首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study is aimed at investigating the inhibitory effect of cadmium ion on glutathione reductase activity of rabbit brain and liver and the relationship of this effect with dietary selenium. For this purpose, one group of New Zealand rabbits were fed a selenium-deficient diet, another group was fed a selenium-rich diet, and the control group was fed a normal diet. The brain and liver tissues of these groups were investigated for the in vitro inhibitory effects of Cd2+ on glutathione reductase activity. For liver, the percentage inhibition of glutathione reductase by 40 nmol/mg protein of Cd2+ was similar for selenium-deficient and control groups, but significantly lower in the selenium-rich group. For brain tissues, there was no difference with respect to cadmium inhibition of glutathione reductase in all three groups.  相似文献   

2.
Studies were carried out to determine the effects of lung and liver cytosol on pulmonary and hepatic mierosomal lipid peroxidation, to determine the cytosolic concentrations of various substances which affect lipid peroxidation, and to determine which of these substances is responsible for the effects of the cytosol on lipid peroxidation. Lung cytosol inhibits both enzymatic (NADPH-induced) and nonenzymatic (Fe2+-induced) lung microsomal lipid peroxidation. In contrast, liver cytosol stimulates lipid peroxidation in hepatic microsomes during incubation alone, enhances Fe2+-stimulated lipid peroxidation, and has no effect on the NADPH-induced response. Substances which are known to be involved in inhibition of lipid peroxidation, including glutathione, glutathione reductase, glutathione peroxidase, and superoxide dismutase, are found in greater concentrations in liver cytosol than in lung cytosol. However, ascorbate is found in approximately equal concentrations in pulmonary and hepatic cytosol. Most of the effects of the cytosol on lipid peroxidation seem to be due to ascorbate and glutathione. For example, ascorbate, in concentrations found in lung cytosol, inhibits lung microsomal lipid peroxidation to about the same extent as the cytosol. The effects of liver cytosol on hepatic microsomal lipid peroxidation can be duplicated by concentrations of ascorbate and glutathione normally found in the cytosol; i.e., ascorbate stimulates and glutathione inhibits lipid peroxidation with the net effect being similar to that of liver cytosol. The results indicate that ascorbate has opposite effects on pulmonary and hepatic microsomal lipid peroxidation and suggest that ascorbate plays a major role in protecting pulmonary tissue against the harmful effects of lipid peroxidation.  相似文献   

3.
The aim of this work was to assess the effect of different Cd2+concentrations on some antioxidant enzymes in Festuca arundinacea. Increased activities of ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione S-transferase, and glutathione reductase were ascertained in response to low Cd2+ concentrations (0–20 μM), whereas the enzyme activities were less increased or decreased at a higher Cd2+ dosage (50 μM) and a longer exposure. The content of reduced glutathione (GSH) decreased significantly with increasing Cd2+ concentrations, whereas the content of oxidized glutathione (GSSG) increased proportionally to the amount of Cd2+ applied. Further experiments, performed by incubating the enzyme extracts with oxidized glutathione, evidenced that the addition of GSSG to the incubation mixtures caused significant decreases of some enzymatic activities. Finally, the effect of glutathione S-transferase, FaGST I, extracted from fescue seedlings and purified till homogeneity, on these enzyme activities was investigated. It was found that FaGST I enhanced the decreased enzymatic activities caused by GSSG.  相似文献   

