首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A new method is proposed for docking ligands into proteins in cases where an NMR-determined solution structure of a related complex is available. The method uses a set of experimentally determined values for protein–ligand, ligand–ligand, and protein–protein restraints for residues in or near to the binding site, combined with a set of protein–protein restraints involving all the other residues which is taken from the list of restraints previously used to generate the reference structure of a related complex. This approach differs from ordinary docking methods where the calculation uses fixed atomic coordinates from the reference structure rather than the restraints used to determine the reference structure. The binding site residues influenced by replacing the reference ligand by the new ligand were determined by monitoring differences in 1H chemical shifts. The method has been validated by showing the excellent agreement between structures of L. casei dihydrofolate reductase.trimetrexate calculated by conventional methods using a full experimentally determined set of restraints and those using this new restraint docking method based on an L. casei dihydrofolate reductase.methotrexate reference structure.  相似文献   

3.
Abstract

Protein–protein interactions play fundamental roles in most biological processes. Bimolecular fluorescence complementation (BiFC) is a promising method for its simplicity and direct visualization of protein–protein interactions in cells. This method, however, is limited by background fluorescence that appears without specific interaction between the proteins. We report here a point mutation (V150L) in one Venus BiFC fragment that efficiently decreases background fluorescence of BiFC assay. Furthermore, by combining this modified BiFC and linear expression cassette (LEC), we develop a simple and rapid method (LEC–BiFC) for protein interaction analysis that is demonstrated by a case study of the interaction between Bcl–XL and Bak BH3 peptide. The total analysis procedure can be completed in two days for screening tens of mutants. LEC–BiFC can be applied easily in any lab equipped with a fluorescence microscope.  相似文献   

4.
A simple, efficient and cheap method is reported for monitoring interactions between single stranded desoxyribonucleic acids and proteins, using fluorescence spectroscopy and complexes of 5′-dye–DNA conjugates with bovine serum albumin as probes. In the presence of a single stranded DNA-binding protein the complexes with bovine serum albumin are disrupted, which results in a reduction of fluorescence intensity.  相似文献   

5.
Hydrogen bond, hydrophobic and vdW interactions are the three major non-covalent interactions at protein–protein interfaces. We have developed a method that uses only these properties to describe interactions between proteins, which can qualitatively estimate the individual contribution of each interfacial residue to the binding and gives the results in a graphic display way. This method has been applied to analyze alanine mutation data at protein–protein interfaces. A dataset containing 13 protein–protein complexes with 250 alanine mutations of interfacial residues has been tested. For the 75 hot-spot residues (G1.5 kcal mol-1), 66 can be predicted correctly with a success rate of 88%. In order to test the tolerance of this method to conformational changes upon binding, we utilize a set of 26 complexes with one or both of their components available in the unbound form. The difference of key residues exported by the program is 11% between the results using complexed proteins and those from unbound ones. As this method gives the characteristics of the binding partner for a particular protein, in-depth studies on protein–protein recognition can be carried out. Furthermore, this method can be used to compare the difference between protein–protein interactions and look for correlated mutation. Figure Key interaction grids at the interface between barnase and barstar. Key interaction grid for barnase and barstar are presented in one figure according to their coordinates. In order to distinguish the two proteins, different icons were assigned. Crosses represent key grids for barstar and dots represent key grids for barnase. The four residues in ball and stick are Asp40 in barstar and Arg83, Arg87, His102 in barnase.  相似文献   

6.
International Journal of Peptide Research and Therapeutics - Protein–protein interactions (PPI) are vital in modulating biochemical pathways in many biological processes. Inhibiting PPI is a...  相似文献   

7.
8.
The characterization of the interacting behaviors of complex biological systems is a primary objective in protein–protein network analysis and computational biology. In this paper we present FunMod, an innovative Cytoscape version 2.8 plugin that is able to mine undirected protein–protein networks and to infer sub-networks of interacting proteins intimately correlated with relevant biological pathways. This plugin may enable the discovery of new pathways involved in diseases. In order to describe the role of each protein within the relevant biological pathways, FunMod computes and scores three topological features of the identified sub-networks. By integrating the results from biological pathway clustering and topological network analysis, FunMod proved to be useful for the data interpretation and the generation of new hypotheses in two case studies.  相似文献   

