首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Responses of freshwater organisms to environmental oxygen tensions (PO2) have focused on adult (i.e. late developmental) stages, yet responses of embryonic stages to changes in environmental PO2 must also have implications for organismal biology. Here we assess how the rotational behaviour of the freshwater snail Lymnaea stagnalis changes during development in response to conditions of hypoxia and hyperoxia. As rotation rate is linked to gas mixing in the fluid surrounding the embryo, we predicted that it would increase under hypoxic conditions but decrease under hyperoxia. Contrary to predictions, early, veliger stage embryos showed no change in their rotation rate under hyperoxia, and later, hippo stage embryos showed only a marginally significant increase in rotation under these conditions. Predictions for hypoxia were broadly supported, however, with both veliger and hippo stages showing a marked hypoxia-related increase in their rotation rates. There were also subtle differences between developmental stages, with hippos responding at PO2s (50% air saturation) greater than those required to elicit a similar response in veligers (20% air saturation). Differences between developmental stages also occurred on return to normoxic conditions following hypoxia: rotation in veligers returned to pre-exposure levels, whereas there was a virtual cessation in embryos at the hippo stage, likely the result of overstimulation of oxygen sensors driving ciliary movement in later, more developed embryos. Together, these findings suggest that the spinning activity of L. stagnalis embryos varies depending on environmental PO2s and developmental stage, increasing during hypoxia to mix capsular contents and maintain a diffusive gradient for oxygen entry into the capsule from the external environment (“stir-bar” theory of embryonic rotational behaviour).  相似文献   

2.
Prolonged muscle exposure to low PO2 conditions may cause oxidative stress resulting in severe muscular injuries. We hypothesize that PO2 cycling preconditioning, which involves brief cycles of diaphragmatic muscle exposure to a low oxygen level (40 Torr) followed by a high oxygen level (550 Torr), can reduce intracellular reactive oxygen species (ROS) as well as attenuate muscle fatigue in mouse diaphragm under low PO2. Accordingly, dihydrofluorescein (a fluorescent probe) was used to monitor muscular ROS production in real time with confocal microscopy during a lower PO2 condition. In the control group with no PO2 cycling, intracellular ROS formation did not appear during the first 15 min of the low PO2 period. However, after 20 min of low PO2, ROS levels increased significantly by ∼30% compared to baseline, and this increase continued until the end of the 30 min low PO2 condition. Conversely, muscles treated with PO2 cycling showed a complete absence of enhanced fluorescence emission throughout the entire low PO2 period. Furthermore, PO2 cycling-treated diaphragm exhibited increased fatigue resistance during prolonged low PO2 period compared to control. Thus, our data suggest that PO2 cycling mitigates diaphragm fatigue during prolonged low PO2. Although the exact mechanism for this protection remains to be elucidated, it is likely that through limiting excessive ROS levels, PO2 cycling initiates ROS-related antioxidant defenses.  相似文献   

3.
The pH and PO2 of the environment beneath the bases of some common fouling organisms attached to Perspex plates has been measured with semi-micro electrodes. pH values beneath colonies of Botryllus schlosseri (Pallas) and Tubularia indivisa L. are close to that of sea water, whilst PO2 values are greatly decreased. The pH beneath Metridium senile (L.) and Tealia felina (L.) may fall as low as pH 4.45 and a zero oxygen tension is often recorded. pH and PO2 values beneath anemones fluctuate greatly as locomotory waves pass over the pedal disc. Similar fluctuations in PO2 were observed beneath the foot of Patella vulgata L. The effect that these conditions may have on the corrosion rate of underlying metal surfaces is discussed.  相似文献   

4.
1. Phosphatase synthesis was studied in Klebsiella aerogenes grown in a wide range of continuous-culture systems. 2. Maximum acid phosphatase synthesis was associated with nutrient-limited, particularly carbohydrate-limited, growth at a relatively low rate, glucose-limited cells exhibiting the highest activity. Compared with glucose as the carbon-limiting growth material, other sugars not only altered the activity but also changed the pH–activity profile of the enzyme(s). 3. The affinity of the acid phosphatase in glucose-limited cells towards p-nitrophenyl phosphate (Km 0.25–0.43mm) was similar to that of staphylococcal acid phosphatase but was ten times greater than that of the Escherichia coli enzyme. 4. PO43−-limitation derepressed alkaline phosphatase synthesis but the amounts of activity were largely independent of the carbon source used for growth. 5. The enzymes were further differentiated by the effect of adding inhibitors (F, PO43−) and sugars to the reaction mixture during the assays. In particular, it was shown that adding glucose, but not other sugars, stimulated the rate of hydrolysis of p-nitrophenyl phosphate by the acid phosphatase in carbohydrate-limited cells at low pH values (<4.6) but inhibited it at high pH values (>4.6). Alkaline phosphatase activity was unaffected. 6. The function of phosphatases in general is discussed and possible mechanisms for the glucose effect are outlined.  相似文献   