4.
The effect of calcium (Ca2+) on Trifolium repens L. seedlings subjected to cadmium (Cd2+) stress was studied by investigating plant growth and changes in activity of antioxidative enzymes. Physiological analysis was carried out on seedlings cultured for 2 weeks on half-strength Hoagland medium with Cd2+ concentrations of 0, 400 and 600 μM, and on corresponding medium supplied with CaCl2 (5 mM). Exposure to increasing Cd2+ reduced the fresh weight of the upper part (stems + leaves) of the seedlings more strongly than that of the root system. In both parts of T. repens seedlings H2O2 level and lipid peroxidation increased. In the upper part, Cd2+ exposure led to a significant decrease in the activity of superoxide dismutase, catalase and glutathione peroxidase and an increase in ascorbate peroxidase activity. In contrast, the roots showed an increase in the activity of antioxidative enzymes under Cd2+ stress. Ca2+ addition to medium reduced the Cd2+ accumulation, and considerably reversed the Cd2+-induced decrease in fresh mass as well as the changes in lipid peroxidation in the both parts of T. repens seedlings. Ca2+ application diminished the Cd2+ effect on the activity of antioxidative enzymes in the upper part, even though it did not significantly affect these enzymes in the roots. So the possible mechanisms for the action of Ca2+ in Cd2+ stress were considered to reduce Cd2+ accumulation, alleviate lipid peroxidation and promote activity of antioxidative enzymes.  相似文献   

5.
The mechanism of Cd2+ on the DNA cleavage and Ce3+ on the DNA repair in the kidney of silver crucian carp (Carassius auratus gibelio) is investigated by agarose gel electrophoresis methods and assaying biochemical indexes. It proves that Cd2+ induces the classical laddering degradation of DNA in vivo, but DNA cleavage is repaired after injecting with a low Ce3+ concentration under various Cd2+ concentrations. The DNA cleavage caused by Cd2+ is the result of the activation of deoxyribonuclease (DNase) and accumulation of reactive oxygen species (ROS), and Cd2+ destroys the antioxidant system, which diminishes the activities of superoxide dismutase, catalase, and peroxidase, and the increase of the lipid peroxidation (LPO) level. However, Ce3+ could inhibit activation of Cd2+ on DNase activity, relieve inhibition of Cd2+ on activities of the antioxidant enzyme, and diminish ROS accumulation. The results show that Ce3+ could relieve the toxicity of Cd2+ to silver crucian carp.  相似文献   

6.
Biochemical responses to cadmium (Cd2+) and copper (Cu2+) exposure were compared in two strains of the aquatic hyphomycete (AQH) Heliscus lugdunensis. One strain (H4-2-4) had been isolated from a heavy metal polluted site, the other (H8-2-1) from a moderately polluted habitat. Conidia of the two strains differed in shape and size. Intracellular accumulation of Cd2+ and Cu2+ was lower in H4-2-4 than in H8-2-1. Both␣strains synthesized significantly more glutathione (GSH), cysteine (Cys) and γ-glutamylcysteine (γ-EC) in the presence of 25 and 50 μM Cd2+, but quantities and rates of synthesis were different. In H4-2-4, exposure to 50 μM Cd2+ increased GSH levels to 262% of the control; in H8-2-1 it increased to 156%. Mycelia of the two strains were analysed for peroxidase, dehydroascorbate reductase, glutathione reductase and glucose-6-phosphate dehydrogenase. With Cd2+ exposure, peroxidase activity increased in both strains. Cu2+ stress increased dehydroascorbate reductase activity in H4-2-4 but not in H8-2-1. Dehydroascorbate reductase and glucose-6-phosphate dehydrogenase activities progressively declined in the presence of Cd2+, indicating a correlation with Cd2+ accumulation in both strains. Cd2+ and Cu2+ exposure decreased glutathione reductase activity.  相似文献   

