluctuations are greater.  相似文献   

7.
Thermogenic characteristics and evaporative water loss were measured at different temperatures in Tupaia belangeri. The thermal neutral zone (TNZ) of T. belangeri was 30–35 °C. Mean body temperature was 39.76±0.27 °C and mean body mass was 100.86±9.09 g. Basal metabolic rate (BMR) was 1.38±0.03 ml O2/g h. Average minimum thermal conductance (Cm) was 0.13±0.01 ml O2/g h °C. Evaporative water loss in T. belangeri increased when the temperature rose; the maximal evaporative water loss was 3.88±0.41 mg H2O/g h at 37.5 °C. The results may reflect features of small mammals in the sub-tropical plateau region: T. belangeri had high basal metabolic rate and high total thermal conductance, compared with the predicted values based on their body mass whilst their body temperatures are relatively high; T. belangeri has high levels of evaporative water loss and poor water-retention capacity. Evaporative water loss plays an important role in temperature regulation.  相似文献   

8.
We tested the hypothesis that birds in arid environments, where primary productivity is low and surface water is scarce, have reduced energy expenditure and water loss compared with their mesic counterparts. Using both conventional least squares regression and regression based on phylogenetically independent contrasts, we showed that birds from desert habitats have reduced basal and field metabolic rates compared with species from mesic areas. Previous work showed that desert birds have reduced rates of total evaporative water loss when exposed to moderate environmental temperatures in the laboratory. We tested whether reduced rates of total evaporative water loss translate into low field water fluxes. Conventional ANCOVA indicated that desert birds have reduced water fluxes, but an analysis based on phylogenetically independent contrasts did not support this finding, despite the wide array of taxonomic affiliations of species in the data set. We conclude that the high ambient temperatures, the low primary productivity, and the water scarcity in desert environments have selected for or resulted in reduced rates of energy expenditure and evaporative water loss in birds that live in these climes.  相似文献   

9.
1. Water requirements, water balance components and dependence on exogenous water were estimated in four species of sympatric rodents inhabiting a Chilean semi-arid region. 2. A significant increase in free water drinking was observed in all rodents when the diet composition was changed from 14 to 20% protein. 3. Under water balance conditions the cricetid species (Phyllotis darwini, Oryzomys longicaudatus and Akodon olivaceus) showed 1.66 to 1.88 times the weight-specific daily water gain of Octodon degus. 4. In the three cricetid rodents, evaporation was the largest water loss component (2/3 to 3/4 of total loss), while in O. degus evaporative water loss amounted to only 38% of the total. 5. Survival time during water deprivation ranged from 13.4 days in O. degus to only 4 days in O. longicaudatus. 6. All water variables combined indicate that water dependence of O. longicaudatus greater than P. darwini greater than A. olivaceus greater than O. degus.  相似文献   

10.
Duration of emergence increases with tidal height on rocky shores therefore, emergence adaptations in intertidal species such as littorine and other prosobranch gastropods have been considered correlated with zonation patterns; temperature tolerance, desiccation resistance and aerial respiration rate all commonly assumed to increase progressively with increasing zonation level. Such direct correlations are rarely observed in nature. Maximal aerial gas exchange occurs in mid-shore, not high shore species. Temperature tolerance and desiccation resistance do not increase directly with shore height. Thus, hypotheses regarding physiological correlates of zonation require revaluation. A new hypothesis is presented that the high tide mark presents a single major physiological barrier on rocky shores. Above it, snails experience prolonged emergence and extensive desiccation; below it, predictable submergence and rehydration with each tidal cycle. Thus, desiccation stress is minimal below the high tide mark and maximal above it. Therefore, species restricted below high tide (the eulittoral zone) should display markedly different adaptive strategies to emergence than those above it (the eulittoral fringe). A review of the literature indicated that adaptations in eulittoral species are dominated by those allowing maintenance of activity and foraging in air including: evaporative cooling; low thermal tolerance; elevated aerial O2 uptake rates; and high capacity for radiant heat absorption. Such adaptations exacerbate evaporative water loss. In contrast, species restricted to the eulittoral fringe display adaptive strategies that minimize desiccation and prolong survival of emergence including: foot withdrawal, preventing heat conduction from the substratum; aestivation in air; elevated thermal tolerance reducing necessity for evaporative cooling; position maintenance by cementation to the substratum and increased capacity for heat dissipation. In order to test of this hypothesis the upper thermal limits, tissue and substratum temperatures on emergence in direct sunlight and evaporative water loss and tissue temperatures on emergence in 40 °C were evaluated for specimens of six species of eulittoral and eulittoral fringe gastropods from a granite shore on Princess Royal Harbour near Albany, Western Australia. The results were consistant with adaptation to the proposed desiccation barrier at high tide. The eulittoral species, Austrocochlea constricta, Austrocochlea concamerata, Nerita atramentosa and Lepsiella vinosa, displayed adaptations dominated by maintenance of activity and foraging during emergence while the eulittoral fringe littorine species, Bembicium vittatum and Nodilittorina unifasciata displayed adaptations dominated by minization of activity and evaporative water loss during emergence. The evolution of adaptations allowing tolerance of prolonged desiccation have allowed littorine species to dominate high intertidal rocky shore gastropod faunas throughout the world's oceans.  相似文献   

