首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The purpose of this study was to determine whether the extraction of skeletal muscle with a combination of ethanol and hydrochloric acid yields a product capable of stimulating angiogenesis. The resulting extract stimulated inflammation in the rabbit corneal assay, which was followed by capillary formation. In order to determine whether the observed angiogenesis was stimulated by a factor(s) acting directly on the endothelial cells versus a factor(s) recruiting macrophages that in turn release factors acting on endothelial cells, the muscle extract was tested for endothelial cell and monocyte chemotaxis activity in vitro. The muscle extract stimulated significant endothelial cell chemotaxis at concentrations between 94 and 750 micrograms of protein/ml and significant monocyte chemotaxis at concentrations between 8 and 75 micrograms of protein/ml. Polyacrylamide gel electrophoresis suggests that basic fibroblast growth factor and transforming growth factor-beta may be present in this acid/ethanol extract of skeletal muscle.  相似文献   

3.
4.
Deficits in skeletal muscle function exist during aging and muscular dystrophy, and suboptimal function has been related to factors such as atrophy, excessive inflammation and fibrosis. Ineffective muscle regeneration underlies each condition and has been attributed to a deficit in myogenic potential of resident stem cells or satellite cells. In addition to reduced myogenic activity, satellite cells may also lose the ability to communicate with vascular cells for coordination of myogenesis and angiogenesis and restoration of proper muscle function. Objectives of the current study were to determine the angiogenic-promoting capacity of satellite cells from two states characterized by dysfunctional skeletal muscle repair, aging and Duchenne muscular dystrophy. An in vitro culture model composed of satellite cells or their conditioned media and rat adipose tissue microvascular fragments (MVF) was used to examine this relationship. Microvascular fragments cultured in the presence of rat satellite cells from adult muscle donors (9–12 month of age) exhibited greater indices of angiogenesis (endothelial cell sprouting, tubule formation and extensive branching) than MVF co-cultured with satellite cells from aged muscle donors (24 month of age). We sought to determine if the differential degree of angiogenesis we observed in the co-culture setting was due to soluble factors produced by each satellite cell age group. Similar to the co-culture experiment, conditioned media produced by adult satellite cells promoted greater angiogenesis than that of aged satellite cells. Next, we examined differences in angiogenesis-stimulating ability of satellite cells from 12 mo old MDX mice or age-matched wild-type mice. A reduction in angiogenesis activity of media conditioned by satellite cells from dystrophic muscle was observed as compared to healthy muscle. Finally, we found reduced gene expression of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) in both aged and dystrophic satellite cells compared to their adult and normal counterparts, respectively. These results indicate that functional deficits in satellite cell activities during aging and diseased muscle may extend to their ability to communicate with other cells in their environment, in this case cells involved in angiogenesis.  相似文献   

5.
Adult skeletal muscle undergoes adaptation in response to endurance exercise, including fast-to-slow fiber type transformation and enhanced angiogenesis. The purpose of this study was to determine the temporal and spatial changes in fiber type composition and capillary density in a mouse model of endurance training. Long-term voluntary running (4 wk) in C57BL/6 mice resulted in an approximately twofold increase in capillary density and capillary-to-fiber ratio in plantaris muscle as measured by indirect immunofluorescence with an antibody against the endothelial cell marker CD31 (466 ± 16 capillaries/mm2 and 0.95 ± 0.04 capillaries/fiber in sedentary control mice vs. 909 ± 55 capillaries/mm2 and 1.70 ± 0.04 capillaries/fiber in trained mice, respectively; P < 0.001). A significant increase in capillary-to-fiber ratio was present at day 7 with increased concentration of vascular endothelial growth factor (VEGF) in the muscle, before a significant increase in percentage of type IIa myofibers, suggesting that exercise-induced angiogenesis occurs first, followed by fiber type transformation. Further analysis with simultaneous staining of endothelial cells and isoforms of myosin heavy chains (MHCs) showed that the increase in capillary contact manifested transiently in type IIb + IId/x fibers at the time (day 7) of significant increase in total capillary density. These findings suggest that endurance training induces angiogenesis in a subpopulation of type IIb + IId/x fibers before switching to type IIa fibers. adaptation; capillary density; endothelial cells; fiber type transformation; vascular endothelial growth factor  相似文献   

