首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Most of the pancreatic exocrine epithelium consists of acinar and intralobular duct (ductular) cells, with the balance consisting of interlobular and main duct cells. Fragments of mouse acinar/ductular epithelium can be isolated by partial digestion with collagenase and purified by Ficoll density gradient centrifugation. We investigated whether previously developed culture conditions used for duct epithelium would result in the selective survival and proliferation of ductular cells from the acinar/ductular fragments. The fragments were cultured on nitrocellulose filters coated with extracellular matrix. After 2 to 4 wk the filters were covered with proliferating cells resembling parallel cultures of duct epithelium by the following criteria: protein/DNA ratio, light and electron microscopic appearance, the presence of duct markers (carbonic anhydrase [CA] activity, CA II mRNA, the cystic fibrosis transmembrane conductance regulator), the near absence of acinar cell markers (amylase and chymotrypsin), a similar polypeptide profile after sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the presence of spontaneous and secretin-stimulated electrogenic ion transport. Both duct and ductular epithelia formed fluid-filled cysts in collagen gels and both could be subcultured. We conclude that acinar/ductular tissue gives rise to ductular cells in culture by some combination of acinar cell death and/or transdifferentiation to a ductular phenotype, accompanied by proliferation of these cells and preexisting ductular cells. These cultures may be used to investigate the properties of this part of the pancreatic duct system, from which most of the pancreatic juice water and electrolytes probably originates.  相似文献   

