首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Within the last two decades, plant viral vectors have emerged as an excellent tool for the expression of foreign peptides and proteins. Virus particles carrying foreign antigenic epitopes present some interesting advantages for vaccine design and other applications. This review covers recent advances in the use of some typical plant viruses with helical particles that present heterologous peptides with particular emphasis on particles derived from the Potato virus X (PVX) and its uses.  相似文献   

2.
A wide array of systems have been developed to improve "classic" vaccines. The use of small polypeptides able to elicit potent antibody and cytotoxic responses seems to have enormous potential in the design of safer vaccines. While peptide coupling to large soluble proteins such as keyhole limpet hemocyanin is the current method of choice for eliciting antibody responses and insertion in live viruses for cytotoxic T-lymphocyte responses, alternative cheaper and/or safer methods will clearly be required in the future. Virus-like particles constitute very immunogenic molecules that allow for covalent coupling of the epitopes of interest in a simple way. In this article, we detail the methodology employed for the preparation of efficient virus vectors as delivery systems. We used parvovirus as the model for the design of new vaccine vectors. Recently parvovirus-like particles have been engineered to express foreign polypeptides in certain positions, resulting in the production of large quantities of highly immunogenic peptides, and to induce strong antibody, helper-T-cell, and cytotoxic T-lymphocyte responses. We discuss the different alternatives and the necessary steps to carry out this process, placing special emphasis on the flow of decisions that need to be made during the project.  相似文献   

3.
Successful recovery of RNA viruses and functional RNA replicons from cDNA has greatly facilitated molecular genetic analyses of viral proteins and cis-regulatory elements. This technology allows the use of RNA virus replication machinery to express heterologous sequences. Both positive-strand and negative-strand animal RNA viruses have been engineered to produce chimeric viruses expressing protective epitopes from other pathogens and for transient expression of heterologous sequences.  相似文献   

4.
Hepatitis A virus (HAV) has an immunodominant neutralization antigenic site. By using a panel of monoclonal antibodies targeted against the HAV neutralization antigenic site, it was shown that three epitopes within this site are present on 14S subunits (pentamers of the structural unit). In contrast, two other epitopes within this site are formed upon assembly of 14S subunits into capsids. Thus, the epitopes recognized by these two monoclonal antibodies are formed either by a conformational change in the antigenic site or by the juxtaposition of epitope fragments present on different 14S subunits during assembly of 14S into 70S particles. Both 14S and 70S particles elicited HAV-neutralizing antibodies in mice; thus, these particles may be useful for HAV vaccine development.  相似文献   

5.
Noninfectious human immunodeficiency virus type 1 (HIV-1) viruslike particles containing chimeric envelope glycoproteins were expressed in mammalian cells by using inducible promoters. We engineered four expression vectors in which a synthetic oligomer encoding gp120 residues 306 to 328 (amino acids YNKRKRIHIGP GRAFYTTKNIIG) from the V3 loop of the MN viral isolate was inserted at various positions within the endogenous HIV-1LAI env gene. Expression studies revealed that insertion of the heterologous V3(MN) loop segment at two different locations within the conserved region 2 (C2) of gp120, either 173 or 242 residues away from the N terminus of the mature subunit, resulted in the secretion of fully assembled HIV-like particles containing chimeric LAI/MN envelope glycoproteins. Both V3 loop epitopes were recognized by loop-specific neutralizing antibodies. However, insertion of the V3(MN) loop segment into other regions of gp120 led to the production of envelope-deficient viruslike particles. Immunization with HIV-like particles containing chimeric envelope proteins induced specific antibody responses against both the autologous and heterologous V3 loop epitopes, including cross-neutralizing antibodies against the HIV-1LAI and HIV-1MN isolates. This study, therefore, demonstrates the feasibility of genetically engineering optimized HIV-like particles capable of eliciting cross-neutralizing antibodies.  相似文献   