9.
10.
11.
12.
13.
CO dehydrogenase (CODH) is an environmentally crucial bacterial enzyme that oxidizes CO to CO2 at a Mo–Cu active site. Despite the close to atomic resolution structure (1.1 Å), significant uncertainties have remained with regard to the protonation state of the water-derived equatorial ligand coordinated at the Mo-center, as well as the nature of intermediates formed during the catalytic cycle. To address the protonation state of the equatorial ligand, we have developed a realistic in silico QM model (~179 atoms) containing structurally essential residues surrounding the active site. Using our QM model, we examined each plausible combination of redox states (MoVI–CuI, MoV–CuII, MoV–CuI, and MoIV–CuI) and Mo-coordinated equatorial ligands (O2?, OH?, H2O), as well as the effects of second-sphere residues surrounding the active site. Herein, we present a refined computational model for the Mo(VI) state in which Glu763 acts as an active site base, leading to a MoO2-like core and a protonated Glu763. Calculated structural and spectroscopic data (hyperfine couplings) are in support of a MoO2-like core in agreement with XRD data. The calculated two-electron reduction potential (E = ?467 mV vs. SHE) is in reasonable agreement with the experimental value (E = ?558 mV vs. SHE) for the redox couple comprising an equatorial oxo ligand and protonated Glu763 in the MoVI–CuI state and an equatorial water in the MoIV–CuI state. We also suggest a potential role of second-sphere residues (e.g., Glu763, Phe390) based on geometric changes observed upon exclusion of these residues in the most plausible oxidized states.  相似文献   

14.
Exploring the function of the genome and the encoded proteins has emerged as a new and exciting challenge in the postgenomic era. Novel technologies come into view that promise to be valuable for the investigation not only of single proteins, but of entire protein networks. Protein microarrays are the innovative assay platform for highly parallel in vitro studies of protein–protein interactions. Due to their flexibility and multiplexing capacity, protein microarrays benefit basic research, diagnosis and biomedicine. This review provides an overview on the basic principles of protein microarrays and their potential to multiplex protein–protein interaction studies.  相似文献   