2.
We previously showed that mature hepatocytes could transdifferentiate into bile ductular cells when placed in a collagen‐rich microenvironment. To explore the mechanism of transdifferentiation, we examined whether inflammatory cytokines affected the phenotype of hepatocytes in a three‐dimensional culture system. Spheroidal aggregates of rat hepatocytes were embedded within a type I collagen gel matrix and cultured in the presence of various cytokines. In the control, hepatocytes gradually lost expression of albumin, tyrosine aminotransferase, and hepatocyte nuclear factor (HNF)‐4α, while aberrantly expressed bile ductular markers, including cytokeratin 19 (CK 19) and spermatogenic immunoglobulin superfamily (SgIGSF). Among the cytokines examined, tumor necrosis factor (TNF)‐α inhibited expression of albumin and HNF‐4α, both at mRNA and protein levels. After culturing for 2 weeks with TNF‐α, hepatocytic spheroids were transformed into extensively branching tubular structures composed of CK 19‐ and SgIGSF‐positive small cuboidal cells. These cells responded to secretin with an increase in secretion and expressed functional bile duct markers. TNF‐α also induced the phosphorylation of Jun N‐terminal kinase (JNK) and c‐Jun, and the morphogenesis was inhibited by SP600125, a specific JNK inhibitor. Furthermore, in chronic rat liver injury induced by CCl4, ductular reaction in the centrilobular area demonstrated strong nuclear staining of phosphorylated c‐Jun. Our results demonstrate that TNF‐α promotes the ductular transdifferentiation of hepatocytes and suggest a role of TNF‐α in the pathogenesis of ductular reaction. J. Cell. Biochem. 114: 831–843, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
The cell of origin of the nonparenchymal epithelioid cells that emerge in liver cell cultures is unknown. Cultures of rat hepatocytes and several types of nonparenchymal cells obtained by selective tissue dispersion procedures were typed with monoclonal antibodies to rat liver cytokeratin and vimentin, polyvalent antibodies to cow hoof cytokeratins and porcine lens vimentin, and monoclonal antibodies to surface membrane components of ductular oval cells and hepatocytes. Immunoblot analysis revealed that, in cultured rat liver nonparenchymal epithelial cells, the anti-rat hepatocyte cytokeratin antibody recognized a cytokeratin of relative mass (Mr) 55,000 and the anti-cow hoof cytokeratin antibody reacted with a cytokeratin of Mr 52,000, while the anti-vimentin antibodies detected vimentin in both cultured rat fibroblasts and nonparenchymal epithelial cells. Analyses on the specificity of anti-cytokeratin and anti-vimentin antibodies toward the various cellular structures of liver by double immunofluorescence staining of frozen tissue sections revealed unique reactivity patterns. For example, hepatocytes were only stained with anti-Mr 55,000 cytokeratin antibody, while the sinusoidal cells reacted only with the anti-vimentin antibodies. In contrast, epithelial cells of the bile ductular structures and mesothelial cells of the Glisson capsula reacted with all the anti-cytokeratin and anti-vimentin antibodies. It should be stressed, however, that the reaction of the anti-vimentin antibodies on bile ductular cells was weak. The same analysis on tissue sections using the anti-ductular oval cell antibody revealed that it reacted with bile duct structures but not with the Glisson capsula. The anti-hepatocyte antibody reacted only with the parenchymal cells. The differential reactivity of the anti-cytokeratin and anti-vimentin antibodies with the various liver cell compartments was confirmed in primary cultures of hepatocytes, sinusoidal cells, and bile ductular cells, indicating that the present panel of antibodies to intermediate filament constituants allowed a clear-cut distinction between cultured nonparenchymal epithelial cells, hepatocytes, and sinusoidal cells. Indirect immunofluorescence microscopy on nonfixed and paraformaldehyde-fixed cultured hepatocytes and bile ductular cells further confirmed that both anti-hepatocyte and anti-ductular oval cell antibodies recognized surface-exposed components on the respective cell types.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The efficiency of liver regeneration in response to the loss of hepatocytes is widely acknowledged, and this is usually accomplished by the triggering of normally proliferatively quiescent hepatocytes into the cell cycle. However, when regeneration is defective, tortuous ductular structures, initially continuous with the biliary tree, proliferate and migrate into the surrounding hepatocyte parenchyma. In humans, these biliary cells have variously been referred to as ductular structures, neoductules and neocholangioles, and have been observed in many forms of chronic liver disease, including cancer. In experimental animals, similar ductal cells are usually called oval cells, and their association with impaired regeneration has led to the conclusion that they are the progeny of facultative stem cells. Oval cells are of considerable biological interest as they may represent a target population for hepatic carcinogens, and they may also be useful vehicles for ex vivo gene therapy for the correction of inborn errors of metabolism. This review proposes that the liver harbours stem cells that are located in the biliary epithelium, that oval cells are the progeny of these stem cells, and that these cells can undergo massive expansion in their numbers before differentiating into hepatocytes. This is a conditional process that only occurs when the regenerative capacity of hepatocytes is overwhelmed, and thus, unlike the intestinal epithelium, the liver is not behaving as a classical, continually renewing, stem cell-fed lineage. We focus on the biliary network, not merely as a conduit for bile, but also as a cell compartment with the ability to proliferate under appropriate conditions and give rise to fully differentiated hepatocytes and other cell types.  相似文献   

5.
6.
Hepatic oval 'stem' cell in liver regeneration   总被引:30,自引:0,他引:30  
Hepatic oval cell activation, proliferation, and differentiation has been observed under certain physiological conditions, mainly when the proliferation of existing hepatocytes has been inhibited followed by severe hepatic injury. Hepatic oval cells display a distinct phenotype and have been shown to be a bipotential progenitor of two types of epithelial cells found in the liver, hepatocytes and bile ductular cells. Bone marrow stem cells have recently been shown to be a potential source of the hepatic oval cells and that reconstitution of an injured liver from a purified stem cell population is possible. The focus of this review is on the studies involving the activation, proliferation, and differentiation of these hepatic oval cells and the role that they play in regeneration of the damaged liver. In order to present the potentiality of the hepatic oval cell, an experimental model that involves the inhibition of normal hepatic growth and division as well as severe hepatic injury via chemical or surgical means has been employed. In this model, an as yet undetermined signal or perhaps the lack of regenerative capability in the hepatocytes activates the hepatic oval cell compartment. However, other than understanding a potential origin of these cells and some of the markers that characterize them, it still remains unclear as to how these cells migrate ('home') into the damaged areas and how they begin their differentiation into mature and functioning hepatic cells.  相似文献   

