首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 447 毫秒
1.
The anterior faucial pillar, which is innervated by the glossopharyngeal nerve, is thought to be important in eliciting the pharyngeal swallow in awake humans. Glossopharyngeal evoked potentials (GPEP), elicited by mechanically stimulating this structure, were recorded from 30 normal adults using standard averaging techniques and a recording montage of 16 scalp electrodes. Ten of the subjects experienced a desire to swallow in response to stimulation. Repeatable responses were recorded from all 30 subjects. The GPEPs recorded from the posterior scalp were W-shaped and consisted of P1, N1, P2, N2 and P3 peaks. Mean latencies of P1, N1 and P2 were 11, 16 and 22 msec, respectively, for both left and right pillar stimulation. In contrast, latencies of N2 and P3 varied significantly between left and right pillar stimulation. Mean latencies of N2 and P3 were 27 and 34 msec for left, and 29 and 35 msec for right pillar stimulation. Topographical maps acquired at peak latencies for P1, N1 and P2 revealed consistent asymmetrical voltage distributions between the two hemispheres; the largest responses were recorded from the hemisphere ipsilateral to the side of stimulation. The scalp topography of N2 and P3 varied between male and female subjects as well as between left and right pillar stimulation. These findings support the hypothesis that mechanical stimulation to the anterior faucial pillar alone can elicit repeatable responses from the central nervous system. The integration of this subcortical/cortical activity with that of the medullary swallowing center may play an important role in eliciting the pharyngeal swallow.  相似文献   

2.
We studied auditory and visual evoked potentials in D.W., a patient with congenital stenosis of the cerebral aqueduct. Head CT scans revealed marked hydrocephalus with expanded ventricles filling more than 80% of the cranium and compressing brain tissue to less than 1 cm in thickness. Despite the striking neuroanatomical abnormalities, however, the patient functioned well in daily life and was attending a local community college at the time of testing.Evoked potentials provided evidence of preserved sensory processing at cortical levels. Pattern reversal visual evoked potentials had normal latencies and amplitudes. Brain-stem auditory evoked potentials (BAEPs) showed normal wave V latencies. Na and Pa components of middle-latency AEP had normal amplitudes and latencies at the vertex, although amplitudes at lateral electrodes were larger than at the midline.In contrast to the normal sensory responses, long-latency auditory evoked potentials to standard and target tones showed abnormal P3 components. Standard tones (probability 85%), evoked NN1 components with normal amplitudes (−3.7 μV) and latencies (103 msec), but also elicited large P3 components (17 μV, latency 305 msec) that were never observed following frequent stimuli in control subjects. Target stimuli (probability 15%) elicited P3s in D.W. and controls, but P3 amplitudes were enhanced in D.W. (to more than 40 μV) and the P3 showed an unusual, frontal distribution. The results are consistent with a subcortical sources of the P300. Moreover, they suggest that the substitution of controlled for automatic processes may help high-functioning hydrocephalics compensate for abnormalities in cerebral structure.  相似文献   

3.
We recorded middle-latency (20–70 msec) auditory evoked potentials (MLAEPs) to monaural and binaural clicks in 30 normal adults (ages 20–49 years) at 32 scalp locations all referred to a balanced non-cephalic reference. Our goal was to define the MLAEP components that were present at comparable latencies and comparable locations across the subject population. Group and individual data were evaluated both as topographic maps and as MLAEPs at selected electrode locations.Three major components occurred between 20 and 70 msec, two well-known peaks centered at the vertex, and one previously undefined peak focused over the posterior temporal area. Pa is a 29 msec positive peak centered at the vertex and present with both monaural and binaural stimulation, Pb is a 53 msec positive peak also centered at the vertex but seen consistently only with binaural and right ear stimulation. TP41 is a 41 msec positive peak focused over both temporal areas. TP41 has not been identified in previous MLAEP studies that concentrated on central scalp locations and/or used active reference electrode sites such as ears or mastoids.Available topographic, intracranial, pharmacologic, and lesion studies indicate that Pa, Pb and TP41 are of neural origin. Whether Pa and/or Pb are produced in Heschl's gyrus, primary auditory cortex, remains unclear. TP41 is probably produced by auditory cortex on the posterior lateral surface of the temporal lobe. It should prove of considerable value in experimental and clinical evaluation of higher level auditory function in particular and of cortical function in general.  相似文献   

