首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Life sciences》1993,53(18):PL285-PL290
It has been suggested that sigma receptor antagonists may be useful as antipsychotic drugs. N, N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]-ethylamine monohydrochloride (NE-100) is a novel compound with high affinity for the sigma receptor (IC50 = 4.16 nM), but low affinity (IC50 > 1000 nM) for D1, D2, 5-HT1A, 5-HT2 and phencyclidine (PCP) receptors. The head-weaving behavior induced by either (+)SKF10047 or PCP was dose-dependently antagonized by NE-100 with oral ED50 at 0.27 and 0.12 mg/kg, respectively. NE-100 did not affect dopamine agonists-induced stereotyped behavior and/or hyperactivity. NE-100 failed to induce catalepsy in rats. These findings indicate that NE-100 may have antipsychotic activity without the liability of motor side effects typical of neuroleptics.  相似文献   

2.
Neurodegeneration induced by the NMDA receptor antagonist, phencyclidine (PCP), has been used to model the pathogenesis of schizophrenia in the developing rat. Acute and sub-chronic administration of PCP in perinatal rats results in different patterns of neurodegeneration. The potential role of an alteration in the membrane expression of NMDA receptors in PCP-induced degeneration is unknown. Acute PCP treatment on postnatal day 7 increased membrane levels of both NMDA receptor subunit 1 (NR1) and NMDA receptor subunit 2B (NR2B) proteins in the frontal cortex; conversely, NR1 and NR2B protein levels in the endoplasmic reticulum fraction were decreased. Acute PCP administration also resulted in increased membrane cortical protein levels of post-synaptic density-95, as well as the activation of calpain, which paralleled the observed increase in membrane expression of NR1 and NR2B. Further, administration of the calpain inhibitor, MDL28170, prevented PCP-induced up-regulation of NR1 and NR2B. On the other hand, sub-chronic PCP treatment on postnatal days 7, 9 and 11 caused an increase in NR1 and NR2A expression, which was accompanied by an increase in both NR1 and NR2A in the endoplasmic reticulum fraction. Sub-chronic PCP administration did not alter levels of post-synaptic density-95 and had no effect on activation of calpain. These data suggest that increased trafficking accounts for up-regulation of cortical NR1/NR2B subunits following acute PCP administration, while increased protein synthesis likely accounts for the increased expression of NR1/NR2A following sub-chronic PCP treatment of the developing rat. These results are discussed in the context of the differential neurodegeneration caused by acute and subchronic PCP administration in the developing rat brain.  相似文献   

3.
《Life sciences》1995,57(21):PL333-PL337
The receptor binding specificity and neuroanatomical distribution of [3H]NE-100 (N, N- dipropyl-2- [4- methoxy-3- (2- phenylethoxy) phenyl] ethylamine monohydrochloride)-labeled sigma receptor in guinea pig brain were examined using quantitative autoradiography. NE-100 potently inhibited [3H]NE-100 binding to slide-mounted sections of guinea pig brain with the IC50 value of 1.09 nM, therefore, NE-100 apparently has high affinity binding sites. Competition studies, under conditions similar to those used to visualize the receptor, yielded the following rank order of potency: NE-100 > haloperidol > DuP734 > (+)pentazocine ⪢ (−)pentazocine. Non-sigma ligands such as phencyclidine (PCP), MK-801 and (−)sulpiride had negligible affinities for [3H]NE-100 binding sites. High densities of [3H]NE-100 binding sites displaceable by haloperidol were present in the granule layer of the cerebellum, the cingulate cortex, the CA3 region of the hippocampus, the hypothalamus and the pons. The distribution of [3H]NE-100 binding sites was consistent with that of [3H](+)pentazocine, a sigma1 ligand. These sigma sites may possibly be related to various aspects of schizophrenia.  相似文献   