6.
Polyclonal antibodies were prepared against recombinant basic fibroblast growth factor (bFGF) that reacted only with bFGF but not acidic FGF. These antibodies were able to inhibit various biological activities of bFGF such as the ability of bFGF to stimulate DNA synthesis in 3T3 cells, proliferation and migration of bovine capillary endothelial cells (BCEC), and neurite extension in pheochromocytoma (PC12) cells. The anti-bFGF antibodies also inhibited the mitogenic activity of subendothelial cell extracellular matrix for BCEC, demonstrating that the growth factor component in extracellular matrix required for supporting BCEC proliferation was bFGF. Anti-bFGF antibodies inhibited the cross-linking of bFGF to its high affinity receptor on BCEC cells. However, these antibodies did not inhibit the binding of bFGF to heparin-Sepharose or to the low affinity receptors of BCEC which have been demonstrated to be heparin-like molecules. These results suggest that bFGF has distinct domains for binding to high affinity cellular receptors and for binding to heparin.  相似文献   

7.
The expression of a functional P-glycoprotein (P-gp) which pumps drugs out of brain capillary endothelial cells (BCEC) into blood was studied by evaluating the steady-state uptake and efflux of vincristine (VCR) by primary cultured bovine BCEC. The steady-state uptake of VCR was increased in the presence of metabolic inhibitors, and an anti-P-gp monoclonal antibody, MRK16, as well as verapamil and steroid hormones which are known to reverse multidrug resistance in tumor cells. Furthermore, efflux of VCR from BCEC was inhibited by verapamil. By immunohistochemistry, P-gp was localized at the luminal side of the capillary endothelial cells in both gray matter of bovine brain and primary cultured BCEC. These data suggest that P-gp functions as a drug efflux pump at the luminal side of BCEC and regulates the transfer of certain lipophilic drugs from the blood into the brain.  相似文献   

8.
We showed previously that blood vessel maturation in the CNS is associated with a developmental switch in brain capillary endothelial cells (BCEC), from fibronectin signalling during angiogenesis to laminin signalling in the adult. To investigate the functional significance of this switch, we have examined the response of BCEC to different extracellular matrix (ECM) proteins. This showed that BCEC proliferation was significantly promoted by fibronectin (28.2 +/- 4.0%) and by vitronectin (14.8 +/- 2.1%) compared with uncoated glass (7.2 +/- 0.7%), while BCEC survival was significantly promoted by fibronectin (1130 +/- 131 cells), vitronectin (830 +/- 63 cells), collagen IV (703 +/- 77 cells) and laminin (680 +/- 34 cells) compared with the uncoated glass (367 +/- 48 cells). Biochemical studies showed that BCEC express a limited repertoire of integrins, including the beta1 integrins, alpha3beta1, alpha5beta1 and alpha6beta1, and the alphavbeta3 integrin. Function-blocking studies showed that the response to fibronectin was mediated equally by the alpha5beta1 and alphavbeta3 integrins. Analysis of signalling pathways revealed that fibronectin stimulated activation of the p44/p42 MAP kinase signalling pathway and pharmacological inhibitors of this pathway blocked BCEC proliferation on fibronectin. Taken together, these findings show that fibronectin exerts a strong angiogenic influence on endothelial cells (EC) in the CNS, and that this is mediated through the alpha5beta1 and alphavbeta3 integrins via MAP kinase signalling. In addition to a fundamental role in development, these findings may also have implications in pathological conditions of the CNS where fibronectin is re-expressed.  相似文献   

9.
The individual structural stages in capillary growth have been identified during development and under pathological circumstances in adults (wound healing, tumors), but there are no data to indicate whether these steps are similar when angiogenesis is induced in a fully differentiated microvascular bed in normal, uninjured adult skeletal muscle. In this study changes in capillary ultrastructure were correlated with capillary density and network morphology to elucidate the sequelae of angiogenesis in adult rat extensor digitorum longus (EDL) muscle whose activity was increased by stimulation at 10rHz (8rh/day). This resulted in an increased capillary/fiber (C/F) ratio (based on staining for alkaline phosphatase) after 4rdays; by 7rdays C/F ratio was increased further, by approximately 50%. The ultrastructure of capillary endothelium in both the EDL and extensor hallucis proprius (EHP) was similar to control muscles after 2rdays of stimulation, whereas endothelial cells in some capillaries in muscle stimulated for 4rdays revealed signs of metabolic activation such as proliferation of organelles (Golgi apparatus, endoplasmic reticulum, ribosomes and mitochondria) and fewer pinocytic vesicles. Luminal surfaces were often irregular with numerous pseudopodial processes. Basement membranes were always present but amorphous regions were observed, particularly near pericyte processes. Unusually small capillary profiles, with either a slit-like lumen or with cisternae but no lumen, probably represented capillary sprouts. The interstitium contained increased collagenous and granular extracellular matrix surrounding capillaries, and numerous activated fibroblasts which were closely apposed to many capillaries. Capillary growth in EHP was also evaluated by confocal microscopy using whole mounts. The complex pattern of vessels underwent remodelling between 2 and 7rdays of stimulation, resulting in more tortuous capillaries with numerous sprouts and loops. These combined observations suggest that angiogenesis may occur by a combination of sprouting, intussusceptive growth and elongation; also, that activation of endothelial cells occurs at the same time as disturbance of basement membranes during the earliest phase of growth and remodelling of the capillary bed. These changes are postulated to occur in connection with increased shear stress and/or capillary wall tension, which have been demonstrated previously.  相似文献   