4.
Brain-stem auditory evoked potentials (BAEPs) were performed on 30 male and 30 female young normal Oriental subjects, using both condensation and rarefaction stimulation. The effects of sex and click polarity on the BAEP latencies and amplitudes were studied. Females had shorter absolute and interpeak latencies and higher absolute amplitudes than the males. These sex-related BAEP differences were independent of the click polarity. Rarefaction clicks produced shorter wave I latency and longer I–III interpeak latency, but the differences were significant in the female only. The polarity-related BAEP amplitude differences were essentially independent of the sex. BAEPs performed on 60 sex- and age-matched young Caucasian subjects produced similar results. The importance of establishing control BAEP values according to the sex and click polarity is emphasised.  相似文献   

5.
We investigated the replicability of the source location, amplitude and latency measures of the auditory evoked N1 (EEG) and N1m (MEG) responses. Each of the 5 subjects was measured 6 times in two recording sessions. Responses to monaural stimuli were recorded from 122 MEG and 64 EEG channels simultaneously. The EEG data were modeled with a symmetrically-located dipole pair. For the MEG data, one dipole in each hemisphere was located independently using a subset of channels. Standard deviation (SD) was used as a measure for replicability. The average SD of the x, y and z coordinates of the contralateral N1m dipole was about 2 mm, whereas the corresponding figures for the ipsilateral N1m and the contra- and ipsilateral N1 were about twice as large. The SDs of the dipole amplitudes and latencies were almost equal with MEG and EEG. The amplitude and latency measures of the MEG field gradient waveforms were almost as replicable as those of the dipole models. The results suggest that both MEG and EEG can be used for investigating the simultaneous activity of the left and right auditory cortices independently, MEG being superior in certain experimental setups.  相似文献   

6.
1. Acoustically evoked responses of 284 neurons isolated from the cerebellar vermis, hemispheres and paraflocculus of Rhinolophus pearsonic chinesis were studied under free field acoustic stimulation conditions. 2. The BFs of these cerebellar auditory neurons ranged from 24 to 76 kHz but they mostly fall either between 48 and 64 kHz or between 65 and 76 kHz. However, the BF distribution varies among vermal, hemispheric and parafloccular neurons. 3. Threshold curves of cerebellar neurons are generally broad but those tuned to the frequency of the predominant CF component are extremely narrow. 4. Response latencies of cerebellar neurons ranged from 2 to 48 ms suggesting multiple auditory cerebellar pathways. The latency distribution also varies among vermal, hemispheric and parafloccular neurons. 5. Although both the vermis and hemispheres contain a disproportionate number of 65-74 kHz neurons, the response latencies of those neurons isolated from the vermis are scattered over a wide range of 2.2-28 ms while those neurons isolated from the hemispheres are generally stabilized between 5 and 12 ms. 6. Electrical stimulation of the auditory cortex evokes discharges from a recorded cerebellar auditory neuron. Cortical stimulation also facilitates the response of an acoustically evoked cerebellar neuron by increasing its number of impulses. The degree of facilitation is dependent upon the amplitude of the acoustic stimulus. 7. For a given electrical and acoustic stimulation condition, the facilitative latency and the degree of facilitation varied with the interstimulus interval. Among 23 neurons studied, most of them (19 neurons, 82.6%) had a maximal facilitative latency between 2 and 10 ms. 8. By examining the difference in the facilitative effect in each isolated cerebellar auditory neuron before and after a topical application of local anesthetic, procaine, onto the point of electrical stimulation in the auditory cortex, we found that the facilitative pathways to vermal and hemispheric neurons may be different from the pathway to parafloccular neurons. 9. Possible auditory pathways to different parts of the cerebellum are discussed in relation to the wide range of recorded response latencies. 10. The facilitative influence of the auditory cortex on the cerebellar auditory neurons is assumed to enhance the cerebellar role in acoustic motor orientation.  相似文献   