7.
Chromium VI compounds have been shown to be carcinogenic in occupationally exposed humans, and to be genotoxic, mutagenic, and carcinogenic in a variety of experimental systems. In contrast, most chromium III compounds are relatively nontoxic, noncarcinogenic, and nonmutagenic. Reduction of Cr6+ leads to reactive intermediates, such as Cr5+, Cr4+, or other radical species. The molecular mechanism for the intracellular Cr6+ reduction has been the focus of recent studies, but the details are still not understood. Our study was initiated to compare the effect of Cr6+-hydroxyl radical formation and Cr6+-induced lipid peroxidation vs those of Cr3+. Electron spin responance measurements provide evidence for the formation of long-lived Cr5+ intermediates in the reduction of Cr6+ by glutathione reductase in the presence of NADPH and for the hydroxyl radical formation during the glutathione reductase catalyzed reduction of Cr6+. Hydrogen peroxide suppresses Cr5+ and enhances the formation of hydroxyl radical. Thus, Cr5+ intermediates catalyze generation of hydroxyl radicals from hydrogen peroxide through a Fenton-like reaction. Comparative effects of Cr6+ and Cr3+ on the development of lipid peroxidation were studied by using rat heart homogenate. Heart homogenate was incubated with different concentrations of Cr6+ compounds at 22°C for 60 min. Lipid peroxidation was determined as thiobarbituric acid reacting materiels (TBA-RM). The results confirm that Cr6+ induces lipid peroxidation in the rat heart homogenate. These observations might suggest a possible causative role of lipid peroxidation in Cr6+ toxicity. This enhancement of lipid peroxidation is modified by the addition of some metal chelators and antioxidants. Thus, strategies for combating Cr6+ toxicity should take into account the role of the hydroxy radicals, and hence, steps for blocking its chain propagation and preventing the formation of lipid peroxides.  相似文献   

8.
The peroxisome proliferators perfluorooctanoic acid (PFOA; 0.02% w/w), perfluorodecanoic acid (PFDA; 0.02%, w/w), nafenopin (0.125%, w/w), clofibrate (0.5%, w/w), and acetylsalicylic acid (ASA; 1%, w/w) were administered to male C57 BL/6 mice in their diet for two weeks. Parameters for Fe3+ ADP, NADPH or ascorbic acid-initiated lipid peroxidation in vitro were measured. Approximately a twofold increase in susceptibility to lipid peroxidation was obtained for all the peroxisome proliferators tested. Cotreatment of mice with the peroxisome proliferator ASA (1%, w/w) and a catalase inhibitor, 3-amino-1,2,4-triazole (AT; 0.4%, w/w) for 7 days resulted in little inhibition of peroxisome proliferation, an elevated level of H2O2 in vivo, and total inhibition of the increased susceptibility to lipid peroxidation in vitro. No increase in lipid peroxidation in vivo was observed. Certain antioxidant enzymes (DT-diaphorase, superoxide dismutase, glutathione transferase, glutathione peroxidase, and glutathione reductase) and components (ubiquinone and α-tocopherol) were also measured. The results showed that there was some induction of these antioxidant enzymes and components by ASA or aminotriazole, except for glutathione peroxidase and superoxide dismutase, which were inhibited. The possible involvement of oxidative stress in the carcinogenicity of peroxisome proliferators is discussed.  相似文献   

9.
Sunflower (Helianthus annuus L.) seeds were germinated and grown in the presence of 50, 100 and 200 μM CdCl2. The lower concentration (50 μM) of Cd2 ions produced slight decrease in reduced glutathione (GSH) content and overall increase (except superoxide dismutase) in antioxidant enzyme activities, and in H2O2 concentration. Chlorophyll content, lipid peroxidation and protein oxidation were not affected under 50 μM CdCl2. GSH content was diminished under 100 and 200 μM CdCl2, and except for superoxide dismutase, which activity remained unaltered, overall decreases in the antioxidant enzyme activities (catalase, ascorbate peroxidase, dehydroascorbate peroxidase, glutathione reductase) and in guaiacol peroxidase were observed. These Cd2 concentrations caused a decrease in chlorophyll content as well as an increase in lipid peroxidation, protein oxidation and H2O2 concentration. All the observed effects were more evident with the highest concentration of cadmium chloride used. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
《Free radical research》2013,47(1-2):57-68
The effects of oxidative stress caused by hyperoxia or administration of the redox active compound diquat were studied in isolated hepatocytes, and the relative contribution of lipid peroxidation, glutathione (GSH) depletion, and NADPH oxidation to the cytotoxicity of active oxygen species was investigated.

