首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
SH2-Bbeta has been shown to bind via its SH2 (Src homology 2) domain to tyrosyl-phosphorylated JAK2 and strongly activate JAK2. In this study, we demonstrate the existence of an additional binding site(s) for JAK2 within the N-terminal region of SH2-Bbeta (amino acids 1 to 555) and the ability of this region of SH2-B to inhibit JAK2. Four lines of evidence support the existence of this additional binding site(s). In a glutathione S-transferase pull-down assay, wild-type SH2-Bbeta and SH2-Bbeta(R555E) with a defective SH2 domain bind to both tyrosyl-phosphorylated JAK2 from growth hormone (GH)-treated cells and non-tyrosyl-phosphorylated JAK2 from control cells, whereas the SH2 domain of SH2-Bbeta binds only to tyrosyl-phosphorylated JAK2 from GH-treated cells. Similarly, JAK2 is present in alphaSH2-B immunoprecipitates in the absence and presence of GH, with GH substantially increasing the coprecipitation of JAK2 with SH2-B. When coexpressed in COS cells, SH2-Bbeta coimmunoprecipitates not only wild-type, tyrosyl-phosphorylated JAK2 but also kinase-inactive, non-tyrosyl-phosphorylated JAK2(K882E), although to a lesser extent. DeltaC555 (amino acids 1 to 555 of SH2-Bbeta) that lacks most of the SH2 domain binds similarly to wild-type JAK2 and kinase-inactive JAK2(K882E). Experiments using a series of N- and C-terminally truncated SH2-Bbeta constructs indicate that the pleckstrin homology (PH) domain (amino acids 269 to 410) and amino acids 410 to 555 are necessary for maximal binding of SH2-Bbeta to inactive JAK2, but neither region alone is sufficient for maximal binding. The SH2 domain of SH2-Bbeta is necessary and sufficient for the stimulatory effect of SH2-Bbeta on JAK2 and JAK2-mediated tyrosyl phosphorylation of Stat5B. In contrast, DeltaC555 lacking the SH2 domain, and to a lesser extent the PH domain alone, inhibits JAK2. DeltaC555 also blocks JAK2-mediated tyrosyl phosphorylation of Stat5B in COS cells and GH-stimulated nuclear accumulation of Stat5B in 3T3-F442A cells. These data indicate that in addition to the SH2 domain, SH2-Bbeta has one or more lower-affinity binding sites for JAK2 within amino acids 269 to 555. The interaction via this site(s) in SH2-B with inactive JAK2 seems likely to increase the local concentration of SH2-Bbeta around JAK2, thereby facilitating binding of the SH2 domain to ligand-activated JAK2. This would result in a more rapid and robust cellular response to hormones and cytokines that activate JAK2. This interaction between inactive JAK2 and SH2-B may also help prevent abnormal activation of JAK2.  相似文献   

7.
8.
9.
10.
11.
12.
The mechanisms underlying the Hepatitis C virus (HCV) resistance to interferon alpha (IFN-α) are not fully understood. We used IFN-α resistant HCV replicon cell lines and an infectious HCV cell culture system to elucidate the mechanisms of IFN-α resistance in cell culture. The IFN-α resistance mechanism of the replicon cells were addressed by a complementation study that utilized the full-length plasmid clones of IFN-α receptor 1 (IFNAR1), IFN-α receptor 2 (IFNAR2), Jak1, Tyk2, Stat1, Stat2 and the ISRE- luciferase reporter plasmid. We demonstrated that the expression of the full-length IFNAR1 clone alone restored the defective Jak-Stat signaling as well as Stat1, Stat2 and Stat3 phosphorylation, nuclear translocation and antiviral response against HCV in all IFN-α resistant cell lines (R-15, R-17 and R-24) used in this study. Moreover RT-PCR, Southern blotting and DNA sequence analysis revealed that the cells from both R-15 and R-24 series of IFN-α resistant cells have 58 amino acid deletions in the extracellular sub domain 1 (SD1) of IFNAR1. In addition, cells from the R-17 series have 50 amino acids deletion in the sub domain 4 (SD4) of IFNAR1 protein leading to impaired activation of Tyk2 kinase. Using an infectious HCV cell culture model we show here that viral replication in the infected Huh-7 cells is relatively resistant to exogenous IFN-α. HCV infection itself induces defective Jak-Stat signaling and impairs Stat1 and Stat2 phosphorylation by down regulation of the cell surface expression of IFNAR1 through the endoplasmic reticulum (ER) stress mechanisms. The results of this study suggest that expression of cell surface IFNAR1 is critical for the response of HCV to exogenous IFN-α.  相似文献   

13.
14.
15.
16.
17.
Inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), are chronic inflammatory diseases with unsolved pathogenesis. Imbalanced Th1/Th2 may play a role in the sustained inflammation of IBD. In China, CD is rare but the incidence of UC has been rising steadily in the last two decades. We investigated the expression of IL-12 (p40) and IFN-γ, and the activational state of Stat4 signaling in mucosal tissues at the site of disease from 30 active UC patients in comparison with 30 healthy controls. RT-PCR analyses revealed increased mRNA expression of IL-12 (p40) but not IFN-γ in UC patients. Western blot analyses discovered, for the first time, increased levels of constitutive Stat4 in the cytoplasm and phosphorylated Stat4 in the nucleus of mucosal cells from UC patients. We conclude that a heightened, perhaps persistent, activational state of IL-12/Stat4, and/or IL-23/Stat4 signaling may be present in active Chinese UC patients, and possibly involved in chronic inflammation in UC.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号