5.
The understanding of the dominance of one species with respect to others is a pertinent challenge in HAB growth dynamics studies and the nutrient supply mode is one of the factors potentially involved. The competition for phosphorus (P) between a toxic species, Alexandrium minutum, and a non-toxic species, Heterocapsa triquetra, was studied (1) along a gradient of P depletion, (2) testing different P depletion degrees before a single PO4 supply and (3) experimenting different PO4 supply frequencies. In conditions of PO4 depletion, H. triquetra stopped growing after two days both in monospecific and mixed batch cultures whereas A. minutum grew progressively from day 2 until the end of the experiment. This time-lag growth of A. minutum is associated to its ability to store P intracellularly and then mobilize it for cell division when P depletion becomes severe. Heterocapsa triquetra outcompeted A. minutum when it was submitted to less than three days of P depletion before the pulse. In contrast, A. minutum outcompeted H. triquetra after more than three days of depletion. This transition was related to the capacity for A. minutum to increase its cell PO4 uptake rate in a higher proportion to face potential PO4 supply. As a result of this physiological acclimatation to P starvation, A. minutum consumed the whole PO4 pulse supplied after 3 to 10 days of P depletion. This resulted in a reduction of H. triquetra growth. These two acclimatations were confirmed in a P limited semi-continuous culture experiment testing several PO4 supply frequencies (1, 2, 4, 6 day intervals). These experiments revealed that A. minutum is a “storage specialist” species for P, which uptakes PO4 pulses for luxury consumption, survives depletion periods and, then, utilizes P for cell growth. In contrast, H. triquetra is more a “velocity adapted” species, which utilizes PO4 just after supply to increase their cell division rate.  相似文献   

6.
Pear accessions and species show a broad response to tissue culture media due to the wide genetic diversity that exists in the available pear germplasm. An initial study of mineral nutrition using a systematic response surface approach with five Murashige and Skoog medium mineral stock solutions indicated that the mesos factor (CaCl2, MgSO4, and KH2PO4) affected most plant responses and genotypes, suggesting that additional studies were needed to further optimize these three mesos components for a wide range of genotypes. Short stature, leaf spots, edge necrosis, and red or yellow coloration were the main symptoms of poor nutrition in shoot cultures of 10 diverse pear genotypes from six species. A surface response experimental design was used to model the optimal factor and factor levels for responses that included overall quality, leaf character, shoot multiplication, and shoot height. The growth morphology, shoot length, and multiplication of these pear shoots could be manipulated by adjusting the mesos components. The highest quality for the majority of genotypes, including five P. communis cultivars, P. koehnei, P. dimorphophylla, and P. pyrifolia ‘Sion Szu Mi’, required higher concentrations (>1.2× to 2.5×) of all the components than are present in Murashige and Skoog medium. ‘Capital’ (P. calleryana) required high CaCl2 and MgSO4 with low KH2PO4; for ‘Hang Pa Li’ (P. ussuriensis), low CaCl2 and moderate to low MgSO4 and KH2PO4 produced high-quality shoots. Suitable combinations of the meso nutrients produced both optimum shoot number and shoot length in addition to general good plant quality.  相似文献   