7.
Temporal auditory mechanisms were measured in killer whales ( Orcinus orca ) by recording auditory evoked potentials (AEPs) to clicks. Clicks were presented at rates from 10/sec to 1,600/sec. At low rates, clicks evoked an AEP similar to the auditory brainstem response (ABR) of other odontocetes; however, peak latencies of the main waves were 3–3.7 msec longer than in bottlenose dolphins. Fourier analysis of the ABR showed a prominent peak at 300–400 Hz and a smaller one at 800–1,200 Hz. High-rate click presentation (more than 100/sec) evoked a rate-following response (RFR). The RFR amplitude depended little on rate up to 400/sec, decreased at higher rates and became undetectable at 1,120/sec. Fourier analysis showed that RFR fundamental amplitude dependence on frequency closely resembled the ABR spectrum. The fundamental could follow clicks to around 1,000/sec, although higher harmonics of lower rates could arise at frequencies as high as 1,200 Hz. Both RFR fundamental phase dependence on frequency and the response lag after a click train indicated an RFR group delay of around 7.5 msec. This corresponds to the latency of ABR waves PIII-NIV, which indicates the RFR originates as a rhythmic, overlapping ABR sequence. The data suggest the killer whale auditory system can follow high click rates, an ability that may have been selected for as a function of high-frequency hearing and the use of rapid clicks in echolocation.  相似文献   

8.
Somatosensory evoked potentials (SEPs) and compound nerve action potentials (cNAPs) have been recorded in 15 subjects during electrical and magnetic nerve stimulation. Peripheral records were gathered at Erb's point and on nerve trunks at the elbow during median and ulnar nerve stimulation at the wrist. Erb responses to electrical stimulation were larger in amplitude and shorter in duration than the magnetic ones when ‘electrical’ and ‘magnetic’ compound muscle action potentials (cMAPs) of comparable amplitudes were elicited. SEPs were recorded respectively at Cv7 and on the somatosensory scalp areas contra- and ipsilateral to the stimulated side. SEPs showed a statistically significant difference in amplitude only for the brachial plexus response and for the ‘cortical’ N20-P25 complex; differences were not found between the magnetic and electrical central conduction times (CCTs) or for the peripheral nerve response latencies. Magnetic stimulation preferentially excited the motor and proprioceptive fibres when the nerve trunks were stimulated at motor threshold intensities.  相似文献   

9.
Long latency auditory evoked potentials (AEPs), chiefly consisting of a negative peak at about 150 msec and a positivity at 250 msec, were recorded at the beginning and end of periods during which the interaural time difference of binaural noise was switched between 0.0 and 0.8 msec at a fast rate (ISI = 50 or 25 msec) or the frequency of continuous binaural clicks was switched between 167 and 200 Hz every 80, 50 or 25 msec. In the latter case the offset responses occurred later than onset by a mean of 89, 47 and 27 msec respectively, suggesting they were probably generated at the moment the next switch was expected but failed to occur.The offset responses must be non-specific with respect to the interaural delay or the frequency of clicks, since neurones which respond to particular delays or frequencies and are made refractory by a rapid rate of stimulation should not suddenly become less so at the last in a series of identical stimuli, or be activated by the absence of a further event. It is proposed that the potentials are due to a higher order of neurone which automatically responds to the occurrence of a “mismatch” between the immediate sound and an image of that which was previously present, encoded in a short-term sensory store. In addition to frequency content and interaural delay, the image must contain information about the temporal modulation pattern of the sound over the previous few seconds.  相似文献   

10.
In experiments on anesthetized cats, 80 neurons of the primary auditory cortex (A1) were studied. Within the examined neuronal population, 66 cells (or 82.5%) were monosensory units, i.e., they responded only to acoustic stimulations (sound clicks and tones); 8 (10.1%) neurons responded to acoustic stimulation and electrocutaneous stimulation (ECS); the rest of the units (7.4%) were either trisensory (responded also to visual stimulation) or responded only to non-acoustic stimulations. In the A1 area, neurons responding to ECS with rather short latencies (15.6–17.0 msec) were found. ECS usually suppressed the impulse neuronal responses evoked by sound clicks. It is concluded that somatosensory afferent signals cause predominantly an inhibitory effect on transmission of an acoustic afferent volley to the auditory cortex at a subcortical level; however, rare cases of excitatory convergence of acoustic and somatosensory inputs toA1 neurons were observed.  相似文献   