4.
《Journal of Physiology》2013,107(6):434-440
Phencyclidine (PCP) is a psychotomimetic drug that induces schizophrenia-like symptoms in healthy individuals and exacerbates pre-existing symptoms in patients with schizophrenia. PCP also induces behavioral and cognitive abnormalities in non-human animals, and PCP-treated animals are considered a reliable pharmacological model of schizophrenia. However, the exact neural mechanisms by which PCP modulates behavior are not known. During the last decade several studies have indicated that disturbed activity of the prefrontal cortex (PFC) may be closely related to PCP-induced psychosis. Systemic administration of PCP produces long-lasting activation of medial PFC (mPFC) neurons in rats, almost in parallel with augmentation of locomotor activity and behavioral stereotypies. Later studies have showed that such PCP-induced behavioral abnormalities are ameliorated by prior administration of drugs that normalize or inhibit excess excitability of PFC neurons. Similar activation of mPFC neurons is not induced by systemic injection of a typical psychostimulant such as methamphetamine, even though behavioral hyperactivity is induced to almost the same level. This suggests that the neural circuits mediating PCP-induced psychosis are different to those mediating methamphetamine-induced psychosis. Locally applied PCP does not induce excitation of mPFC neurons, indicating that PCP-induced tonic excitation of mPFC neurons is mediated by inputs from regions outside the mPFC. This hypothesis is strongly supported by experimental results showing that local perfusion of PCP in the ventral hippocampus, which has dense fiber projections to the mPFC, induces tonic activation of mPFC neurons with accompanying augmentation of behavioral abnormalities. In this review we summarize current knowledge on the neural mechanisms underlying PCP-induced psychosis and highlight a possible involvement of the PFC and the hippocampus in PCP-induced psychosis.  相似文献   

5.
Phencyclidine (PCP) administration elicits positive and negative symptoms that resemble those of schizophrenia and is widely accepted as a model for the study of this human disorder. Group II metabotropic glutamate receptor (mGluR) agonists have been reported to reduce the behavioral and neurochemical effects of PCP. The peptide neurotransmitter, N-acetylaspartylglutamate (NAAG), is a selective group II agonist. We synthesized and characterized a urea-based NAAG analogue, ZJ43. This novel compound is a potent inhibitor of enzymes, glutamate carboxypeptidase II (K(i) = 0.8 nM) and III (K(i) = 23 nM) that deactivate NAAG following synaptic release. ZJ43 (100 microM) does not directly interact with NMDA receptors or metabotropic glutamate receptors. Administration of ZJ43 significantly reduced PCP-induced motor activation, falling while walking, stereotypic circling behavior, and head movements. To test the hypothesis that this effect of ZJ43 was mediated by increasing the activation of mGluR3 via increased levels of extracellular NAAG, the group II mGluR selective antagonist LY341495 was co-administered with ZJ43 prior to PCP treatment. This antagonist completely reversed the effects of ZJ43. Additionally, LY341495 alone increased PCP-induced motor activity and head movements suggesting that normal levels of NAAG act to moderate the effect of PCP on motor activation via a group II mGluR. These data support the view that NAAG peptidase inhibitors may represent a new therapeutic approach to some of the components of schizophrenia that are modeled by PCP.  相似文献   

6.
The "glutamate" theory of schizophrenia emerged from the observation that phencyclidine (PCP), an open channel antagonist of the NMDA subtype of glutamate receptor, induces schizophrenia-like behaviors in humans. PCP also induces a complex set of behaviors in animal models of this disorder. PCP also increases glutamate and dopamine release in the medial prefrontal cortex and nucleus accumbens, brain regions associated with expression of psychosis. Increased motor activation is among the PCP-induced behaviors that have been widely validated as models for the characterization of new antipsychotic drugs. The peptide transmitter N-acetylaspartylglutamate (NAAG) activates a group II metabotropic receptor, mGluR3. Polymorphisms in this receptor have been associated with schizophrenia. Inhibitors of glutamate carboxypeptidase II, an enzyme that inactivates NAAG following synaptic release, reduce several behaviors induced by PCP in animal models. This research tested the hypothesis that two structurally distinct NAAG peptidase inhibitors, ZJ43 and 2-(phosphonomethyl)pentane-1,5-dioic acid, would elevate levels of synaptically released NAAG and reduce PCP-induced increases in glutamate and dopamine levels in the medial prefrontal cortex and nucleus accumbens. NAAG-like immunoreactivity was found in neurons and presumptive synaptic endings in both regions. These peptidase inhibitors reduced the motor activation effects of PCP while elevating extracellular NAAG levels. They also blocked PCP-induced increases in glutamate but not dopamine or its metabolites. The mGluR2/3 antagonist LY341495 blocked these behavioral and neurochemical effects of the peptidase inhibitors. The data reported here provide a foundation for assessment of the neurochemical mechanism through which NAAG achieves its antipsychotic-like behavioral effects and support the conclusion NAAG peptidase inhibitors warrant further study as a novel antipsychotic therapy aimed at mGluR3.  相似文献   

