首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phorbol esters induce morphologic and biochemical differentiation in U937 cells, a monocyte/macrophage-like line derived from a human histiocytic lymphoma. We are interested in the phorbol ester-stimulated release of arachidonic acid from cellular membranes and the subsequent synthesis of eicosanoids, as it may prove to correlate with the induced cellular differentiation. Undifferentiated log-phase U937 cells released little recently incorporated [3H]arachidonic acid, but phorbol 12-myristate 13-acetate increased its apparent rate of release to that of cells differentiated by exposure to phorbol myristate acetate for 3 days. Exposure of washed differentiated cells immediately prelabelled with [3H]arachidonic acid to additional phorbol myristate acetate did not augment the release of [3H]arachidonic acid. The basal release of nonradioactive fatty acids from differentiated cells was 5-10 times that of undifferentiated cells, and phorbol myristate acetate increased their release from both types of cell 2- to 3-fold. Differentiated cells immediately prelabelled with [3H]arachidonic acid exhibited greater incorporation into phosphatidylinositol and phosphatidylcholine, and contained more radioactive free arachidonic acid, compared with undifferentiated cells. Undifferentiated cells contained more radioactivity in phosphatidylserine, phosphatidylethanolamine and neutral lipids. Phorbol myristate acetate caused differentiated cells to release [3H]arachidonic acid from phosphatidylinositol, phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine, but release from neutral lipids was reduced, and the content of [3H]arachidonic acid increased. In undifferentiated cells incubated with phorbol myristate acetate, radioactivity associated with phosphatidylserine, phosphatidylethanolamine and neutral lipid was reduced and [3H]arachidonic acid was unchanged. Synthesis of cyclooxygenase products exceeded that of lipoxygenase products in both differentiated and undifferentiated cells. Phorbol myristate acetate increased the synthesis of both types of product, cyclooxygenase-dependent more than lipoxygenase-dependent, especially in differentiated cells. The biological significance of these changes in lipid metabolism that accompany phorbol myristate acetate-induced differentiation are yet to be established.  相似文献   

2.
It is increasingly recognized that macrophages play a crucial role in the development of chronic inflammatory states such as alcoholic liver disease. These cells can metabolize free arachidonic acid in the absence of a discernible trigger. The present study was undertaken to examine the short-term effects of ethanol on the generation of these exogenous arachidonate-derived extracellular mediators. Ethanol caused a dose-dependent decrease in the production of both cyclooxygenase and lipoxygenase metabolites. Similar effects were observed on the esterification of exogenous arachidonate into cellular lipids. To characterize further the effects of ethanol on exogenous arachidonic acid metabolism, we studied the short-term responses displayed by macrophages challenged with another soluble stimulus; the tumor-promoting agent phorbol myristate acetate. We observed an inhibition by ethanol of the superoxide anion response triggered by phorbol myristate acetate similar to that observed for exogenous arachidonate oxygenation. Our results show that ethanol can inhibit these soluble stimuli-elicited responses, possibly through its disorganizing effect on plasma membrane.  相似文献   

3.
Phagocytosis-induced release of arachidonic acid from human neutrophils   总被引:6,自引:0,他引:6  
The phospholipids of human neutrophils were labeled with [3H] arachidonic acid and [14C] palmitic acid. Phagocytosis of opsonized zymosan resulted in rapid release of free arachidonic acid but not of palmitic acid. Arachidonic acid was not released when the cells were exposed to unopsonized zymosan, zymosan-activated serum, or phorbol myristate acetate. These observations suggest that phagocytosis of opsonized zymosan results in the activation of a phospholipase A2.  相似文献   

4.
The interaction of phorbol myristate acetate with resident populations of mouse peritoneal macrophages causes an increased release of arachidonic acid followed by increased synthesis and secretion of prostaglandin E2 and 6-keto-prostaglandin F1 alpha. In addition, phorbol myristate acetate causes the selective release of lysosomal acid hydrolases from resident and elicited macrophages. These effects of phorbol myristate acetate on macrophages do not cause lactate dehydrogenase to leak into the culture media. The phorbol myristate acetate-induced release of arachidonic acid and increased synthesis and secretion of prostaglandins by macrophages can be inhibited by RNA and protein synthesis inhibitors, whereas the release of lysosomal hydrolases is unaffected. 0.1 microgram/ml actinomycin D blocked the increased prostaglandin production due to this inflammatory agent by more than 80%, and 3 microgram/ml cycloheximide blocked prostaglandin production by 78%. Similar results with these metabolic inhibitors were found with another stimulator of prostaglandin production, zymosan. However, these inhibitors do not interfere with lysosomal hydrolase releases caused by zymosan or phorbol myristate acetate. It appears that one of the results of the interaction of macrophages with inflammatory stimuli is the synthesis of a rapidly turning-over protein which regulates the production of prostaglandins. It is also clear that the secretion of prostaglandins and lysosomal hydrolases are independently regulated.  相似文献   