11.
We studied the postsynaptic potentials evoked from 76 trigeminal motoneurons by stimulation of the motor (MI) and somatosensory (SI) cortex in the ipsilateral and contralateral hemispheres of the cat. Stimulation of these cortical regions evoked primarily inhibitory postsynaptic potentials (PSP) in the motoneuron of the masseter muscle, but we also observed excitatory PSP and mixed reactions of the EPSP/IPSP type. The average IPSP latent period for the motoneurons of the masseter on stimulation of the ipsilateral cortex was 6.1±0.3 msec, while that on stimulation of the contralateral cortex was 5.2±0.4 msec; the corresponding figures for the EPSP were 7.6±0.5 and 4.5±0.3 msec respectively. Corticofugal impulses evoked only EPSP and action potentials in the motoneurons of the digastric muscle (m. digastricus). The latent period of the EPSP was 7.6 msec when evoked by afferent impulses from the ipsilateral cortex and 5.4 msec when evoked by pulses from the contralateral cortex. The duration of the PSP ranged from 25 to 30 msec. Postsynaptic potentials developed in the motoneurons studied when the cortex was stimulated with a single stimulus. An increase in the number of stimuli in the series led to a rise in the PSP amplitude and a reduction in the latent periods. When the cortex was stimulated with a series of pulses (lasting 1.0 msec), the IPSP were prolonged by appearance of a late slow component. We have hypothesized that activation of the trigeminal motoneurons by corticofugal impulsation is effected through a polysynaptic pathway; each functional group of motoneurons is activated in the same manner by the ipsilateral and contralateral cortex. The excitation of the digastric motoneurons and inhibition of the masseter motoneurons indicates reciprocal cortical control of their activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 3, No. 5, pp. 512–519, September–October, 1971.  相似文献   

12.
Averaged evoked potentials (AEP) to verbal (letters) and nonverbal (random shapes) stimuli exposed in the left and right visual fields were registered in healthy subjects with normal vision. Analysis of the later AEP latencies pointed to asymmetry in the temporal parameters of the interhemispheric interaction. The late AEP latency is shorter in the right hemisphere than in the left hemisphere. The difference is more pronounced in responses to nonverbal stimuli. The earlier development of the evoked potential in the right hemisphere (or the later one in the left hemisphere) accounts for the interhemispheric difference in the temporal parameters of the late AEP components. Comparison of the latency of the component P300 to verbal and nonverbal stimuli presented in the ipsilateral or the contralateral visual fields reveals a transfer of the results of the cortical processing of visual information in the course of interhemispheric interaction.  相似文献   

13.
Somatosensory vertex potentials (SVPs) were examined in 12 healthy subjects in response to painful electrical stimulation of the finger. SVPs consisted of N1, P1, and N2. The average latencies of the 3 peaks were 150, 225, and 350 msec, respectively. The latency and amplitude of each potential were reproducible for each subject. Recovery functions of the SVPs were analyzed in 10 subjects. A pair of stimuli were delivered to the right or left finger with interstimulus intervals (ISIs) of 50, 100, 150, 200, 350, 500 and 650 msec. SVPs partially recovered with the shortest ISI (50 msec). Full recovery could not be obtained even with the longest ISI (650 msec). Differences in recoveries within 650 msec of ISI were not observed between right and left stimulations. To examine the interaction between SVPs evoked by right and left finger stimulation, recovery functions from prior contralateral finger stimulation were analyzed with the same ISIs. SVP recoveries for right after left or left after right patterns of stimulus delivery were nearly the same as those for ipsilateral ones. It is suggested that SVPs are generated at nearly the same site in the sensory pathway regardless of the side stimulated.  相似文献   

14.
Integrative processes in the auditory cortical zone were studied in three dogs by EEG and EP parameters during the formation of a defensive reaction to clicks (four clicks, two per second) after the extirpation of the medial geniculate bodies. In the operated animals information is transmitted to the cortical end of the auditory analyser by compensatory paths with a larger number of relays. In the auditory cortex EPs are recorded with a longer latency (12 to 16 msec), and the duration of the negative EP component is increased (up to 40 msec). It is split mainly on the ascending front. The cortical end of the analyser participates in the formation of processes of afferent synthesis. In the active period of reflex elaboration the inflow of information increases: the EP amplitude and the duration of its main negative component become greater (up to 45-55 msec), as well as the splits on its fronts. In the course of preparing for a decision, before the achievement of the conditioned reaction, a "double EP" appears, which is due to enhanced reverberation of excitations in the compensatory paths.  相似文献   