7.
Pechnick RN  Bresee CJ  Poland RE 《Life sciences》2006,78(17):2006-2011
Phencyclidine (PCP) activates the hypothalamo-pituitary-adrenal (HPA) axis and decreases plasma prolactin levels in the rat. PCP is a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, but it also inhibits the reuptake of dopamine, serotonin and norepinephrine. The purpose of the present study was to utilize the PCP analogue N-[1-(2-thienyl)cyclohexyl]piperidine; (TCP), the potent dopamine reuptake inhibitor N-[1-(2-benzo(b)thiophenyl) cyclohexyl]piperidine; (BTCP) and the nonselective monoamine reuptake inhibitor cocaine as pharmacologic probes in order to determine the roles of noncompetitive NMDA receptor blockade and inhibition of dopamine reuptake in the neuroendocrine effects of PCP. PCP, TCP and cocaine increased plasma levels of adrenocorticotropin and corticosterone, but BTCP had no effect. In contrast, PCP, BTCP and cocaine decreased plasma prolactin, but TCP produced no such effect. The data suggest that mechanisms besides inhibition of dopamine reuptake are involved in the effects of PCP on the HPA axis, and the PCP-induced decrease in plasma prolactin is not a consequence of inhibition of NMDA receptor-mediated neurotransmission.  相似文献   

8.
9.
N-Methyl-D-aspartate (NMDA) antagonists induced behavioral and neurochemical changes in rodents that serve as animal models of schizophrenia. Chronic phencyclidine (PCP, 15 mg/(kg day) for 3 weeks via Alzet osmotic pump) administration enhances the amphetamine (AMPH)-induced dopamine (DA) efflux in prefrontal cortex (PFC), similar to that observed in schizophrenia. NMDA/glycine-site agonists, such as glycine (GLY), administered via dietary supplementation, reverse the enhanced effect. The present study investigated mechanisms of glycine-induced reversal of PCP-induced stimulation of AMPH-induced DA release, using simultaneous measurement of DA and AMPH in brain microdialysate, as well as peripheral and tissue AMPH levels. PCP treatment, by itself, increased peripheral and central AMPH levels, presumably via interaction with hepatic enzymes (e.g. cytochrome P450 CYP2C11). GLY (16% diet) had no effect on peripheral AMPH levels in the presence of PCP. Nevertheless, GLY significantly reduced extracellular/tissue AMPH ratios in both PFC and striatum (STR), especially following PCP administration, suggesting a feedback mediated effect on the dopamine transporter. GLY also inhibited acute AMPH (5 mg/kg)-induced DA release in PFC, but not STR. These findings suggest that GLY may modulate DA release in brain by producing feedback regulation of dopamine transporter function, possibly via potentiation of NMDA-stimulated GABA release and presynaptic GABAB receptor activation. The present studies also demonstrate pharmacokinetic interaction between AMPH and PCP, which may be of both clinical and research relevance.  相似文献   

10.
Early postnatal blockade of NMDA receptors by phencyclidine (PCP) causes cortical apoptosis in animals. This is associated with the development of schizophrenia-like behaviors in rats later in life. Recent studies show that the mechanism involves a loss of neurotrophic support from the phosphoinositol-3 kinase/Akt pathway, which is normally maintained by synaptic NMDA receptor activation. Here we report that activation of dopamine D1 receptors (D1R) with dihydrexidine (DHX) prevents PCP-induced neurotoxicity in cortical neurons by enhancing the efficacy of NMDAergic synapses. DHX increases serine phosphorylation of the NR1 subunit through protein kinase A activation and tyrosine phosphorylation of the NR2B subunit via Src kinase. DHX enhances recruitment of NR1 and NR2B, but not NR2A, into synapses. DHX also facilitated the synaptic response in cortical slices and this was blocked by an NR2B antagonist. DHX pre-treatment of rat pups prior to PCP on postnatal days 7, 9 and 11 inhibited PCP-induced caspase-3 activation on PN11 and deficits in pre-pulse inhibition of acoustic startle measured on PN 26-28. In summary, these data demonstrate that PCP-induced deficits in NMDA receptor function, neurotoxicity and subsequent behavioral deficits may be prevented by D1R activation in the cortex and further, it is suggested that D1R activation may be beneficial in treating schizophrenia.  相似文献   