11.
This paper reports data and models for temperatures and energy flows for the Tres Rios surface flow wetlands. Treatment wetlands are solar powered ecosystems, resulting in annually cyclic temperatures. There is also a daily cycle in wetland water temperature of several degrees amplitude. The timing of individual daily measurements may therefore bias the result to values different from the daily mean. The energy balance is dominated by radiation to and from the wetland, heat transfer from air, and evaporative losses. Transpiration causes energy dissipation from the canopy, while evaporation causes energy loss from and cooling of the surface water. Transpiration was found to dominate the water loss. Downstream daily average water temperatures are cooler than daily average air temperatures at all times of the year, due to evaporative cooling. Water cools as it passes from inlet to outlet. The excess sensible heat is dissipated during travel through the inlet region of the wetland. For long detention times, longer than about five days, water temperature reaches a balance condition. Up to that time, sensible heat from the source water also influences evaporation and water temperature. Balance water temperatures ranged from 3.9 °C in winter to 27.2 °C in summer, while mean daily air temperatures ranged from 5.3 to 37.2 °C. Diel variations were found to range up to 6 °C. Stochastic variability produced a band width of ±5 °C. Energy balance models provide a good representation of these phenomena, but are subject to large sensitivity to input variables, especially air temperature, humidity and wind. Evapotranspiration was higher than that predicted for a balance condition, because of the warmth of the incoming water. It was less than that predicted for a grass crop.  相似文献   

12.
For undisturbed, field populations of the northeast Pacific, intertidal limpet Collisella pelta (Rathke), water loss was found to be proportional to apertural circumference rather than mantle cavity surface area. This contrasts with previous laboratory measurements for other limpet species and emphasizes the importance of the fit of shell to substratum for non-homing limpets. This close fit maintained a meniscus of water between the edge of the shell and the substratum, thereby reducing evaporative surface area and increasing the advantage of large size for reducing the rate of water loss. Shell-raising behavior eliminated the meniscus, increasing the rate of desiccation, and water loss appeared to become proportional to mantle cavity surface area. Indirect evidence suggests that C. pelta may utilize shell-raising behavior for evaporative cooling under thermally stressful conditions in the field.Both shell size and shape affect the ratio of water stores (proportional to internal shell volume) to evaporative surface area (proportional to apertural circumference) and per cent water loss is, potentially, a function of this ratio. Shape, however, (when defined as volume/circumference) exhibits an average allometric increase with increasing size (volume) for C. pelta, as well as for three other sympatric limpet species: C. Paradigitalis (Fritchman), C. Digitalis (Rathke), and Notoacmea scutum (Rathke). An independent measure of shape is, therefore, required to separate shape effects on desiccation from size effects; this measure was obtained by rearranging the allometry equation. In contrast to significant size effects, no measurable effect of shape on desiccation was detected. Variation in limpet shell shape may be partially or wholly maintained by factors other than an adaptational response to desiccation.  相似文献   