10.
Angiogenesis and coronary artery collateral formation can improve blood flow and thereby prevent myocardial ischemia. The role of perivascular fibroblasts in neovascularization remains incompletely understood. Here we investigated the effects of epicardial and myocardial fibroblasts on angiogenesis in vitro by using a serum-free microcarrier-based fibrin gel angiogenesis system. To clearly distinguish between different cell types, we either stained endothelial cells or fibroblasts in the living with 1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-indocarbocyanine-perchlorate (DiI). In cocultures, low numbers of heart fibroblasts stimulated endothelial sprouting, and capillary growth was also induced by fibroblast-conditioned media, indicating a paracrine mechanism. Capillary formation was decreased by increasing the density of fibroblasts in the cocultures, indicating contact-dependent inhibition. Using time-lapse studies, it turned out that close contacts between fibroblasts and endothelial cells resulted in rapid retraction of endothelial cells or, rarely, in cell death. Depending on the local ratio of fibroblasts to endothelial cell numbers, fibroblasts determined the location of capillary growth and the size of developing capillaries and thereby contributed to capillary network remodeling. In contrast to primary heart fibroblasts, NIH 3T3 fibroblasts did not display contact-dependent inhibition of endothelial sprouts. NIH fibroblasts were frequently seen in close association with endothelial capillaries, resembling pericytes. Contact-dependent inhibition of angiogenesis by epicardial fibroblasts could not be reversed by addition of neutralizing anti-TGF-β1 antibodies, by addition of serum, of medium conditioned by hypoxic tumor cells or myocardium, by various cytokines or by growing cocultures under hypoxic conditions. Our results implicate a pivotal role of periendothelial mesenchymal cells for the regulation of microvascular network remodeling and collateral formation. Received: 15 September 1997 / Accepted: 6 April 1998  相似文献   

11.
Recent reports have demonstrated that erythroid progenitor cells contain and secrete various angiogenic cytokines. Here, the impact of erythroid colony-forming cell (ECFC) implantation on therapeutic angiogenesis was investigated in murine models of hindlimb ischemia. During the in vitro differentiation, vascular endothelial growth factor (VEGF) secretion by ECFCs was observed from day 3 (burst-forming unit erythroid cells) to day 10 (erythroblasts). ECFCs from day 5 to day 7 (colony-forming unit erythroid cells) showed the highest VEGF productivity, and day 6 ECFCs were used for the experiments. ECFCs contained larger amounts of VEGF and fibroblast growth factor-2 (FGF-2) than peripheral blood mononuclear cells (PBMNCs). In tubule formation assays with human umbilical vein endothelial cells, ECFCs stimulated 1.5-fold more capillary growth than PBMNCs, and this effect was suppressed by antibodies against VEGF and FGF-2. Using an immunodeficient hindlimb ischemia model and laser-Doppler imaging, we evaluated the limb salvage rate and blood perfusion after intramuscular implantation of ECFCs. ECFC implantation increased both the salvage rate (38% vs. 0%, P < 0.05) and the blood perfusion (82.8% vs. 65.6%, P < 0.01). In addition, ECFCs implantation also significantly increased capillaries with recruitment of vascular smooth muscle cells and the capillary density was 1.6-fold higher than in the control group. Continuous production of human VEGF from ECFCs in the skeletal muscle was confirmed at least 7 days after the implantation. Implantation of ECFCs promoted angiogenesis in ischemic limbs by supplying angiogenic cytokines (VEGF and FGF-2), suggesting a possible novel strategy for therapeutic angiogenesis.  相似文献   