11.
The acute administration of phencyclidine (PCP) causes hypothermia in the rat. Metaphit (1-[1-(3-isothiocyanatophenyl)cyclohexyl]-piperidine) is a derivative of PCP that has been shown to irreversibly acylate PCP receptors in vitro and in vivo and can antagonize the behavioral and electrophysiological effects of PCP in the rat. The purpose of the present study was to determine whether pretreatment with metaphit can block the hypothermic effects of PCP in the rat. Metaphit or PCP (1.0 mumol/rat) were injected into the lateral ventricles of rats, and 24 hr later the subjects were challenged with PCP (20.0 mg/kg s.c.). Pretreatment with metaphit blocked PCP-induced hypothermia; however, pretreatment with PCP did not affect the subsequent hypothermic response to PCP. These results indicate that the antagonism of PCP-induced hypothermia by metaphit was a specific effect and not due to PCP receptor desensitization.  相似文献   

12.
E Topp  R L Crawford    R S Hanson 《Applied microbiology》1988,54(10):2452-2459
The influence of high concentrations of pentachlorophenol (PCP) and readily metabolizable carbon on the activity and viability of a PCP-degrading Flavobacterium sp. was examined in a mineral salts medium. Lags preceding PCP removal by glutamate-grown Flavobacterium cells were greatly attenuated by the addition of glutamate, aspartate, succinate, acetate, glucose, or cellobiose. The effect of these supplementary carbon sources on the apparent lag was not mediated entirely through the stimulation of growth since PCP metabolism accompanied the onset of growth. The specific activity of PCP-degrading cells in the absence of supplementary carbon was 1.51 x 10(-13) +/- 0.08 x 10(-13) g of PCP per cell per h and in the presence of supplementary carbon was 0.92 x 10(-13) +/- 0.09 x 10(-13) g of PCP per cell per h. Glutamate in combination with glucose or cellobiose partially repressed PCP metabolism. PCP removal by PCP-induced, glutamate-grown cells suspended in the presence of 4 g of sodium glutamate per liter was sensitive to shock loads of PCP, with a Ki of about 86.8 micrograms/ml. Subsequent removal rates, however, were more resistant to PCP. Optimal stimulation of PCP removal by sodium glutamate required 3.0 g/liter, about the same concentration as that which saturated growth in the absence of PCP. PCP removal rates decayed within minutes following the transfer of PCP-induced, glutamate-grown cells to media containing PCP without supplementary carbon, and increasing PCP concentrations accelerated the decay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A S Freeman  B R Martin 《Life sciences》1983,32(10):1081-1089
The behavioral and pharmacological interactions between delta 9-tetrahydrocannabinol (delta 9-THC) and phencyclidine (PCP) were studied following coadministration of the drugs in smoke to mice. While delta 9-THC (25, 50 or 100 mg/cigarette) had little effect on spontaneous motor activity, all doses attenuated the hyperactivity elicited by PCP X HCl (25 and 50 mg/cigarette). delta 9-THC produced a dose-related hypothermia. PCP X HCl (50 mg/cigarette) had no effect on body temperature but enhanced hypothermia when combined with 25 mg of delta 9-THC. delta 9-THC (100 mg/cigarette) had no effect on the biodisposition of 3H-PCP and its pyrolytic product, 3H-phenylcyclohexene (3H-PC), when examined immediately after 3H-PCP X HCl (50 mg/ cigarette) exposure. At 30 min, brain, liver, lung and plasma contained higher concentrations of 3H-PC and fat and plasma contained lower concentrations of 3H-PCP in the mice exposed to both drugs compared to 3H-PCP X HCl alone. It appears, therefore, that delta 9-THC has the potential for altering the behavioral, pharmacological and pharmacokinetic sequelae of PCP abuse.  相似文献   