7.
Hepatic stem cells: from inside and outside the liver?   总被引:21,自引:0,他引:21  
The liver is normally proliferatively quiescent, but hepatocyte loss through partial hepatectomy, uncomplicated by virus infection or inflammation, invokes a rapid regenerative response from all cell types in the liver to perfectly restore liver mass. Moreover, hepatocyte transplants in animals have shown that a certain proportion of hepatocytes in foetal and adult liver can clonally expand, suggesting that hepatoblasts/hepatocytes are themselves the functional stem cells of the liver. More severe liver injury can activate a potential stem cell compartment located within the intrahepatic biliary tree, giving rise to cords of bipotential transit amplifying cells (oval cells), that can ultimately differentiate into hepatocytes and biliary epithelial cells. A third population of stem cells with hepatic potential resides in the bone marrow; these haematopoietic stem cells may contribute to the albeit low renewal rate of hepatocytes, but can make a more significant contribution to regeneration under a very strong positive selection pressure. In such instances, cell fusion rather than transdifferentiation appears to be the underlying mechanism by which the haematopoietic genome becomes reprogrammed.  相似文献   

8.
Abstract. The ability of the liver to regenerate after parenchymal damage is usually accomplished by the ephemeral entry of normally proliferatively quiescent (G0) hepatocytes into the cell cycle. However, when hepatocyte regeneration is defective, arborizing ductules which are continuous with the biliary tree, proliferate and migrate into the surrounding parenchyma. In man these biliary cells have variously been referred to as ductular structures, neoductules and neocholangioles, and have been observed in many forms of chronic liver disease, including cancer. In experimental animals similar ductal cells are usually called oval cells, and their association with defective regeneration has led to the belief that these cells represent a progenitor cell population. Oval cells are thought to take over the burden of regenerative growth after substantial hepatocyte loss, suggesting that they are the progeny of facultative stem cells. The liver is not, however, generally considered as a stem cellfed hierarchy, although this is disputed by others. Despite this, the subject of oval cells has aroused intense interest as these cells may represent a target population for hepatic carcinogens, and they may be useful vehicles for ex vivo gene therapy. This review proposes that the liver does harbour stem cells which are located throughout the biliary epithelium, and that oval cells represent the progeny of these stem cells and function as an amplification compartment for the generation of ‘new’hepatocytes. This is a conditional process which only occurs when the regenerative capacity of hepatocytes is overwhelmed and thus, unlike the intestinal epithelium, the liver is not behaving as a classical continually renewing stem cell-fed lineage. We focus on the biliary network, not merely as a conduit for bile, but also as a cell compartment with the potential to proliferate under appropriate conditions and give rise to fully differentiated hepatocytes and other cell types.  相似文献   

9.
Study of transdifferentiation provides an excellent opportunity to investigate various factors and mechanisms involved in repression of activated genes and derepression of inactivated genes. Here we describe a highly reproducible in vivo model, in which hepatocytes are induced in the pancreas of adult rats that were maintained on copper-deficient diet containing a relatively non-toxic copper-chelating agent, triethylenetetramine tetrahydrochloride (0.6% w/w) for 7-9 weeks and then returned to normal rat chow. This dietary manipulation resulted in almost complete loss of pancreatic acinar cells at the end of copper-depletion regimen, and in the development of multiple foci of hepatocytes during recovery phase. In some animals, liver cells occupied more than 60% of pancreatic volume within 6-8 weeks of recovery. Northern blot analysis of total RNA obtained from the pancreas of these rats revealed the expression of albumin mRNA. Albumin was demonstrated in these pancreatic hepatocytes by immunofluorescence. The advantages of this model over the previously described models are: a) low mortality (10%), b) depletion of acinar cells, and c) development of multiple foci of hepatocytes in 100% of rats.  相似文献   