7.
During continuous hypothermic perfusion of dog kidneys there occurs a gradual decrease in ATP from about 1.4 to 0.6 μmol/g wet wt after 5 days of preservation. The loss of ATP can be prevented by including both adenosine (10 mM) and PO4 (25 mM) in the perfusate. Under these conditions kidney cortex ATP levels were more than double control values — 3.5 μmol/g wet wt. Both adenosine and PO4 were necessary since omission of one substance resulted in no net synthesis of ATP. Furthermore, these high levels of ATP were obtained only if adequate concentrations of adenosine were maintained during perfusion. Following 3 days of perfusion the adenosine level in the perfusate decreased to about 1 mM and under this condition ATP levels were low. Adenosine levels were maintained in the perfusate by two methods: (1) addition of fresh perfusate or (2) pretreatment of the kidney with the adenosine deaminase inhibitor—deoxycoformycin. The increased levels of ATP appear directly related to the availability of nucleotide precursors and the presence of inhibitors of the enzymes involved in the catabolism of nucleotides and nucleosides (PO4 and deoxycoformycin). Mitochondrial activity was similar in kidneys with high or low ATP levels following 5 days of preservation.  相似文献   

8.
Doubled haploid technology, which is used to rapidly purify genetic resources, is one of the key technologies in modern maize breeding. In a previous study, the major quantitative trait locus qhir1, which influences in vivo haploid induction, was narrowed down to a 243-kb region, which made it feasible to use marker-assisted selection (MAS) for inducer development. Recently, a new method was developed for haploid identification using oil content (OC). The objective of this study was to develop high oil inducer lines using MAS of the qhir1 locus. We constructed an F2 population, two backcross populations that were backcrossed to the inducer CAU5 (BC1F1-CAU5) and the high oil inbred line GY923 (BC1F1-GY923), respectively, which was derived from the cross GY923 × CAU5, and subjected continuous selfing to develop high oil inducer lines. In each cycle, three different parameters including kernel OC, marker genotype at qhir1 and haploid induction rate (HIR) were used for pedigree selection. Three candidate high oil inducer lines were developed, with an OC of approximately 8.5 %, an HIR of approximately 8 % and superior agronomic performance, which are suitable values for the application of these lines to haploid identification by OC. Our results confirm the notion that HIR selection combined with MAS for qhir1 is an effective approach to haploid inducer breeding. In addition, we determined that the accuracy of haploid identification by OC is influenced by the female germplasm resource and the high oil inducer and that appropriate critical points for OC can balance the false discovery rate and false negative rate.  相似文献   

9.
Maximum yields of amylase were produced by the thermophilic actinomycete Thermomonospora viridis in a modified Simpson and McCoy medium containing 1.5% corn starch and 0.5% mycological peptone with an initial pH 7.0. Best yields of amylase were obtained after incubation for 48 h, when the pH of the medium had risen to 8.2. Amylase was purified 313-fold by precipitation with n-propyl alcohol, dialysis against tap water, adsorption on Ca3(PO4)2, and fractionation on Sephadex G-100. Protease was produced in nutrient broth containing 0.5% starch and 1.0% corn steep liquor and at an initial pH 7.0. Maximum yields of protease were produced after 42 h. The protease was purified 54-fold by precipitation with n-propyl alcohol, dialysis against tap water, adsorption on Ca3(PO4)2, and fractionation on Sephadex G-200.  相似文献   

10.
Fusarium oxysporum grown in a low phosphate medium was found to take up several times as much K from KH2PO4 as from KCI solutions. Large amounts of phosphate also were taken up from KH2PO4. Similar large uptakes of Na and phosphate took place from solutions of NaH2PO4. Substantial quanties of phosphate were taken up from solutions of Ca(H2PO4)2 in the absence of any appreciable Ca uptake. When the fungus was grown in a medium containing high phosphate, little or no uptake of phosphate from KH2PO4 solutions occured and the K Uptake was at the same level as from KCI solutions. During large phosphate uptake sizable reductions in the organic acid content of the fungal cells were observed. Much, but not all, of the data could be explained on the basis of maintenance of charge balance within the cells. – The respiratory rate of fungus, grown in a low P medium, was markedly increased in KH2PO4 solution. Fungus, grown in a medium with high phosphate, had a higher respiratory rate which showed only a slight response to KH2PO4 solution. Fungus, grown in a medium with high phosphate, had a higher respiratory rate which showed only a slight response to KH2PO4.  相似文献   