The redox cycling of diquat occurred primarily in the microsomal fraction since diquat was found not ' to penetrate into the mitochondria. Depletion of intracellular GSH by pretreatment of the animals with diethyl maleate promoted lipid peroxidation and sensitized the cells to oxidative stress. Diquat toxicity was also greatly enhanced when glutathione reductase was inhibited by pretreatment of the cells with 1,3-bis(2-chloroethyI)-1-nitrosourea. Despite extensive lipid peroxidation, loss of cell viability was not observed, with either hyperoxia or diquat, until the GSH level had fallen below ≈ 6 nmol/106 cells.

The iron chelator desferrioxamine provided complete protection against both diquat-induced lipid peroxidation and loss of cell viability. In contrast, the antioxidant a-tocopherol inhibited lipid peroxidation but provided only partial protection from toxicity. The hydroxy! radical scavenger α-keto-γ-methiol butyric acid, finally, also provided partial protection against diquat toxicity but had no effect on lipid peroxidation.

The results indicate that there is a critical GSH level above which cell death due to oxidative stress is not observed. As long as the glutathione peroxidase – glutathione reductase system is unaffected, even relatively low amounts of GSH can protect the cells by supporting glutathione peroxidase-mediated metabolism of H2O2 and lipid hydroperoxides.  相似文献   

11.
In the presence of Fe3+ and complexing anions, the peroxidation of unsaturated liver microsomal lipid in both intact microsomes and in a model system containing extracted microsomal lipid can be promoted by either NADPH and NADPH : cytochrome c reductase or by xanthine and xanthine oxidase. Erythrocuprein effectively inhibits the activity promoted by xanthine and xanthine oxidase but produces much less inhibition of NADPH-dependent peroxidation. The singlet-oxygen trapping agent, 1,3-diphenylisobenzofuran, had no effect on NADPH-dependent peroxidation but strongly inhibited the peroxidation promoted by xanthine and xanthine oxidase. NADPH-dependent lipid peroxidation was also shown to be unaffected by hydroxyl radical scavengers.. The addition of catalase had no effect on NADPH-dependent lipid peroxidation, but it significantly increased the rate of malondialdehyde formation in the reaction promoted by xanthine and xanthine oxidase. These results demonstrate that NADPH-dependent lipid peroxidation is promoted by a reaction mechanism which does not involve either superoxide, singlet oxygen, HOOH, or the hydroxyl radical. It is concluded that NADPH-dependent lipid peroxidation is initiated by the reduction of Fe3+ followed by the decomposition of hydroperoxides to generate alkoxyl radicals. The initiation reaction may involve some form of the perferryl ion or other metal ion species generated during oxidation of Fe2+ by oxygen.  相似文献   

12.
13.
A psychrophilic glutathione reductase from Antarctic ice microalgae Chlamydomonas sp. Strain ICE-L was purified by ammonium sulfate fractionation and three steps of chromatography. The yield was up to 25.1% of total glutathione reductase in the crude enzyme extract. The glutathione reductase activity was characterized by the spectrophotometric method under different conditions. Purified glutathione reductase was separated by SDS-PAGE, which furnished a homogeneous band. The native molecular mass of the enzyme was 115 kDa. Apparent Km values for NADPH and NADH (both at 0.5 mmol L−1 oxidized glutathione) were 22.3 and 83.8 μmol L−1, respectively. It was optimally active at pH 7.5, and it was stable from pH 5 to 9. Its optimum temperature was 25°C, with activity at 0°C 23.5% of the maximum. Its optimum ion strength and optimum Mg2+ were 50–90 and 7.5 mmol L−1, respectively. Ca2+, Mg2+, and cysteine substantially increased the activity of the enzyme but chelating agents, heavy metals (Cd2+, Pb2+, Cu2+, Zn2+, etc.), NADPH, and ADP had significant inhibitory effects. This glutathione reductase can be used to study the adaptation and mechanism of catalysis of psychrophilic enzymes, and it has a high potential as an environmental biochemical indicator under extreme conditions.  相似文献   