10.
Restoration of centrolobular injury induced by carbon tetrachloride (CCl4), when hepatocyte proliferation is inhibited by treatment with N-2-acetylaminofluorene (AAF), is accomplished by proliferation of ductular progenitor cells, that arise intraportally and extend into the liver lobule. This pattern contrasts to the restitutive proliferation of hepatocytes when AAF is not administered, and the proliferation of non-ductular periportal oval cells follows periportal necrosis induced by allyl alcohol. The expanding ducts stain for alphafetoprotein (AFP), OV-6, pan-cytokeratin (CKPan), and laminin. The neoductular proliferation is accompanied by fibronectin-positive Kupffer cells and desmin-positive stellate (Ito) cells, which may play critical roles not only in controlling proliferation and differentiation of ductular progenitor cells, but also in reestablishing hepatic cord structure. When AAF is discontinued 7 days after injury, clusters of small hepatocytes appear next to the neoductules. Some of these small hepatocytes, as well as some larger hepatocytes adjacent to the ducts, stain for AFP and for carbamoylphosphate synthetase I (CPS-I), suggesting that the ductular progenitor cells may differentiate into hepatocytes when AAF is withdrawn. The restitutive process is facilitated by clearing of the central necrotic zone by infiltrating macrophages and co-migration of mature hepatocytes, with Kupffer cells and stellate cells, into the necrotic zone.  相似文献   

11.
The role of hepatocytes and oval cells in liver regeneration and repopulation   总被引:44,自引:0,他引:44  
The liver has the unique capacity to regulate its growth and mass. In rodents and humans, it grows rapidly after resection of more than 50% of its mass. This growth process, as well as that following acute chemical injury is known as liver regeneration, although growth takes place by compensatory hyperplasia rather than true regeneration. In addition to hepatocytes and non-parenchymal cells, the liver contains intra-hepatic "stem" cells which can generate a transit compartment of precursors named oval cells. Liver regeneration after partial hepatectomy does not involve intra or extra-hepatic (hemopoietic) stem cells but depends on the proliferation of hepatocytes. Transplantation and repopulation experiments have demonstrated that hepatocytes, which are highly differentiated and long-lived cells, have a remarkable capacity for multiple rounds of replication. In this article, we review some aspects of the regulation of hepatocyte proliferation as well as the interrelationships between hepatocytes and oval cells in different liver growth processes. We conclude that in the liver, normally quiescent differentiated cells replicate rapidly after tissue resection, while intra-hepatic precursor cells (oval cells) proliferate and generate lineage only in situations in which hepatocyte proliferation is blocked or delayed. Although bone marrow stem cells can generate oval cells and hepatocytes, transdifferentiation is very rare and inefficient.  相似文献   

12.
成体干细胞跨越胚层限制分化为其他胚层来源的细胞,对揭示不同胚层细胞间相互分化的生物学意义和机制具有重要学术价值,并可以为临床细胞移植治疗开辟新的途径,从而成为当前研究的热点之一。综述了近年来肝源性卵圆细胞、成肝细胞、骨髓源干细胞和其他成体干细胞跨越分化为肝细胞的研究现状与进展,以及卵圆细胞、成肝细胞等的分离鉴定,表面标志、生物学特征和跨越分化机制,并对成体干细胞在肝脏疾病细胞治疗上的应用前景作了展望。  相似文献   