11.
Kinetics of P absorption were investigated in mycorrhizal (Glomus fasciculatus) and nonmycorrhizal tomato (Lycopersicon esculentum) roots to determine why increased ion absorption by mycorrhizae occurs. Initial rates of absorption of 32P were measured at 1 to 100 micromolar KH2PO4 (pH 4.6). Absorption rates of mycorrhizae were about twice those of control roots. Augustinsson-Hofstee analysis yielded two linear phases; Vmax and Km were calculated for each phase. In the low phase (1 to 20 micromolar), Vmax values for the mycorrhizal and nonmycorrhizal roots were each 0.10 micromoles P per gram fresh weight per hour while Km values were 1.6 and 3.9 micromolar KH2PO4, respectively. For the high phase (30 to 100 micromolar), Vmax values for mycorrhizal and nonmycorrhizal roots were 0.32 and 0.25 micromoles P per gram fresh weight per hour and Km values were 35 and 42 micromolar, respectively. These results indicate that at the lower phase concentrations, similar to those expected in most soil solutions, a major factor contributing to the increased uptake was an apparent greater affinity of the absorbing sites for H2PO4 (lower Km).  相似文献   

12.
Athymic mice with and without circulating CA 125 antigen were injected with 0.1–100μg of 131I-labeled OC 125 F(ab′)2 antibody fragment. Both the blood clearance of 131I activity and the change in serum CA 125 were monitored over 24 h. Influence of CA 125 on blood pool activity could be avoided only at the 100 βg dose. In patient studies, circulating CA 125 levels decreased for the first 2 h after injection of OC 125 F(ab′)2 but generally returned to preinjection levels shortly thereafter. In vitro binding studies using the sera from patients injected with 131I-labeled OC 125 F(ab′)2 suggest that circulating CA 125 could interfere with the tumor uptake of the labeled antibody.  相似文献   

13.
Heparin was converted by treatment with nitrous acid primarily into sulfated disaccharides. The mixture of disaccharides was reduced with sodium boro[3H]hydride and the disaccharides were purified by preparative paper electrophoresis and paper chromatography. Four disaccharides were obtained. On the basis of their paper electrophoretic mobilities and the products formed at intermediate stages of their acid hydrolysis, the disaccharides were identified as 4-O-(2-O-sulfo-α-l-idopyranosyluronic acid)-6-O-sulfo-2,5-anhydro-d-mannitol, 4-O-(2-O-sulfo-α-l-idopyranosyluronic acid)-2,5-anhydro-d-mannitol, 4-O-(α-l-idopyranosyluronic acid)-6-O-sulfo-2,5-anhydro-d-mannitol, and 4-O-(β-d-glucopyranosyluronic acid)-6-O-sulfo-2,5-anhydro-d-mannitol. The purified disaccharides were used as standards in the development of a high-performance liquid chromatography procedure for their separation and quantitation on a Partisil-10 SAX anion-exchange column. The three monosulfated disaccharides were resolved by isocratic elution with 40 mm KH2PO4. The KH2PO4 concentration was tehn increased to 400 mm to elute the disulfated disaccharide. Column effluents were collected in 12-ml fractions, and the recovery of each 3H-labeled product was determined by scintillation counting. When sodium boro-[3H]hydride with a specific activity of 315 mCi/mmol was used in the reduction of the heparin deamination products, the disaccharides gave 28,500 cpm/nmol in the effluent peaks. Quantitative recoveries of the 3H-disaccharides were obtained. It was demonstrated that the method developed using the purified disaccharides gave reproducible and quantitative results in direct assays of aliquots of boro[3H]hydride-reduced heparin deamination mixtures.  相似文献   

14.
It has been speculated that hypoxia might cause vasodilation of the ductus arteriosus by enhancing the relaxing action of endogenous prostaglandins. Using isolated rings of lamb ductus arteriosus, we measured immunoreactive PGE2 released into the bath solution. We found that after a period of stabilization following suspension of the rings in low PO2, only a negligible amount of PGE2 was released by the rings (1.15 ± 0.52 pg PGE2/mg wet weight per 45 min, n14, ±SEM). When rings were exposed to a high PO2, significant amounts of PGE2 were released (32.3 ± 12.6 pg PGE2/mg wet weight per 45 min). These observations were supported by our findings that indomethacin had a negligible contractile effect (0.11 ± 0.09 g/mm2, n=11) on rings equilibrated in a low PO2, but caused a significant contraction (0.55 ± 0.12 g/mm2, n=11) in rings incubated in a high PO2. These findings do not support the hypothesis that low PO2 increases PGE2 production by the lamb ductus arteriosus. They are consistent with the hypothesis that endogenous PGE2 inhibits the ability of the vessel to contract in response to oxygen. In addition (if these results can be extrapolated to the situation), the demonstration that the ductus arteriosus needs an oxygen tension greater than that present to produce effective amounts of PGE2, strengthens the hypothesis that circulating levels of PGE2 may be important in the prenatal maintenance of ductal patency.  相似文献   