14.
Summary Redox inactivation of glutathione reductase involves metal cations, since chelators protected against NADPH-inactivation, 3 µM EDTA or 10 µM DETAPAC yielding full protection. Ag+, Zn2+ and Cd2+ potentiated the redox inactivation promoted by NADPH alone, while Cr3+, Fe2+, Fe3+, Cu+, and Cu2+ protected the enzyme. The Zn2+ and Cd2+ effect was time-dependent, unlike conventional inhibition. Glutathione reductase interconversion did not require dioxygen, excluding participation of active oxygen species produced by NADPH and metal cations. One Zn2+ ion was required per enzyme subunit to yield full NADPH-inactivation, the enzyme being reactivated by EDTA. Redox inactivation of glutathione reductase could arise from the blocking of the dithiol formed at the active site of the reduced enzyme by metal cations, like Zn2+ or Cd2+.The glutathione reductase activity of yeast cell-free extracts was rapidly inactivated by low NADPH or moderate NADH concentrations; NADP+ also promoted rapid inactivation in fresh extracts, probably after reduction to NADPH. Full inactivation was obtained in cell-free extracts incubated with glucose-6-phosphate or 6-phosphogluconate; the inactivating efficiency of several oxidizable substrates was directly proportional to the specific activities of the corresponding dehydrogenases, confirming that redox inactivation derives from NADPH formed in vitro.Abbreviations DETAPAC diethylenetriaminepentaacetic acid - 2,5-ADP-Sepharose-N6-(6-aminohexyl) adenosine 2,5-bisphosphateSepharose  相似文献   

15.
Glutathione reductase (GR; E.C. 1.6.4.2) is a flavoprotein that catalyzes the NADPH-dependent reduction of oxidized glutathione (GSSG). In this study we tested the effects of Al3+, Ba2+, Ca2+, Li+, Mn2+, Mo6+, Cd2+, Ni2+, and Zn2+ on purified bovine liver GR. In a range of 10?μM–10?mM concentrations, Al3+, Ba2+, Li+, Mn2+, and Mo6+, and Ca2+ at 5?μM–1.25?mM, had no effect on bovine liver GR. Cadmium (Cd2+), nickel (Ni2+), and zinc (Zn2+) showed inhibitory effects on this enzyme. The obtained IC50 values of Cd2+, Ni2+, and Zn2+ were 0.08, 0.8, and 1?mM, respectively. Cd2+ inhibition was non-competitive with respect to both GSSG (KiGSSG 0.221?±?0.02?mM) and NADPH (KiNADPH 0.113?±?0.008?mM). Ni2+ inhibition was non-competitive with respect to GSSG (KiGSSG 0.313?±?0.01?mM) and uncompetitive with respect to NADPH (KiNADPH 0.932?±?0.03?mM). The effect of Zn2+ on GR activity was consistent with a non-competitive inhibition pattern when the varied substrates were GSSG (KiGSSG 0.320?±?0.018?mM) and NADPH (KiNADPH 0.761?±?0.04?mM), respectively.  相似文献   

16.
3′,5′-cAMP plays an important role as a second messenger molecule controlling multiple cellular processes in the brain. Its levels are decreased by phosphodiesterases (PDEs), responsible for hydrolysis of intracellular cAMP. A part of the PDE activity is dependent on the effect of calcium, mediated by its binding to calmodulin. During oxidative stress, precisely these changes in calcium concentration are responsible for cell damage. We have examined the effects of oxidative stress conditions on the activity of PDE in rat brain homogenates. We found a different influence of activated lipid peroxidation conditions (Fe2+ with ascorbate and increased temperature) on the calcium-dependent and calcium-independent PDE activity. The inhibition of Ca2+-dependent PDE was observed, while Ca2+-independent PDE was not influenced. We assume that it might be the impact of lipid peroxidation products or any mechanism activated by the higher temperature on the interaction of the Ca2+-dependent isoform of PDE with the complex calcium-calmodulin. Another explanation might be that the formation of the functioning calcium-calmodulin complex is impossible in these conditions.  相似文献   