13.
14.
Chen HL  Huang JY  Chen CM  Chu TH  Shih C 《PloS one》2012,7(4):e34116
Pancreatic acinar cells AR42J-B13 can transdifferentiate into hepatocyte-like cells permissive for efficient hepatitis B virus (HBV) replication. Here, we profiled miRNAs differentially expressed in AR42J-B13 cells before and after transdifferentiation to hepatocytes, using chip-based microarray. Significant increase of miRNA expression, including miR-21, miR-22, and miR-122a, was confirmed by stem-loop real-time PCR and Northern blot analyses. In contrast, miR-93, miR-130b, and a number of other miRNAs, were significantly reduced after transdifferentiation. To investigate the potential significance of miR-22 in hepatocytes, we generated cell lines stably expressing miR-22. By 2D-DIGE, LC-MS/MS, and Western blot analyses, we identified several potential target genes of miR-22, including parathymosin. In transdifferentiated hepatocytes, miR-22 can inhibit both mRNA and protein expression of parathymosin, probably through a direct and an indirect mechanism. We tested two computer predicted miR-22 target sites at the 3' UTR of parathymosin, by the 3' UTR reporter gene assay. Treatment with anti-miR-22 resulted in significant elevation of the reporter activity. In addition, we observed an in vivo inverse correlation between miR-22 and parathymosin mRNA in their tissue distribution in a rat model. The phenomenon that miR-22 can reduce parathymosin protein was also observed in human hepatoma cell lines Huh7 and HepG2. So far, we detected no major effect on several transdifferentiation markers when AR42J-B13 cells were transfected with miR-22, or anti-miR-22, or a parathymosin expression vector, with or without dexamethasone treatment. Therefore, miR-22 appears to be neither necessary nor sufficient for transdifferentiation. We discussed the possibility that altered expression of some other microRNAs could induce cell cycle arrest leading to transdifferentiation.  相似文献   

15.
Although pancreatic exocrine acinar cells have the potential to transdifferentiate into pancreatic endocrine cells, the mechanisms are poorly understood. Here we report that intracellular signaling pathways, including those involving MAPK and phosphatidylinositol 3 (PI3)-kinase, are activated by enzymatic dissociation of pancreatic acinar cells and that spherical cell clusters are formed by cadherin-mediated cell-cell adhesion during transdifferentiation. Inhibition of PI3-kinase by LY294002 prevents spheroid formation by degrading E-cadherin and beta-catenin, blocking transdifferentiation into insulin-secreting cells. In addition, neutralizing antibody against E-cadherin suppresses the induction of genes characteristic of pancreatic beta-cells. We also show that loss of cadherin-mediated cell-cell adhesion induces and maintains a dedifferentiated state in isolated pancreatic acinar cells. Thus, disruption and remodeling of cadherin-mediated cell-cell adhesion is critical in pancreatic exocrine-to-endocrine transdifferentiation, in which the PI3-kinase pathway plays an essential role.  相似文献   

16.
The role of apoptosis and contribution of Fas/FasL systems in the pathogenesis of Sjogren's syndrome (SS) are still controversial. With serial sections, we explored apoptosis assessed by the dUTP nick end labeling (TUNEL) method and expression of Fas and FasL by immunohistochemistry, and compared their distribution in minor salivary gland (MSG) of SS and sialolithiasis (SIL) patient tissues. Fas and FasL were co-localized in ductular and acinar cells of SS and SIL TUNEL+ cells co-distributed with the Fas and FasL expressing cells in ductular and acinar cells of SS in the vicinity of lymphocytic infiltration, while not in those of SIL Moreover, to morphologically confirm apoptosis, we identified TUNEL-positive(+) cells in the MSGs of SS at the ultra structural level by applying an inversion method to paraffin-embedded sections stained by TUNEL method. Surprisingly, these cells did not show characteristic apoptotic figures although TUNEL products were deposited on the hyperchromatin of acinar and ductular cells. On the other hand, acinar and ductular cells of SIL included clusters of TUNEL+ apoptotic bodies as did those cells by phagocytosis or having fallen into the ductular lumen. These findings suggest that Fas and FasL expressed in ducts and acini of chronic sialadenitis in SS patients induce apoptosis, possibily in an autocrine and/or paracrine manner.  相似文献   