15.
The latent periods, amplitude, and duration of IPSPs arising in neurons in different parts of the cat cortex in response to afferent stimuli, stimulation of thalamocortical fibers, and intracortical microstimulation are described. The duration of IPSPs evoked in cortical neurons in response to single afferent stimuli varied from 20 to 250 msec (most common frequency 30–60 msec). During intracortical microstimulation of the auditory cortex, IPSPs with a duration of 5–10 msec also appeared. Barbiturates and chloralose increased the duration of the IPSPs to 300–500 msec. The latent period of 73% of IPSPs arising in auditory cortical neurons in response to stimulation of thalamocortical fibers was 1.2 msec longer than the latent period of monosynaptic EPSPs evoked in the same way. It is concluded from these data that inhibition arising in most neurons of cortical projection areas as a result of the arrival of corresponding afferent impulsation is direct afferent inhibition involving the participation of cortical inhibitory interneurons. A mechanism of recurrent inhibition takes part in the development of inhibition in a certain proportion of neurons. IPSPs arise monosynaptically in 2% of cells. A study of responses of cortical neurons to intracortical microstimulation showed that synaptic delay of IPSPs in these cells is 0.3–0.4 msec. The length of axons of inhibitory neurons in layer IV of the auditory cortex reaches 1.5 mm. The velocity of spread of excitation along these axons is 1.6–2.8 msec (mean 2.2 msec).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 394–403, May–June, 1984.  相似文献   

16.
In 25 healthy volunteers the supraorbital nerve was stimulated and evoked potentials were recorded. Leads were placed on the scalp and along the ipsilateral eyebrow-mastoid line and were either referred to a non-cephalic reference (on the neck, or Cv7) or linked to form bipolar derivations. As template wave form was chosen the one obtained from derivation Cz-Cv7, which had an initial triphasic component with negative (SW1a), positive (SW1b), negative (SW1c) polarity (mean latencies 0.63, 0.95 and 1.43 msec), followed by 2 negative waves (SW2 and SW3, mean latencies of 2.20 and 2.89 msec). A final positive wave could be observed in most cases (SP4, mean latency of 4.08 msec). The records collected from the various derivations showed that each component (SW1, SW2, SW3 and SP4) had a different behaviour, thus suggesting separate origins. SW1 would originate from a volley travelling from the point of stimulation towards the mastoid, probably across the ophthalmic branch of the trigeminal nerve. The subsequent components would be generated by deeply situated structures: double pulse stimulation suggests that SW1, SW2 and SW3 are generated before the first synapse, whereas SP4 is a postsynaptic event. A strong similarity exists between the components evoked by stimulation of the supraorbital and the infraorbital nerves. Local anaesthetic block of the frontal nerve on the stimulated side and monitoring of the EMG activity of m. orbicularis oculi and m. frontalis ruled out any muscle contamination of the responses described in this paper.  相似文献   

17.
The author explored the auditory projection in the brain hemispheres of 16- to 21-day-old chick embryos, using biaural stimulation, and the somatosensory projection, using electrical stimulation of the contralateral sciatic nerve. The first auditory evoked responses appeared on the surface of the hemisphere at the beginning of the 18th day of incubation and were localized in its mediolateral part. Up to hatching, the latent period of the surface response shortened from 76.3 msec to 28.9 msec and its amplitude augmented from 10.6 muV to 36.2 muV. If the electrode was plunged into the tissue, the evoked responses with the optimum latent period and amplitude parameters were recorded at a depth of 2-2.5 mm (latent period 20.2 msec, amplitude 40-45 muV). The maximum surface somatosensory responses were found in the medial occipital quadrant of the contralateral hemisphere. They developed from the second half of the 17th day of incubation. Up to the end of incubation the mean latent period shortened from 58.3 msec to 21.6 msec and the mean amplitude increased from 11.8 muV to 28.7 muV. What was at first a simple negative wave developed into a positive-negative complex by the end of incubation. Evoked responses at a depth of about 3.5 mm from the surface of the hemisphere had the optimum parameters (latent period 18.4 msec, amplitude 30.2 muV).  相似文献   