13.
To test whether Knot Calidris canutus wintering in the tropics suffer higher rates of water loss through evaporation than do Knot wintering at temperate latitudes, we tried to develop a physically realistic model to predict evaporative heat loss from air temperature, wind and humidity. In separate experiments, involving respirometry and double-labelled water, we tried to estimate relevant parameters. In both sets of experiments, we were able to show significant effects of air temperature on evaporative water loss only. Knot which were able to eat and drink had an evaporative water loss three times that of postabsorptive Knot unable to drink when in a metabolic chamber. Water turnover rates of Knot feeding on bivalves under simulated field conditions were high and did not correlate with predicted evaporative water loss. Over 32 experimental bird-days, the average contribution of predicted evaporative water loss to daily water turnover was 20%. A comparison of predicted evaporative water loss in the north-temperate Dutch Wadden Sea and in the tropical Banc d'Arguin in Mauritania in midwinter showed that Knot wintering in the tropics may need only marginally more water for evaporative cooling than Knot wintering in the Dutch Wadden Sea. Knot foraging on intertidal invertebrates are able to maintain high water turnover rates with little need to drink seawater.  相似文献   

14.
High environmental temperatures pose significant physiological challenges related to energy and water balance for small endotherms. Although there is a growing literature on the effect of high temperatures on birds, comparable data are scarcer for bats. Those data that do exist suggest that roost microsite may predict tolerance of high air temperatures. To examine this possibility further, we quantified the upper limits to heat tolerance and evaporative cooling capacity in three southern African bat species inhabiting the same hot environment but using different roost types (crevice, foliage or cave). We used flow-through respirometry and compared heat tolerance limits (highest air temperature (Ta) tolerated before the onset of severe hyperthermia), body temperature (Tb), evaporative water loss, metabolic rate, and maximum cooling capacity (i.e., evaporative heat loss/metabolic heat production). Heat tolerance limits for the two bats roosting in more exposed sites, Taphozous mauritianus (foliage-roosting) and Eptesicus hottentotus (crevice-roosting), were Ta = ~44 °C and those individuals defended maximum Tb between 41 °C and 43 °C. The heat tolerance limit for the bat roosting in a more buffered site, Rousettus aegyptiacus (cave-roosting), was Ta = ~38 °C with a corresponding Tb of ~38 °C. These interspecific differences, together with a similar trend for higher evaporative cooling efficiency in species occupying warmer roost microsites, add further support to the notion that ecological factors like roost choice may have profound influences on physiological traits related to thermoregulation.  相似文献   

15.
It is a central paradigm of comparative physiology that the effect of humidity on evaporative water loss (EWL) is determined for most mammals and birds, in and below thermoneutrality, essentially by physics and is not under physiological regulation. Fick''s law predicts that EWL should be inversely proportional to ambient relative humidity (RH) and linearly proportional to the water vapour pressure deficit (Δwvp) between animal and air. However, we show here for a small dasyurid marsupial, the little kaluta (Dasykaluta rosamondae), that EWL is essentially independent of RH (and Δwvp) at low RH (as are metabolic rate and thermal conductance). These results suggest regulation of a constant EWL independent of RH, a hitherto unappreciated capacity of endothermic vertebrates. Independence of EWL from RH conserves water and heat at low RH, and avoids physiological adjustments to changes in evaporative heat loss such as thermoregulation. Re-evaluation of previously published data for mammals and birds suggests that a lesser dependence of EWL on RH is observed more commonly than previously thought, suggesting that physiological independence of EWL of RH is not just an unusual capacity of a few species, such as the little kaluta, but a more general capability of many mammals and birds.  相似文献   

16.
大绒鼠及高山姬鼠体温调节和蒸发失水的日节律   总被引:1,自引:1,他引:0  
为比较横断山区同域分布物种大绒鼠(Eothenomys miletus)和高山姬鼠(Apodemus chevrieri)的日节律特征,对两种鼠在24 h中4个时间段(04:00~06:00时、10:00~12:00时、16:00~18:00时和22:00~24:00时)的体温和蒸发失水进行了测定.结果显示,大绒鼠、高...  相似文献   