17.
18.
An electron microscopic study of murine oval cells, induced by a single injection of genotoxic agent dipin and by a partial hepatectomy, has shown that their ultrastructure and direction of differentiation depend on localization in the liver lobule. Oval cells around portal tracts go through three stages of development: low differentiated cells 4.40 +/- 0.51 mu in diameter with ovoid nuclei 3.43 +/- 0.44 mu, intermediate cells, and young hepatocytes. They form common ducts surrounded by a basal lamina, and produce bile canaliculi-like structures and intermediate junctions between them. Another part of the oval cell population is organized similar to the bile duct epithelium. It consists of cells 9.37 +/- 1.1 mu in diameter with nuclei 7.28 +/- 1.16 mu in diameter and form a system of branching and anastomosing ducts widespread along the parenchyma from the portal to the central veins. Our data indicate that the oval cells can differentiate into hepatocytes, and support a hypothesis according to which the cells of terminal bile ductules are liver epithelial stem cells which can differentiate into a hepatocyte or a bile duct cell lineage in periportal microenvironment.  相似文献   

19.
Transdifferentiation of mouse BM cells into hepatocyte-like cells   总被引:6,自引:0,他引:6  
Chen Y  Dong XJ  Zhang GR  Shao JZ  Xiang LX 《Cytotherapy》2006,8(4):381-389
BACKGROUND: During the past few years multiple studies have revealed that adult stem cells, including BM origin stem cells, can be transdifferentiated into various cell types, including hepatocyte-like cells, under proper treatments or in a suitable microenvironment. However, little is known about the mechanism of the transdifferentiation, and the treatments employed seem to be very complicated and require simplification. It is important to determine the suitable conditions in which BM cells would be efficiently differentiated into hepatocytes. METHODS: Mouse BM cells were isolated from femurs and tibias and cultured in IMDM supplemented with 10% FBS. Hepatic differentiation was induced in a differentiation medium containing 20 ng/mL HGF, 10 ng/mL FGF-4, 10 ng/mL Oncostatin M (OSM) and different concentrations of liver-injured mouse sera. The differentiated hepatic cells were characterized by the expression of liver-associated mRNA and proteins and morphologic and functional features. RESULTS: BM cell-derived polygonal cell colonies appeared after several days of culture, and these hepatocyte-like cells expressed AFP, HNF-3beta, CK19, CK18, ALB, TAT and G-6-Pase at mRNA and protein levels, and the cells also had some hepatic cellular functions, such as glycogen storage and urea production. Interestingly, suitable concentrations of sera from liver-injured mice added to this system showed strong stimulation on the in vitro transdifferentiation of mouse BM cells into hepatocytes. DISCUSSION: In the present study we have established an effective hepatic differentiation system by a combination of HGF, FGF-4, OSM and liver-injured mouse sera in vitro. Accordingly, it will be a useful resource not only for understanding the mechanisms of transdifferentiation but also for efficient amplification of hepatocyte progenitor cells of BM origin.  相似文献   

20.
Close contacts between endocrine insular cells and exocrine acinar, centroacinar and ductular cells occur frequently in the rat pancreas as seen by both light and electron microscopy. Islets of Langerhans are surrounded incompletely by a thin connective tissue capsule or mantle but numerous exocrine-endocrine cell contacts occur at the periphery, which is irregular with considerable "intermingling" of the two cell types. Centroacinar and ductular cells are seen to be in contact with all endocrine cell types but most commonly insulin-secreting B-cells. The basal surface of centroacinar cells in the region of contact may be extensive, sometimes with overlap of basal processes of these cells and their lateral extension between acinar and insular cells. The areas of contact contain no connective tissue or basal lamina and show no surface specializations. The presence of both the "open" and "closed" type of enteroendocrine cells within acini is confirmed, some also being in contact with centroacinar cells. The functional significance of these exo-endocrine cell contacts is discussed in terms of the endocrine-acinar portal system, possible direct paracrine secretion, compartmentalization within the islet, and the known effects of islet hormones on exocrine secretion. Also relevant is the developmental origin of islets from ductal tissue and the cellular origin of some tumours, e.g., insulinomas, from duct cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号