18.
Responses of 98 auditory cortical neurons to electrical stimulation of the medial geniculate body (MGB) were recorded (45 extracellulary, 53 intracellularly) in experiments on cats immobilized with tubocurarine. Responses of the same neurons to clicks were recorded for comparison. Of the total number of neurons, 75 (76%) responded both to MGB stimulation and to clicks, and 23 (24%) to MGB stimulation only. The latent period of extracellularly recorded action potentials of auditory cortical neurons in response to clicks varied from 7 to 28 msec (late responses were disregarded), and that to MGB stimulation varied from 1.5 to 12.5 msec. For EPSPs these values were 8–13 and 1–4 msec respectively. The latent period of IPSPs arising in response to MGB stimulation varied from 2.2 to 6.5 msec; for 34% of neurons it did not exceed 3 msec. The difference between the latent periods of responses to clicks and to MGB stimulation varied for different neurons from 6 to 21 msec. Responses of 11% of neurons to MGB stimulation, recorded intracellularly, consisted of sub-threshold EPSPs, while responses of 23% of neurons began with an EPSP which was either followed by an action potential and subsequent IPSP or was at once cut off by an IPSP; 66% of neurons responded with primary IPSPs. Neurons responding to MGB stimulation by primary IPSPs are distributed irregularly in the depth of the cortex: there are very few in layers III and IV and many more at a depth of 1.6–2 mm. Conversely, excited neurons are predominant in layer III and IV, and they are few in number at a depth of 1.6–2 mm. It is concluded that the afferent volley reaching the auditory cortex induces excitation of some neurons therein and, at the same time, by the principle of reciprocity, induces inhibition of others. This afferent inhibition takes place with the participation of inhibitory interneurons, and in some cells the inhibition is recurrent. The existence of reciprocal relationships between neurons in different layers of the auditory cortex is postulated.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 1, pp. 23–31, January–February, 1972.  相似文献   

19.
We recorded cortical potentials evoked by painful CO2 laser stimulation (pain SEP), employing an oddball paradigm in an effort to demonstrate event-related potentials (ERP) associated with pain. In 12 healthy subjects, frequent (standard) pain stimuli (probability 0.8) were delivered to one side of the dorsum of the left hand while rare (target) pain stimuli (probability 0.2) were delivered to the other side of the same hand. Subjects were instructed to perform either a mental count or button press in response to the target stimuli. Two early components (N2 and P2) of the pain SEP demonstrated a Cz maximal distribution, and showed no difference in latency, amplitude or scalp topography between the oddball conditions or between response tasks. In addition, another positive component (P3) following the P2 was recorded maximally at Pz only in response to the target stimuli with a peak latency of 593 msec for the count task and 560 msec for the button press task. Its scalp topography was the same as that for electric and auditory P3. The longer latency of pain P3 can be explained not only by its slower impulse conduction but also by the effects of task difficulty in the oddball paradigm employing the pain stimulus compared with electric and auditory stimulus paradigms. It is concluded that the P3 for the pain modality is mainly related to a cognitive process and corresponds to the P3 of electric and auditory evoked responses, whereas both N2 and P2 are mainly pain-related components.  相似文献   

20.
When uncorrelated random noise signals presented to the two ears suddenly become identical (coherent), a centrally located sound image is abruptly perceived and long latency scalp potentials are evoked. When the same signals are presented monaurally there is no perceived change and no potentials are evoked: hence the response must be purely a function of the binaural interaction.P70, N130 and P220 components were consistently recorded to both coherence and discoherence. N130 was usually largest at Fz and P220 at Cz. No potentials of shorter latency were identified, even after averaging 5000 or more sweeps. When the noise became coherent with an inter-aural time difference (δT) of ±0.5 msec (giving rise to an off-centre sound image), the responses were of slightly longer latency and showed no significant asymmetries between C3 and C4. In binaurally coherent noise, δT changes of ±0.5 or ±1.0 msec evoked similar responses which showed no significant asymmetries on the scalp. N130 was of longer latency when δT was changed from ±0.5 msec to zero, as compared with the converse change.In view of the similarity of all these responses it is considered unlikely that they were due to specific populations of binaurally responsive cortical neurones. The N130 and P220 components are thought to be non-specific potentials which are elicited by amy perceptible change in steady auditory stimulus conditions, due to a “mismatch” between the stimulus and the contents of a short-term auditory memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号