12.
The purpose of this study was to establish and characterize a retinal pericyte cell line from retinal capillaries of transgenic rats harboring the temperature-sensitive simian virus 40 large T-antigen gene (tsA58 Tg rat), and to apply this to the co-culture with a retinal capillary endothelial cell line. The conditionally immortalized rat retinal pericyte cell lines (TR-rPCTs), which express a temperature-sensitive large T-antigen, were obtained from two tsA58 Tg rats. These cell lines had a multicellular nodule morphology and reacted positively with von Kossa staining, a marker of calcification. TR-rPCTs cells expressed mRNA of pericyte markers such as rat intercellular adhesion molecule-1, platelet-derived growth factor-receptor beta, angiopoietin-1, and osteopontin. Western blot analysis indicated that alpha-smooth muscle actin (alpha-SMA) was expressed in TR-rPCT3 and 4 cells. In contrast, alpha-SMA was induced by transforming growth factor-beta1 and its enhancement was reduced by basic fibroblast growth factor in TR-rPCT1 and 2 cells. When TR-rPCT1 cells were cultured with a rat retinal endothelial cell line (TR-iBRB2) in a contact co-culture system, the number of TR-iBRB2 cells were significantly reduced in comparison with that of a single culture of TR-iBRB2 cells, suggesting that physical contact between pericytes and retinal endothelial cells is important for the growth of retinal endothelial cells. In conclusion, conditionally immortalized retinal pericyte cell lines were established from tsA58 Tg rats. These cell lines exhibited the properties of retinal pericytes and can be applied in co-culture systems with a retinal capillary endothelial cell line.  相似文献   

13.
14.
Blood vessels are composed of endothelial cells (EC) and mural cells, and the interaction between EC and mural cells is essential for the development and maintenance of the vasculature. EC differentiate from bone marrow-derived endothelial progenitor cells (EPC). Recently, we established a conditionally immortalized bone marrow EPC-derived cell line, TR-BME2, and a brain capillary EC (BCEC) line, TR-BBB, from temperature-sensitive-SV40 T-antigen gene transgenic rats. To understand the function of EPC, it is important to analyze the difference between EPC and mature EC such as BCEC. In this study, we identified EPC-specific genes by means of subtractive hybridization between TR-BME2 and TR-BBB. There was no significant difference between TR-BME2 and TR-BBB in the mRNA level of annexin II, which is expressed in EC. In contrast, the mRNA level of smooth muscle cell (SMC) markers such as smooth muscle protein 22 (SM22), calvasculin, and platelet-derived growth factor (PDGF) receptor-beta, was higher in TR-BME2 than in TR-BBB. Moreover, the mRNA level of contractile SMC markers, such as smooth muscle alpha-actin and SM22, was increased in the absence of EC growth factors, such as vascular endothelial growth factor. The mRNA level of synthetic SMC markers, such as matrix Gla protein, was increased by the addition of PDGF-BB. The SMC derived from TR-BME2 showed an altered phenotype, from contractile-type to synthetic-type, when they were cultured in the absence of PDGF-BB. These results show that TR-BME2 cells have higher levels of SMC markers compared with mature EC, and can differentiate into contractile- or synthetic-type SMC.  相似文献   

15.
We report an investigation on the influence of high frequency electromagnetic fields (EMF) on the permeability of an in vitro model of the blood-brain barrier (BBB). Our model was a co-culture consisting of rat astrocytes and porcine brain capillary endothelial cells (BCEC). Samples were characterized morphologically by scanning electron microscopy and immunocytochemistry. The BBB phenotype of the BCEC was shown by the presence of zona occludens protein (ZO-1) as a marker for tight junctions and the close contact of the cells together with the absence of intercellular clefts. Permeability measurements using (14)C-sucrose indicated a physiological tightness which correlated with the morphological findings and verified the usefulness of our in vitro model. Samples were exposed to EMF conforming to the GSM1800-standard used in mobile telephones (1.8 GHz). The permeability of the samples was monitored over four days and compared with results of samples that were cultured identically but not exposed to EMF. Exposure to EMF increased permeability for (14)C-sucrose significantly compared to unexposed samples. The underlying pathophysiological mechanism remains to be investigated.  相似文献   