17.
To study the role of glutathione reductase in lipid peroxidation, bean leaves (Phaseolus vulgaris) cv Fori were treated with the herbicide acifluorfen-sodium (sodium 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid). Acifluorfen is a potent inducer of lipid peroxidation. In beans, decrease of acid-soluble SH-compounds and lipid peroxidation, measured as ethane evolution, were the toxic events after treatment of leaves with acifluorfen. As a primary response to peroxidation, increased production of antioxidants, such as vitamin C and glutathione, was found. This was followed by elevation of glutathione reductase activity. Enhanced activity of the enzyme prevented both further decline of acid-soluble SH-compounds and lipid peroxidation. Increased production of antioxidants and elevated activity of antioxidative enzymes, like glutathione reductase, seem to be a general strategy to limit toxic peroxidation in plants.  相似文献   

18.
Living organisms are subject to stress, and among these stressors, heavy metals exposure triggers accumulation of sulfur metabolites. Among these metabolites, glutathione and phytochelatins are found in several organisms, such as Euglena gracilis. Pre-exposing E. gracilis to low concentrations of Hg2+ generates a population with resistance to even 0.2 mM Cd2+, and this resistance relies partly on phytochelatins. p38 MAPK is stimulated by stress and is involved in apoptotic as well as survival mechanisms. In this study, we explored its participation in heavy metal-induced stress and its possible role in sulfur metabolite accumulation. We found that about 51% of the E. gracilis pretreated with Hg2+ becomes resistant to Cd2+ and proliferates despite the presence of this metal. The accumulation of the sulfur metabolites γ-glu-cys, glutathione and phytochelatin 2 displayed cyclic patterns that were disturbed by a challenge with Cd2+. We observed a p38 MAPK-like activity that was stimulated by acute or chronic heavy metal exposure, and its inhibition by SB203580 slightly diminished the accumulation of sulfur compounds. p38 MAPK inhibition also affected basal levels of glutathione in either pretreated or control cells. Thus, it appears that p38 MAPK mediates redox stress component of the signal pathway induced by heavy metals.  相似文献   

19.
The in vitro effects of membrane lipid peroxidation on ATPase-ADPase activities in synaptic plasma membranes from rat forebrain were investigated. Treatment of synaptic plasma membranes with an oxidant generating system (H2O2/Fe2+/ascorbate) resulted in lipid peroxidation and inhibition of the enzyme activity. Besides, trolox as a water soluble vitamin E analogue totally prevented lipid peroxidation and the inhibition of enzyme activity. These results demonstrate the susceptibility of ATPase-ADPase activities of synaptic plasma membranes to free radicals and suggest that the protective effect against lipid peroxidation by trolox prevents the inhibition of enzyme activity. Thus, inhibition of ATPase-ADPase activities of synaptic plasma membranes in cerebral oxidative stress probably is related to lipid peroxidation in the brain.  相似文献   

20.
CO2 exchange, variable chlorophyll fluorescence, the intensity of lipid peroxidation (POL), and the activity of antioxidant enzymes in leaves of two-week-old pea seedlings (Pisum sativum L.) exposed to 0.01, 0.1, and 1 mM aqueous solutions of Cd(NO3)2 for 2 h were studied. Incubation with Cd2+ ions resulted in a reduction of the maximum quantum efficiency of photosynthesis, CO2 uptake rate, and photosystem II (PSII) activity, as assessed by F v/F 0 ratio. The intensity of POL in leaves of all treated seedlings was below or close to the control level. The activity of superoxide dismutase (SOD) and glutathione reductase (GR) increased in all treatments; the activity of ascorbate peroxidase (AP) exceeded the control level only in seedlings exposed to the high Cd2+ concentration (1 mM), and the activity of peroxidase increased at the low concentration (0.01 mM). We found that the reduction in the activity of the photosynthetic apparatus under conditions of 2-h-long Cd2+-induced stress was not related to an intensification of POL processes. It was concluded that stimulation of the activity of antioxidant enzymes—SOD, GR, AP, and peroxidase—is a pathway for pea plant adaptation to toxic effect of cadmium.Translated from Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 21–26.Original Russian Text Copyright © 2005 by Balakhnina, Kosobryukhov, Ivanov, Kreslavskii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号