6.
A reverse genetics approach which allows the generation of infectious defective rabies virus (RV) particles entirely from plasmid-encoded genomes and proteins (K.-K. Conzelmann and M. Schnell, J. Virol. 68:713-719, 1994) was used to investigate the ability of a heterologous lyssavirus glycoprotein (G) and chimeric G constructs to function in the formation of infectious RV-like particles. Virions containing a chloramphenicol acetyltransferase (CAT) reporter gene (SDI-CAT) were generated in cells simultaneously expressing the genomic RNA analog, the RV N, P, M, and L proteins, and engineered G constructs from transfected plasmids. The infectivity of particles was determined by a CAT assay after passage to helper virus-infected cells. The heterologous G protein from Eth-16 virus (Mokola virus, lyssavirus serotype 3) as well as a construct in which the ectodomain of RV G was fused to the cytoplasmic and transmembrane domains of the Eth-16 virus G rescued infectious SDI-CAT particles. In contrast, a chimeric protein composed of the amino-terminal half of the Eth-16 virus G and the carboxy-terminal half of RV G failed to produce infectious particles. Site-directed mutagenesis was used to convert the antigenic site III of RV G to the corresponding sequence of Eth-16 G. This chimeric protein rescued infectious SDI-CAT particles as efficiently as RV G. Virions containing the chimeric protein were specifically neutralized by an anti-Eth-16 virus serum and escaped neutralization by a monoclonal antibody directed against RV antigenic site III. The results show that entire structural domains as well as short surface epitopes of lyssavirus G proteins may be exchanged without affecting the structure required to mediate infection of cells.  相似文献   

7.
Using simple design and selective pressure, we have evolved an artificial M13 bacteriophage coat protein. M13 coat proteins first reside in the bacterial inner membrane and subsequently surround the DNA core of the assembled virus. The artificial coat protein (ACP) was designed and evolved to mimic both functions of the natural M13 coat proteins, but with an inverted orientation. ACP is a non-functional coat protein because it is not required for the production of phage particles. Instead, it incorporates into a phage coat which still requires all the natural coat proteins for structural integrity. In contrast with other M13 coat proteins, which can display polypeptides as amino-terminal fusions, ACP permits the carboxy-terminal display of large polypeptides. The results suggest that viruses can co-opt host membrane proteins to acquire new coat proteins and thus new functions. In particular, M13 bacteriophage can be engineered for new functions, such as carboxy-terminal phage display.  相似文献   

8.
Genetic economy leads to symmetric distributions of chemically identical subunits in icosaherdal and helical viruses. Modification of the subunit genes of a variety of viruses has permitted the display of polypeptides on both the infectious virions and virus particles made in expression systems. Icosahedral chimeric particles of this type often display novel properties resulting in high local concentrations of the insert. Here we report an extension of this concept in which entire proteins were chemically cross-linked to lysine and cysteine residues genetically engineered on the coat protein of icosahedral Cowpea mosaic virus particles. Three exogenous proteins, the LRR domain of internalin B, the T4 lysozyme, and the Intron 8 gene product of the of the HER2 tyrosine kinase receptor were derivatized with appropriate bifunctional cross-linkers and conjugated to the virus capsid. Characterization of these particles demonstrated that (1) virtually 100% occupancy of the 60 sites was achieved; (2) biological activity (either enzyme or binding specificity) of the attached protein was preserved; (3) in one case (LRR-internalin B) the attached protein conformed with the icosahedral symmetry to the extent that a reconstruction of the derivatized particles displayed added density with a shape consistent with the X-ray structure of the attached protein. Strategies demonstrated here allow virus particle targeting to specific cell types and the use of an icosahedral virus as a platform for structure determination of small proteins at moderate resolution.  相似文献   

9.
Feline calicivirus (FCV) strains can show significant antigenic variation when tested for cross-reactivity with antisera produced against other FCV strains. Previous work has demonstrated the presence of hypervariable amino acid sequences in the capsid protein of FCV (designated regions C and E) that were postulated to constitute the major antigenic determinants of the virus. To examine the involvement of hypervariable sequences in determining the antigenic phenotype, the nucleotide sequences encoding the E regions from three antigenically distinct parental FCV strains (CFI, KCD, and NADC) were exchanged for the equivalent sequences in an FCV Urbana strain infectious cDNA clone. Two of the three constructs were recovered as viable, chimeric viruses. In six additional constructs, of which three were recovered as viable virus, the E region from the parental viruses was divided into left (N-terminal) and right (C-terminal) halves and engineered into the infectious clone. A final viable construct contained the C, D, and E regions of the NADC parental strain. Recovered chimeric viruses showed considerable antigenic variation from the parental viruses when tested against parental hyperimmune serum. No domain exchange was able to confer complete recognition by parental antiserum with the exception of the KCD E region exchange, which was neutralized at a near-homologous titer with KCD antiserum. These data demonstrate that it is possible to recover engineered chimeric FCV strains that possess altered antigenic characteristics. Furthermore, the E hypervariable region of the capsid protein appears to play a major role in the formation of the antigenic structure of the virion where conformational epitopes may be more important than linear in viral neutralization.  相似文献   