16.
Annexin A2 (AnxA2) is a widely expressed multifunctional protein found in different cellular compartments. In spite of lacking a hydrophobic signal peptide, AnxA2 is found at the cell surface of endothelial cells, indicative of a role in angiogenesis. Increased extracellular levels of AnxA2 in tumours correlate with neoangiogenesis, metastasis and poor prognosis. We hypothesised that extracellular AnxA2 may contribute to angiogenesis by affecting endothelial cell-cell interactions and motility. To address this question, we studied the effect of heterotetrameric and monomeric forms of AnxA2, as well as its two soluble domains on the formation and maintenance of capillary-like structures by using an in vitro co-culture system consisting of endothelial and smooth muscle cells. In particular, addition of purified domains I and IV of AnxA2 potently inhibited the vascular endothelial growth factor (VEGF)-dependent formation of the capillary-like networks in a dose-dependent manner. In addition, these AnxA2 domains disrupted endothelial cell-cell contacts in preformed capillary-like networks, resulting in the internalisation of vascular endothelial (VE)-cadherin and the formation of VE-cadherin-containing filopodia-like structures between the endothelial cells, suggesting increased cell motility. Addition of monoclonal AnxA2 antibodies, in particular against Tyr23 phosphorylated AnxA2, also strongly inhibited network formation in the co-culture system. These results suggest that extracellular AnxA2, most likely in its Tyr phosphorylated form, plays a pivotal role in angiogenesis. The exogenously added AnxA2 domains most likely mediate their effects by competing with endogenous AnxA2 for extracellular factors necessary for the initiation and maintenance of angiogenesis, such as those involved in the formation/integrity of cell-cell contacts.  相似文献   

17.

Background

The creation of functional skeletal muscle via tissue engineering holds great promise without sacrificing healthy donor tissue. Different cell types have been investigated regarding their myogenic differentiation potential under the influence of various media supplemented with growth factors. Yet, most cell cultures include the use of animal sera, which raises safety concerns and might lead to variances in results. Electrospun nanoscaffolds represent suitable matrices for tissue engineering of skeletal muscle, combining both biocompatibility and stability.We therefore aimed to develop a serum-free myogenic differentiation medium for the co-culture of primary myoblasts (Mb) and mesenchymal stromal cells derived from the bone marrow (BMSC) and adipose tissue (ADSC) on electrospun poly-ε-caprolacton (PCL)-collagen I-nanofibers.

Results

Rat Mb were co-cultured with rat BMSC (BMSC/Mb) or ADSC (ADSC/Mb) two-dimensionally (2D) as monolayers or three-dimensionally (3D) on aligned PCL-collagen I-nanofibers. Differentiation media contained either AIM V, AIM V and Ultroser® G, DMEM/Ham’s F12 and Ultroser® G, or donor horse serum (DHS) as a conventional differentiation medium. In 2D co-culture groups, highest upregulation of myogenic markers could be induced by serum-free medium containing DMEM/Ham’s F12 and Ultroser® G (group 3) after 7 days. Alpha actinin skeletal muscle 2 (ACTN2) was upregulated 3.3-fold for ADSC/Mb and 1.7-fold for BMSC/Mb after myogenic induction by group 3 serum-free medium when compared to stimulation with DHS. Myogenin (MYOG) was upregulated 5.2-fold in ADSC/Mb and 2.1-fold in BMSC/Mb. On PCL-collagen I-nanoscaffolds, ADSC showed a higher cell viability compared to BMSC in co-culture with Mb. Myosin heavy chain 2, ACTN2, and MYOG as late myogenic markers, showed higher gene expression after long term stimulation with DHS compared to serum-free stimulation, especially in BMSC/Mb co-cultures. Immunocytochemical staining with myosin heavy chain verified the presence of a contractile apparatus under both serum free and standard differentiation conditions.

Conclusions

In this study, we were able to myogenically differentiate mesenchymal stromal cells with myoblasts on PCL-collagen I-nanoscaffolds in a serum-free medium. Our results show that this setting can be used for skeletal muscle tissue engineering, applicable to future clinical applications since no xenogenous substances were used.
  相似文献   