15.
It remains extraordinarily challenging to elucidate endogenous protein-protein interactions and proximities within the cellular milieu. The dynamic nature and the large range of affinities of these interactions augment the difficulty of this undertaking. Among the most useful tools for extracting such information are those based on affinity capture of target bait proteins in combination with mass spectrometric readout of the co-isolated species. Although highly enabling, the utility of affinity-based methods is generally limited by difficulties in distinguishing specific from nonspecific interactors, preserving and isolating all unique interactions including those that are weak, transient, or rapidly exchanging, and differentiating proximal interactions from those that are more distal. Here, we have devised and optimized a set of methods to address these challenges. The resulting pipeline involves flash-freezing cells in liquid nitrogen to preserve the cellular environment at the moment of freezing; cryomilling to fracture the frozen cells into intact micron chunks to allow for rapid access of a chemical reagent and to stabilize the intact endogenous subcellular assemblies and interactors upon thawing; and utilizing the high reactivity of glutaraldehyde to achieve sufficiently rapid stabilization at low temperatures to preserve native cellular interactions. In the course of this work, we determined that relatively low molar ratios of glutaraldehyde to reactive amines within the cellular milieu were sufficient to preserve even labile and transient interactions. This mild treatment enables efficient and rapid affinity capture of the protein assemblies of interest under nondenaturing conditions, followed by bottom-up MS to identify and quantify the protein constituents. For convenience, we have termed this approach Stabilized Affinity Capture Mass Spectrometry. Here, we demonstrate that Stabilized Affinity Capture Mass Spectrometry allows us to stabilize and elucidate local, distant, and transient protein interactions within complex cellular milieux, many of which are not observed in the absence of chemical stabilization.Insights into many cellular processes require detailed information about interactions between the participating proteins. However, the analysis of such interactions can be challenging because of the often-diverse physicochemical properties and the abundances of the constituent proteins, as well as the sometimes wide range of affinities and complex dynamics of the interactions. One of the key challenges has been acquiring information concerning transient, low affinity interactions in highly complex cellular milieux (3, 4).Methods that allow elucidation of such information include co-localization microscopy (5), fluorescence protein Förster resonance energy transfer (4), immunoelectron microscopy (5), yeast two-hybrid (6), and affinity capture (7, 8). Among these, affinity capture (AC)1 has the unique potential to detect all specific in vivo interactions simultaneously, including those that interact both directly and indirectly. In recent times, the efficacy of such affinity isolation experiments has been greatly enhanced through the use of sensitive modern mass spectrometric protein identification techniques (9). Nevertheless, AC suffers from several shortcomings. These include the problem of 1) distinguishing specific from nonspecific interactors (10, 11); 2) preserving and isolating all unique interactions including those that are weak and/or transient, as well as those that exchange rapidly (10, 12, 13); and 3) differentiating proximal from more distant interactions (14).We describe here an approach to address these issues, which makes use of chemical stabilization of protein assemblies in the complex cellular milieu prior to AC. Chemical stabilization is an emerging technique for stabilizing and elucidating protein associations both in vitro (1520) and in vivo (3, 12, 14, 2129), with mass spectrometric (MS) readout of the AC proteins and their connectivities. Such chemical stabilization methods are indeed well-established and are often used in electron microscopy for preserving complexes and subcellular structures both in the cellular milieu (3) and in purified complexes (30, 31), wherein the most reliable, stable, and established stabilization reagents is glutaraldehyde. Recently, glutaraldehyde has been applied in the “GraFix” protocol in which purified protein complexes are subjected to centrifugation through a density gradient that also contains a gradient of glutaraldehyde (30, 31), allowing for optimal stabilization of authentic complexes and minimization of nonspecific associations and aggregation. GraFix has also been combined with mass spectrometry on purified complexes bound to EM grids to obtain a compositional analysis of the complexes (32), thereby raising the possibility that glutaraldehyde can be successfully utilized in conjunction with AC in complex cellular milieux directly.In this work, we present a robust pipeline for determining specific protein-protein interactions and proximities from cellular milieux. The first steps of the pipeline involve the well-established techniques of flash freezing the cells of interest in liquid nitrogen and cryomilling, which have been known for over a decade (33, 34) to preserve the cellular environment, as well as having shown outstanding performance when used in analysis of macromolecular interactions in yeast (3539), bacterial (40, 41), trypanosome (42), mouse (43), and human (4447) systems. The resulting frozen powder, composed of intact micron chunks of cells that have great surface area and outstanding solvent accessibility, is well suited for rapid low temperature chemical stabilization using glutaraldehyde. We selected glutaraldehyde for our procedure based on the fact that it is a very reactive stabilizing reagent, even at lower temperatures, and because it has already been shown to stabilize enzymes in their functional state (4850). We employed highly efficient, rapid, single stage affinity capture (36, 51) for isolation and bottom-up MS for analysis of the macromolecular assemblies of interest (5254). For convenience, we have termed this approach Stabilized Affinity-Capture Mass Spectrometry (SAC-MS).  相似文献   

16.
Molecular Biology - Huntingtin (HTT) occurs in the neuronal cytoplasm and can interact with structural elements of synapses. Huntington’s disease (HD) results from pathological expansion of a...  相似文献   

17.
Recent findings on the biochemical and molecular features of the following thermozymes are presented, based on their biotechnological use: α-amylase and amylopullulanase, used in starch processing; glucose isomerase, used in sweetener production; alcohol dehydrogenase, used in chemical synthesis; and alkaline phosphatase, used in diagnostics. The corresponding genes and recombinant proteins have been characterized in terms of sequence similarities, specific activities, thermophilicity, and unfolding kinetics. Site-directed and nested deletion mutagenesis were used to understand structure–function relationships. All these thermozymes display higher stability and activity than their counterparts currently used in the biotechnology industry. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号