15.
Analysis of own and literature data shows that oxygen tension and mass transfer in skeletal muscles of higher and lower vertebrates (mammals, teleosts) are quite comparable. Oxygen consumption in fish muscles is 2–6 times lower and occurs at higher diffusion gradients of PO2 (blood ? muscles: 45–57 hPa). Wei ghted mean values of PO2 in fish muscles (with allowance for muscle composition) are minimum (5–12 hPa). As compared to mammals, they exhibit an extremely low diffusion capacity of the hematoparenchymal barrier (0.0014–0.0055 mLO2 min–1 100 g–1 hPa–1) which appears to rely on diffusion characteristics of cell membranes. Apparently, this is the main reason that accounts for low values of tissue PO2 as well as low efficacy and oxygen utilization degree in muscles of this taxonomic group of animals.  相似文献   

16.
Plants associated with arbuscular mycorrhizal fungi (AMF) acquire phosphorus via roots and extraradical hyphae. How soil P level affects P accumulation within hyphae and how P in hyphae influences the accumulation of metal minerals remains little explored. A bi-compartmented in vitro cultivation system separating a root compartment (RC), containing a Ri T-DNA transformed carrot root associated to the AMF Rhizophagus irregularis DAOM 197198, from a hyphal compartment (HC), containing only the extraradical hyphae, was used. The HC contained a liquid growth medium (i.e., the modified Strullu-Romand medium containing P in the form of KH2PO4) without (0 μM) or adjusted to 35, 100, and 700 μM of KH2PO4. The accumulation of P and metal minerals (Ca, Mg, K, Na, Fe, Cu, Mn) within extraradical hyphae and AMF-colonized roots, and the expression of the phosphate transporter gene GintPT were assessed. The expression of GintPT in the extraradical hyphae did not differ in absence of KH2PO4 or in presence of 35 and 100 μM KH2PO4 in the HC but was markedly reduced in presence of 700 μM KH2PO4. Hyphal P concentration was significantly lowest in absence of KH2PO4, intermediate at 35 and 100 μM KH2PO4 and significantly highest in presence of 700 μM KH2PO4 in the HC. The concentrations of K, Mg, and Na were positively associated with the concentration of P in the extraradical hyphae developing in the HC. Similarly, P concentration in extraradical hyphae in the HC was related to P concentration in the growth medium and influenced the concentration of K, Mg, and Na. The accumulation of the metal mineral K, Mg, and Na in the extraradical hyphae developing in the HC was possibly related to their function in neutralizing the negative charges of PolyP accumulated in the hyphae.  相似文献   

17.
The effect of phosphate buffer on the activity of jack bean urease was studied in the range of pH 5.80–8.07. The inhibition constants of phosphate buffer were determined by measuring initial reaction rates at each pH for a series of buffer concentrations at a series of urea concentrations. It was shown that: (1) at pH 5.80–7.49 the buffer is a competitive inhibitor of the enzyme with Ki,buffer increasing from 0.54 mM for pH 5.80 to 362 mM for pH 7.49, (2) the values of pKi,buffer are pH-dependent exhibiting a slope of −1 at pH 5.80–6.5 and a slope of −2 at pH 6.5–7.49, (3) from pH 7.62 as the pH is further raised the competitive inhibition of urease by the buffer was not observed, (4) the true competitive inhibitor of urease is H2PO4 ion, and (5) pH 6.5 and 7.6 correspond to the ionization constants of the active site groups of urease responsible for the inhibitory strength of H2PO4 ion.  相似文献   