17.
SUMMARY. The did response of the thermal structure of Esthwaite Water to prevailing meteorological conditions was analysed for seven selected days, covering different phases of stratification. Meteorological measurements were combined with published empirical relations to compute 24-h thermal energy budgets for 2 days. Amplitudes of diel changes were controlled by the seasonal phase of stratification and the magnitude of incident solar radiation. Heat storage usually followed a sinusoidal curve with a minimum during the night and early morning and a maximum during the late afternoon. Wind-induced turbulent mixing, and vertical circulation induced by nocturnal cooling of the surface water through evaporative and conductive processes, also modified depth-time trends in thermal structure.
The budget accounted for almost all the thermal energy exchanges of the lake. Possible sources of a slight imbalance are considered. Although there was a positive daily surplus of net radiation, it may not always imply heat gain by the lake as it may be counter-balanced by heat losses through fluxes of latent and sensible heat, Net back-radiation was a major component of daily heat loss. The combined latent and sensible heat fluxes also accounted fora high proportion of heat loss to the atmosphere. Net flow of sensible heat to the lake was small but not always inappreciable. Net daily heat storage represented 26% (9 May) and 13% (17 June) of solar radiation Input. Advected energy due to lake inflow and outflow was negligible. Qualitative comparisons are made with long-term (seasonal and annual) energy budgets and heat fluxes.  相似文献   

18.
Desert endotherms such as Merriam's kangaroo rat (Dipodomys merriami) use both behavioral and physiological means to conserve energy and water. The energy and water needs of kangaroo rats are affected by their thermal environment. Animals that choose temperatures within their thermoneutral zone (TNZ) minimize energy expenditure but may impair water balance because the ratio of water loss to water gain is high. At temperatures below the TNZ, water balance may be improved because animals generate more oxidative water and reduce evaporative water loss; however, they must also increase energy expenditure to maintain a normal body temperature. Hence, it is not possible for kangaroo rats to choose thermal environments that simultaneously minimize energy expenditure and increase water conservation. I used a thermal gradient to test whether water stress, energy stress, simultaneous water and energy stress, or no water/energy stress affected the thermal environment selected by D. merriami. During the night (i.e., active phase), animals in all four treatments chose temperatures near the bottom of their TNZ. During the day (i.e., inactive phase), animals in all four treatments settled at temperatures near the top of their TNZ. Thus, kangaroo rats chose thermal environments that minimized energy requirements, not water requirements. Because kangaroo rats have evolved high water use efficiency, energy conservation may be more important than water conservation to the fitness of extant kangaroo rats.  相似文献   

19.
Clothing evaporative resistance is an important input in thermal comfort models. Thermal manikin tests give the most accurate and reliable evaporative resistance values for clothing. The calculation methods of clothing evaporative resistance require the sweating skin surface temperature (i.e., options 1 and 2). However, prevailing calculation methods of clothing evaporative resistance (i.e., options 3 and 4) are based on the controlled nude manikin surface temperature due to the sensory measurement difficulty. In order to overcome the difficulty of attaching temperature sensors to the wet skin surface and to enhance the calculation accuracy on evaporative resistance, we conducted an intensive skin study on a thermal manikin ‘Tore’. The relationship among the nude manikin surface temperature, the total heat loss and the wet skin surface temperature in three ambient conditions was investigated. A universal empirical equation to predict the wet skin surface temperature of a sweating thermal manikin was developed and validated on the manikin dressed in six different clothing ensembles. The skin surface temperature prediction equation in an ambient temperature range between 25.0 and 34.0 °C is Tsk=34.0–0.0132HL. It is demonstrated that the universal empirical equation is a good alternative to predicting the wet skin surface temperature and facilitates calculating the evaporative resistance of permeable clothing ensembles. Further studies on the validation of the empirical equation on different thermal manikins are needed however.  相似文献   

20.
We tested the thermal benefits of aggregation (“knotting”) for a high-elevation (>4300 m) population of metamorphic Rhinella spinulosa. Fewer knots were recorded when the sun was low on the horizon and aggregating toads dispersed under cloudy skies or when experimentally shaded. Body temperatures of sun-exposed toads averaged 2.3 °C higher when in knots than when solitary. Proximity to water and similarity in body size between aggregating and solitary toads suggest that grouping is not imposed by a need for reducing evaporative water loss. Aggregation apparently provides thermal benefits, which should translate into faster growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号