10.
The GABAA receptor has been purified to homogeneity from bovine cerebral cortex. Under stringent conditions of isolation, the GABAA receptor was shown to consist only of alpha (Mr 53 000) and beta (Mr 57 000) subunits. A densitometric scan of SDS-PAGE gels under reducing conditions showed that these subunits were present in a 1:1 ratio. A model of the receptor as a heterologous tetramer alpha 2 beta 2 is proposed. Monoclonal antibodies have been raised to the purified bovine GABAA receptor. One of these antibodies, 1A6, was shown to react with both the alpha and beta subunits of the purified receptor. The subunits were still positive in immunoblots following the removal of the carbohydrate moieties of the respective polypeptides by endoglycosidase F treatment. This antibody has been employed to demonstrate antigenic cross-reactivity between the GABAA receptors of three vertebrate species. It is further proposed that there is partial amino acid sequence homology between the alpha and beta polypeptides and hence that they are derived from a single ancestral gene.  相似文献   

11.
We have previously reported that Potato virus X-expressed coat protein of Cucumber mosaic virus (CMV) formed virus-like particles (VLPs), which served as carriers for display of different neutralizing epitopes of Newcastle disease virus (NDV). In this work, we further modified the purification protocol of recombinant VLPs carrying short neutralizing epitopes of the NDV proteins and demonstrated that self-contained capsid protein subunits of CMV transiently expressed from heterologous virus packaged into individual virions morphologically resembling and/or indistinguishable from wild type CMV particles. Homogeneity of the final preparation represents an advance over our previous study, where VLPs were found to be of variable size. Chickens immunized with purified VLPs developed antigen-specific response.  相似文献   

12.
International Journal of Peptide Research and Therapeutics - Viral-like particles are assembled from capsid protein structural subunits of different viruses and have ability to establish research...  相似文献   

13.
Neutralizing monoclonal antibodies specific for the fusion (F) glycoprotein of human parainfluenza type 3 virus (PIV3) were used to select neutralization-resistant antigenic variants. Sequence analysis of the F genes of the variants indicated that their resistance to antibody binding, antibody-mediated neutralization or to both was a result of specific amino acid substitutions within the neutralization epitopes of the F1 and F2 subunits. Comparison of the locations of PIV3 neutralization epitopes with those of Newcastle disease and Sendai viruses indicated that the antigenic organization of the fusion proteins of paramyxoviruses is similar. Furthermore, some of the PIV3 epitopes recognized by syncytium-inhibiting monoclonal antibodies are located in an F1 cysteine cluster region which corresponds to an area of the measles virus F protein involved in fusion activity.  相似文献   

14.
A novel expression system based on engineered variants of the yeast (Saccharomyces cerevisiae) dsRNA virus L-A was developed allowing the in vivo assembly of chimeric virus-like particles (VLPs) as a unique platform for a wide range of applications. We show that polypeptides fused to the viral capsid protein Gag self-assemble into isometric VLP chimeras carrying their cargo inside the capsid, thereby not only effectively preventing proteolytic degradation in the host cell cytosol, but also allowing the expression of a per se cytotoxic protein. Carboxyterminal extension of Gag by T cell epitopes from human cytomegalovirus pp65 resulted in the formation of hybrid VLPs that strongly activated antigen-specific CD8(+) memory T cells ex vivo. Besides being a carrier for polypeptides inducing antigen-specific immune responses in vivo, VLP chimeras were also shown to be effective in the expression and purification of (i) a heterologous model protein (GFP), (ii) a per se toxic protein (K28 alpha-subunit), and (iii) a particle-associated and fully recyclable biotechnologically relevant enzyme (esterase A). Thus, yeast viral Gag represents a unique platform for the in vivo assembly of chimeric VLPs, equally attractive and useful in vaccine development and recombinant protein production.  相似文献   

15.
Immunologically very closely related type C RNA viruses are endogenous to the domestic cat and to an old world primate, the baboon. In the present studies, radioimmunological techniques have been developed for detection of the 15,000 and 30,000 molecular weight (MW) polypeptides of each virus. The much more pronounced type-specific antigenic determinants of the lower MW polypeptides made it possible to readily differentiate these viruses from each other as well as from a type C virus isolate from a second baboon species. Normal rhesus monkey tissues were partially purified and shown to contain a reactivity with MW and immunological properties similar to that of the baboon virus 30,000 MW polypeptide. Despite a similar degree of purification, antigenic reactivity like that of the baboon virus 15,000 MW polypeptide was undetectable even in the brodest immunological tests available for this polypeptide. The present findings indicate that the immunological properties of two structural polypeptides of closely related viruses endogenous to primate and feline species have undergone different rates of antigenic change in the course of evolution within their respective host cell genome.  相似文献   