14.
The influence of high concentrations of pentachlorophenol (PCP) and readily metabolizable carbon on the activity and viability of a PCP-degrading Flavobacterium sp. was examined in a mineral salts medium. Lags preceding PCP removal by glutamate-grown Flavobacterium cells were greatly attenuated by the addition of glutamate, aspartate, succinate, acetate, glucose, or cellobiose. The effect of these supplementary carbon sources on the apparent lag was not mediated entirely through the stimulation of growth since PCP metabolism accompanied the onset of growth. The specific activity of PCP-degrading cells in the absence of supplementary carbon was 1.51 x 10(-13) +/- 0.08 x 10(-13) g of PCP per cell per h and in the presence of supplementary carbon was 0.92 x 10(-13) +/- 0.09 x 10(-13) g of PCP per cell per h. Glutamate in combination with glucose or cellobiose partially repressed PCP metabolism. PCP removal by PCP-induced, glutamate-grown cells suspended in the presence of 4 g of sodium glutamate per liter was sensitive to shock loads of PCP, with a Ki of about 86.8 micrograms/ml. Subsequent removal rates, however, were more resistant to PCP. Optimal stimulation of PCP removal by sodium glutamate required 3.0 g/liter, about the same concentration as that which saturated growth in the absence of PCP. PCP removal rates decayed within minutes following the transfer of PCP-induced, glutamate-grown cells to media containing PCP without supplementary carbon, and increasing PCP concentrations accelerated the decay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Phencyclidine (1-(1-phenylcyclohexyl)piperidine [PCP]), a behaviorally active analogue (1-(1-m-aminophenylcyclohexyl)piperidine [m-amino-PCP]), and two behaviorally inactive analogues (1-(1-m-nitrophenylcyclohexyl)piperidine and 1-piperidinocyclohexanecarbonitrile) block neuromuscular transmission, depress the amplitude and rate of rise of directly elicited action potentials in frog sartorius muscle, and cause voltage- and concentration-dependent decreases of the peak end-plate current amplitude. This implies that all four compounds block the ion channel of the acetylcholine (ACh) receptors. Only PCP and m-amino-PCP prolong the action potential, block delayed rectification, potentiate muscle twitch, increase quantal content of end-plate potentials, and block K+-induced 86Rb+ efflux from rat brain synaptosomes. PCP also possesses central and peripheral antimuscarinic activity but is much less potent than 3-quinuclidinyl benzilate (QNB). Atropine, scopolamine, and QNB require much higher concentrations to induce behavioral alterations than to block muscarinic receptors. Thus PCP and some of its behaviorally active and inactive derivatives share two common effects, blockade of the nicotinic ACh receptor-ion channel complex and blockade of central and peripheral muscarinic receptors. The feature that apparently separates behaviorally active from inactive derivatives of PCP is their ability to block K+ conductance (gK) and thereby potentiate muscle twitch and increase the release of transmitters from central and peripheral synapses. The similarity between PCP-induced behavioral alterations and primary schizophrenia in humans raises the possibility of involvement of an altered gK in the human disease.  相似文献   

16.
Activation of the sympathetic system by phencyclidine (PCP) should result in catecholamine release from the adrenals. However, adrenalectomy does not reduce PCP-induced hypertension. In an attempt to rectify this inconsistency, the direct effects of PCP on the bovine adrenal medulla were examined. At (3×10?6M), PCP reduced the acetylcholine-(ACh)-induced catecholamine release by 50%. Surprisingly, barium-induced secretion of catecholamines was also reduced by PCP. ACh-induced catecholamine release was not altered by 10?3M 4-aminopyridine (4 AP), the potassium channel blocker. Thus, calcium antagonist actions of PCP and consequent block of catecholamine secretion from adrenal medulla may explain the lack of effect of adrenalectomy on PCP-induced hypertension. Possible contributions of calcium and/or potassium channel blockade to other manifestations of PCP overdosage are discussed.  相似文献   

17.
Phencyclidine (PCP) has been shown to stimulate the pituitary-adrenal axis in the rat. The purpose of the present study was to determine whether opiate receptors are involved in this effect by testing whether pretreatment with the opiate antagonist naloxone can antagonize PCP-induced ACTH and corticosterone release. PCP (10.0 mg/kg) produced increases in plasma ACTH and corticosterone 60 min after s.c. administration. Pretreatment with naloxone (2.0 mg/kg s.c.) did not reduce the rise in plasma levels of ACTH or corticosterone produced by PCP. These results indicate that naloxone-sensitive opiate receptors are not involved in the PCP-induced stimulation of the pituitary-adrenal axis in rats.  相似文献   

18.
Neurochemical interactions of tiletamine, a potent phencyclidine (PCP) receptor ligand, with the N-methyl-D-aspartate (NMDA)-coupled and -uncoupled PCP recognition sites were examined. Tiletamine potently displaced the binding of [3H]1-(2-thienyl)cyclohexylpiperidine with an IC50 of 79 nM without affecting sigma-, glycine, glutamate, kainate, quisqualate, or dopamine (DA) receptors. Like other PCP ligands acting via the NMDA-coupled PCP recognition sites, tiletamine decreased basal, harmaline-, and D-serine-mediated increases in cyclic cGMP levels and induced stereotypy and ataxia. Tiletamine was nearly five times more potent than PCP at inhibiting the binding of 3-hydroxy[3H]PCP to its high-affinity NMDA-uncoupled PCP recognition sites. However, following parenteral administration, dizocilpine maleate (MK-801), ketamine, PCP, dexoxadrol, and 1-(2-thienyl)cyclohexylpiperidine HCl, but not tiletamine, increased rat pyriform cortical DA metabolism and/or release, a response modulated by the NMDA-uncoupled PCP recognition sites. Pretreatment with tiletamine did not attenuate the MK-801-induced increases in rat pyriform cortical DA metabolism, a result suggesting that tiletamine is not a partial agonist of the NMDA-uncoupled PCP recognition sites in this region. However, following intracerebroventricular administration (100-500 micrograms/rat), tiletamine increased pyriform cortical DA metabolism with a bell-shaped dose-response curve. These data indicate a differential interaction of tiletamine with the NMDA-coupled and -uncoupled PCP recognition sites. The paradoxical effects of tiletamine suggest that tiletamine might activate receptor(s) or neuronal pathways of unknown pharmacology.  相似文献   