18.
Both collateral vessel enlargement (arteriogenesis) and capillary growth (angiogenesis) in skeletal muscle occur in response to exercise training. Vascular endothelial growth factor (VEGF) is implicated in both processes. Thus we examined the effect of a VEGF receptor (VEGF-R) inhibitor (ZD4190, AstraZeneca) on collateral-dependent blood flow in vivo and collateral artery size ex vivo (indicators of arteriogenesis) and capillary contacts per fiber (CCF; an index of angiogenesis) in skeletal muscle of both sedentary and exercise-trained rats 14 days after bilateral occlusion of the femoral arteries. Total daily treadmill run time increased appreciably from approximately 70 to approximately 100 min (at 15-20 m/min, twice per day) and produced a large (approximately 75%, P < 0.01) increase in calf muscle blood flow and a greater size of the collateral artery (wall cross-sectional area). ZD4190, which previously has been shown to inhibit the activity of VEGF-R2 and -R1 tyrosine kinase in vitro (IC50 = 30 and 700 nM, respectively), completely blocked the increase in collateral-dependent blood flow and inhibited collateral vessel enlargement. Thus exercise-stimulated collateral arteriogenesis appears to be completely dependent on VEGF-R signaling. Interestingly, enhanced mRNA expression of the VEGF family ligand placental growth factor (2- to 3.5-fold), VEGF-R1 (approximately 2-fold), and endothelial nitric oxide synthase (2- to 3.5-fold) in an isolated collateral artery implicates these factors as important in arteriogenesis. Training of ischemic muscle also induced angiogenesis, as shown by an increase (approximately 25%, P < 0.01) in CCF in white gastrocnemius muscle. VEGF-R inhibition only partially blocked (P < 0.01) but did not eliminate the increase (P < 0.01) in capillarity. Our findings indicate that VEGF-R tyrosine kinase activity is essential for collateral arteriogenesis and important for the angiogenesis induced in ischemic muscle by exercise training; however, other angiogenic stimuli are also important for angiogenesis in flow-limited active muscle.  相似文献   

19.
Activated monocytes (macrophages, histiocytes) induce the formation of new blood vessels by secretion product(s). From conditioned serum-free media of porcine peripheral monocytes treated with concanavalin A, a substance with very strong angiogenic activity in vivo, designated as angiotropin, has been isolated and purified to homogeneity. We investigated the biological action of the monocyte-derived angiogenic substance on cultured capillary and large vessel (aorta) endothelial cells and on 3T3 fibroblasts, mimicking steps of the angiogenic pathway in vitro. We found that angiotropin does not stimulate the proliferation of capillary endothelial and 3T3 cells; however, in concentrations less than 1 ng/ml, it enhances random migration of capillary endothelial cells but not of 3T3 cells. On confluent monolayers of capillary and aortic endothelial cells angiotropin leads to defined changes of cell morphology that are dose dependent and reversible. In the presence of angiotropin, capillary endothelial cells rapidly form tubelike structures on gelatinized plates. This organizational state is not reached with aortic endothelial cells. The results indicate that the biological action of monocytic angiotropin is different from that of the angiogenic growth factors that stimulate the proliferation of endothelial cells and nonlymphoid mesenchymal cells and keep endothelial cells in the contact-inhibited epitheloid cell phenotype. We propose that angiotropin is directly involved in monocyte-induced angiogenesis.  相似文献   

20.
Increased capillary shear stress induces angiogenesis in skeletal muscle, but the signaling mechanisms underlying this response are not known. We hypothesize that shear stress‐dependent activation of vascular endothelial growth factor receptor 2 (VEGFR2) causes p38 and ERK1/2 phosphorylation, which contribute to shear stress‐induced angiogenesis. Skeletal muscle microvascular endothelial cells were sheared (12 dynes/cm2, 0.5–24 h). VEGFR2‐Y1214 phosphorylation increased in response to elevated shear stress and VEGF stimulation. p38 and ERK1/2 phosphorylation increased at 2 h of shear stress but only p38 remained phosphorylated at 6 and 24 h of shear stress. VEGFR2 inhibition abrogated p38, but not ERK1/2 phosphorylation. VEGF production was increased in response to shear stress at 6 h, and this increased production was abolished by p38 inhibition. Male Sprague–Dawley rats were administered prazosin (50 mg/L drinking water, 1, 2, 4, or 7 days) to induce chronically elevated capillary shear stress in skeletal muscle. In some experiments, mini‐osmotic pumps were used to dispense p38 inhibitor SB203580 or its inactive analog SB202474, to the extensor digitorum longus (EDL) of control and prazosin‐treated rats. Immunostaining and Western blotting showed increases in p38 phosphorylation in capillaries from rats treated with prazosin for 2 days but returned to basal levels at 4 and 7 days. p38 inhibition abolished the increase in capillary to muscle fiber ratio seen after 7 days of prazosin treatment. Our data suggest that p38 activation is necessary for shear stress‐dependent angiogenesis. J. Cell. Physiol. 222:120–126, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号