16.
Virus‐like particles (VLPs) and capsomere subunits have shown promising potential as safe and effective vaccine candidates. They can serve as platforms for the display of foreign epitopes on their surfaces in a modular architecture. Depending on the physicochemical properties of the antigenic modules, modularization may affect the expression, solubility and stability of capsomeres, and VLP assembly. In this study, three module designs of a rotavirus hydrophobic peptide (RV10) were synthesized using synthetic biology. Among the three synthetic modules, modularization of the murine polyomavirus VP1 with a single copy of RV10 flanked by long linkers and charged residues resulted in the expression of stable modular capsomeres. Further employing the approach of module titration of RV10 modules on each capsomere via Escherichia coli co‐expression of unmodified VP1 and modular VP1‐RV10 successfully translated purified modular capomeres into modular VLPs when assembled in vitro. Our results demonstrate that tailoring the physicochemical properties of modules to enhance modular capsomeres stability is achievable through synthetic biology designs. Combined with module titration strategy to avoid steric hindrance to intercapsomere interactions, this allows bioprocessing of bacterially produced in vitro assembled modular VLPs.  相似文献   

17.
Monoclonal antibodies directed against the haemocyanin of the scorpion Androctonus australis were raised in order to map antigenic determinants (epitopes). The method of mapping employed in this study is molecular immunoelectron microscopy. It consists of a direct electron microscopic observation of antigenic molecules labelled with monoclonal antibodies. The epitopes are then localized in a small region of the external surface of the antigenic molecule whose architecture and quaternary structure are well known. Six monoclonal antibodies have been selected and epitopes have been circumscribed within a small area of one subunit among the 24 subunits composing the whole antigenic molecule.  相似文献   

18.
19.
Sun E  Zhao J  Liu N  Yang T  Xu Q  Qin Y  Bu Z  Yang Y  Lunt RA  Wang L  Wu D 《PloS one》2012,7(2):e31434
West Nile virus (WNV) is a mosquito-borne flavivirus that primarily infects birds but occasionally infects humans and horses. Certain species of birds, including crows, house sparrows, geese, blue jays and ravens, are considered highly susceptible hosts to WNV. The nonstructural protein 1 (NS1) of WNV can elicit protective immune responses, including NS1-reactive antibodies, during infection of animals. The antigenicity of NS1 suggests that NS1-reactive antibodies could provide a basis for serological diagnostic reagents. To further define serological reagents for diagnostic use, the antigenic sites in NS1 that are targeted by host immune responses need to be identified and the potential diagnostic value of individual antigenic sites also needs to be defined. The present study describes comprehensive mapping of common immunodominant linear B-cell epitopes in the WNV NS1 using avian WNV NS1 antisera. We screened antisera from chickens, ducks and geese immunized with purified NS1 for reactivity against 35 partially overlapping peptides covering the entire WNV NS1. This study identified twelve, nine and six peptide epitopes recognized by chicken, duck and goose antibody responses, respectively. Three epitopes (NS1-3, 14 and 24) were recognized by antibodies elicited by immunization in all three avian species tested. We also found that NS1-3 and 24 were WNV-specific epitopes, whereas the NS1-14 epitope was conserved among the Japanese encephalitis virus (JEV) serocomplex viruses based on the reactivity of avian WNV NS1 antisera against polypeptides derived from the NS1 sequences of viruses of the JEV serocomplex. Further analysis showed that the three common polypeptide epitopes were not recognized by antibodies in Avian Influenza Virus (AIV), Newcastle Disease Virus (NDV), Duck Plague Virus (DPV) and Goose Parvovirus (GPV) antisera. The knowledge and reagents generated in this study have potential applications in differential diagnostic approaches and subunit vaccines development for WNV and other viruses of the JEV serocomplex.  相似文献   

20.
Monoclonal antibodies were used to study antigenic variation in three distinct epitopes on the matrix protein of influenza A viruses. We found that two of these epitopes underwent antigenic variation, but in a very limited number of virus strains. A third epitope appeared to be an invariant type-specific determinant for influenza A viruses. Competitive antibody binding assays and Western blot analysis of proteolytically digested matrix protein indicated that at least two of the three epitopes are located in nonoverlapping domains on the matrix protein molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号