19.
A bacterial strain capable of utilizing pentachlorophenol (PCP) as sole source of carbon and energy for growth was isolated from enrichment cultures containing 100 mg/l PCP in a mineral salts medium inoculated with contaminated soil from a lumber treatment waste site. The isolate, designated strain SR3, was identified as a species ofPseudomonas by virtue of its physiological and biochemical characteristics. Mineralization of PCP byPseudomonas sp. strain SR3 was demonstrated by loss of detectable PCP from growth medium, stoichiometry of chloride release (5 equivalents of chloride per mole of PCP), and formation of biomass consistent with the concentration of PCP mineralized. PCP-induced cells of strain SR3 showed elevated rates of oxygen consumption in the presence of PCP, and with different chlorinated phenols, with complete degradation of 2,3,5,6-, 2,3,6-, 2,4,6-, 2,4-, and 2,6-chloro-substituted phenols. Concentrations of PCP up to 175 mg/liter supported growth of this organism, but maximal rates of PCP removal were observed at a PCP concentration of 100 mg/liter. Based on its degradative properties,Pseudomonas sp. strain SR3 appears to have utility in bioremediation of soil and water contaminated with PCP.Abbreviations DCP dichlorophenol - TCP trichlorophenol - TeCP tetrachlorophenol Contribution No. 750 from the United States Environmental Protection Agency Environmental Research Laboratory, Gulf Breeze, FL32561, USA. A preliminary report of this work has appeared in abstract form (Resnick & Chapman 1990; Abstr. Annu Meet Amer Soc Microbiol Q-70, p. 300).  相似文献   

20.
Important role of glucagon during exercise in diabetic dogs   总被引:2,自引:0,他引:2  
To define the role of immunoreactive glucagon (IRG) during exercise in diabetes, 12 insulin-deprived alloxan-diabetic (A-D) dogs were run for 90 min (100 m/min, 12 degrees) with or without somatostatin (St 0.5 microgram . kg-1 . min-1). Compared with normal dogs, A-D dogs were characterized by similar hepatic glucose production (Ra), lower glucose metabolic clearance, and higher plasma glucose and free fatty acid levels during rest and exercise. In A-D dogs IRG was greater at rest and exhibited a threefold greater exercise increment than controls, whereas immunoreactive insulin (IRI) was reduced by 68% at rest but had similar values to controls during exercise. Basal norepinephrine, epinephrine, cortisol, and lactate levels were similar in normal and A-D dogs. However, exercise increments in norepinephrine, cortisol, and lactate were higher in A-D dogs. When St was infused during exercise in the A-D dogs, IRG was suppressed by 432 +/- 146 pg/ml below basal and far below the exercise response in A-D controls (delta = 645 +/- 153 pg/ml). IRI was reduced by 1.8 +/- 0.2 microU/ml with St. With IRG suppression the increase in Ra seen in exercising A-D controls (delta = 4.8 +/- 1.6 mg . kg-1 . min-1) was virtually abolished, and glycemia fell by 104 to 133 +/- 37 mg/dl. Owing to this decrease in glycemia, the increase in glucose disappearance was attenuated. Despite the large fall in glucose during IRG suppression, counterregulatory increases were not excessive compared with A-D controls. In fact, as glucose levels approached euglycemia, the increments in norepinephrine and cortisol were reduced to levels similar to those seen in normal exercising dogs. In conclusion, IRG suppression during exercise in A-D dogs almost completely obviated the increase in Ra, resulting in a large decrease in plasma glucose. Despite this large fall in glucose, there was no excess counterregulation, since glucose concentrations never reached the hypoglycemic range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号