18.
We studied the effect of a clay mineral, palygorskite, on the physiological activity of Azotobacter chroococcum and the phosphate-mobilizing bacterium Bacillus subtilis, as well as their mixed cultures, under various oxygen supply conditions during the utilization of phosphorus from readily and poorly soluble compounds (K2HPO4 · 3H2O) and (Ca3(PO4)2), respectively. During cultivation of the bacteria in a nutrient medium with Ca3(PO4)2, the number of microorganisms was higher than that observed in a medium with K2HPO4. An increase in oxygen mass transfer in the nutrient medium was followed by a rise in the number of Bacillus subtilis cells and an inhibition of Azotobacter chroococcum growth. An addition of palygorskite (5 g/l) into the nutrient medium stimulated the growth of both bacteria and stopped the decreasing growth of Azotobacter chroococcum at high values of oxygen mass transfer. The number of Bacillus and, particularly, Azotobacter cells was two to five times lower in a mixed culture than in a monoculture. These differences were less significant during the cultivation of mixed cultures in medium with palygorskite.  相似文献   

19.
Radioisotopes that emit electrons (beta particles), such as radioiodine, can effectively kill target cells, including cancer cells. Aqueous 32P[PO4] is a pure beta-emitter that has been used for several decades to treat non-malignant human myeloproliferative diseases. 32P[PO4] was directly compared to a more powerful pure beta-emitter, the clinically important 90Y isotope. In vitro, 32P[PO4] was more effective at killing cells than was the more powerful isotope 90Y (P ≤ 0.001) and also caused substantially more double-stranded DNA breaks than did 90Y. In vivo, a single low-dose intravenous dose of aqueous elemental 32P significantly inhibited tumor growth in the syngeneic murine cancer model (P ≤ 0.001). This effect is exerted by direct incorporation into nascent DNA chains, resulting in double-stranded breakage, a unique mechanism not duplicatable by other, more powerful electron-emitting radioisotopes. 32P[PO4] should be considered for human clinical trials as a potential novel anti-cancer drug.  相似文献   

20.
Ammonia and phosphate excretion by the Mediterranean euphausiid Meganyctiphanes norvegica (M. Sars) (mean individual dry weight, 60 mg) has been measured for one year. Experiments were conducted at 13°C on single, freshly caught animals maintained in unfiltered sea water. Possible influence of these experimental procedures upon values obtained are discussed. Phytoplankton re-uptake and bacterial activity proved insignificant, because of the short duration of the experiments (4–38 h). NH4 and PO4 excretion rates are higher shortly after collection and then decrease, reaching a steady level after 8 h for NH4, but continuously decreasing during the 38 h of the longer experiment in the c case of PO4. It is considered that earlier higher values are likely to be more representative of in situ rates despite possible ‘stress’ effects, because they are close to those of moderately fed animals kept in captivity; more stable values observed after 8–12 h are close to those of starved animals. Nevertheless, lower stabilized values are best used when investigating seasonal variations. Excretion rates are low (0.07 to 0.11 μg-at.NH4-N.mg?1.day?1, and 0.009 to 0.010 μ-at.PO4-P mg?1.day?1) in summer, autumn and early winter. They rise sharply from January–February (0.12 μg-at.NH4-N.mg?1.day?1 and 0.015 μg-at.PO4-P.mg?.day?1) to peak spring values (0.25 μg-at.NH4-N.mg?1.day?1 and 0.026 μg-at. PO4-P.mg?1.day?1). The significance of inorganic excretion with regard to total (inorganic + organic) excretion is discussed. The nitrogen and phosphorus content of the animals were simultaneously measured and amount, respectively, to 9.5 and 0.8% of body dry weight (mean yearly value). Based on inorganic excretion only, the mean values of turnover are 66 days for nitrogen (61–92 days from May to February, 28–32 days in March–April) and 16 days for phosphorus (12–22 days with limited seasonal variation). Mean N/P ratio by atoms for excretion amounts to 9.1 after 8–12 h (it increases afterwards due to continual decrease in PO4 excretion) but there are significant seasonal variations. The mean N/P ratio by atoms for the animals is 27.4; it is lower (22.4) between March and August, and higher (29.2) from September to February. With a view to investigating the change in the N/P ratio in the chain prey → predator → excretion, which allows calculation of growth efficiency factor (k2) and hence secondary production, the nitrogen and phosphorus of the stomach contents of the animals were measured. Due to unknown bias (possibly a terrestrial origin of food particles, or loss of phosphorus during conservation of samples), the results were disappointing (N/P by atoms = 69, instead of a value necessarily ranging between 9.1 and 27.4), and did not allow calculation of k2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号