5.
6.
The present investigation was undertaken to study the potential role of intracellular calcium on the release of arachidonic acid from mouse peritoneal macrophages activated by inflammatory stimuli. The intracellular calcium concentration, as measured using fluorescent probe Quin-2, was 112 +/- 8.4 nM. The chelation of intracellular calcium with Quin-2 did not affect the release of arachidonic acid from macrophages upon stimulation with phorbol myristate acetate, opsonized zymosan or calcium ionophore A23187. However, the removal of calcium from the extracellular medium resulted in a 30-50% decrease in arachidonic acid release from phorbol myristate acetate- and zymosan-stimulated macrophages and also the stimulation of arachidonic acid release from calcium ionophore-stimulated cells were nullified. These studies indicated the existence of calcium-dependent and independent mechanisms modulating the release of arachidonic acid from macrophages subjected to inflammatory stimuli.  相似文献   

7.
The interaction of phorbol myristate acetate with resident populations of mouse peritoneal macrophages causes an increased release of arachidonic acid followed by increased synthesis and secretion of prostaglandin E2 and 6-keto-prostaglandin F. In addition, phorbol myristate acetate causes the selective release of lysosomal acid hydrolases from resident and elicited macrophages. These effects of phorbol myristate acetate on macrophages do not cause lactate dehydrogenase to leak into the culture media. The phorbol myristate acetate-induced release of arachidonic acid and increased synthesis and secretion of prostaglandins by macrophages can be inhibited by RNA and protein synthesis inhibitors, whereas the release of lysosomal hydrolases is unaffected. 0.1 μg/ml actinomycin D blocked the increased prostaglandin production due to this inflammatory agent by more than 80%, and 3 μg/ml cycloheximide blocked prostaglandin production by 78%. Similar results with these metabolic inhibitors were found with another stimulator of prostaglandin production, zymosan. However, these inhibitors do not interfere with lysosomal hydrolase releases caused by zymosan or phorbol myristate acetate. It appears that one of the results of the interaction of macrophages with inflammatory stimuli is the synthesis of a rapidly turning-over protein which regulates the production of prostaglandins. It is also clear that the secretion of prostaglandins and lysosomal hydrolyses are independently regulated.  相似文献   

8.
Activators of protein kinase C, such as tumor-promoting phorbol esters (e.g., phorbol myristate acetate), mezerein, (-)-indolactam V and 1-oleoyl 2-acetoyl glycerol, potentiate arachidonic acid release caused by elevation of intracellular Ca2+ with ionophores. This action of protein kinase C-activators required protein phosphorylation, and was attributed to enhanced hydrolysis of phospholipids by phospholipase A2 (Halenda, et al. (1989) Biochemistry 28, 7356-7363). Recently Fuse et al. ((1989) J. Biol. Chem 264, 3890-3895) reported that the apparent enhanced release of arachidonate was actually due to inhibition of the processes of re-uptake and re-esterification of released arachidonic acid. They attributed this to loss of arachidonyl-CoA synthetase and arachidonyl-CoA lysophosphatide acyltransferase activities, which were measured in membranes obtained from phorbol myristate acetate-treated platelets. In this paper, we show that phorbol myristate acetate, at concentrations that strongly potentiate arachidonic acid release, does not inhibit either arachidonic acid uptake into platelets or its incorporation into specific phospholipids. Furthermore, the fatty acid 8,11,14-eicosatrienoic acid, a competitive substrate for arachidonyl-CoA synthetase, totally blocks arachidonic acid uptake into platelets, but, unlike phorbol myristate acetate, does not potentiate arachidonic acid release by Ca2+ ionophores. We conclude that the action of phorbol myristate acetate is to promote the process of arachidonic acid release by phospholipase A2.  相似文献   

9.
The regulation of arachidonic acid conversion by the 5-lipoxygenase and the cyclooxygenase pathways in mouse peritoneal macrophages has been studied using particulate and soluble agonists. Particulate agonists, zymosan and latex, stimulated the production of cyclooxygenase metabolites as well as the 5-lipoxygenase product, leukotriene C4. In contrast, incubation with the soluble agonist phorbol myristate acetate or exogenous arachidonic acid led to the production of cyclooxygenase metabolites but not leukotriene C4. We tested the hypothesis that the 5-lipoxygenase, unlike the cyclooxygenase, requires activation by calcium before arachidonic acid can be utilized as a substrate. Addition of phorbol myristate acetate to macrophages in the presence of calcium ionophore (A23187) at a concentration which alone did not stimulate arachidonate metabolism resulted in a synergistic increase (50-fold) in leukotriene C4 synthesis compared to phorbol ester or A23187 alone. No such effect on the cyclooxygenase pathway metabolism was observed. Exogenous arachidonic acid in the presence of A23187 produced similar results yielding a 10-fold greater synthesis of leukotriene C4 over either substance alone without any effects on the cyclooxygenase metabolites. Presumably, calcium ionophore unmasked the synthesis of leukotriene C4 from phorbol myristate acetate-released and exogenous arachidonate by elevating intracellular calcium levels enough for 5-lipoxygenase activation. These data indicate that once arachidonic acid is released from phospholipid by an agonist, it is available for conversion by both enzymatic pathways. However, leukotriene synthesis may not occur unless intracellular calcium levels are elevated either by phagocytosis of particulate agonists or with calcium ionophore.  相似文献   

10.
Inositol phospholipid degradation and release of phospholipid-bound arachidonic acid was induced in intact peritoneal macrophages by exposure to phorbol myristate acetate (PMA) or zymosan particles. PMA, known to activate protein kinase C, selectively enhanced the deacylation of phosphatidylinositol (i.e., degradation by phospholipase A), while zymosan particles enhanced degradation via both phospholipase A and inositol lipid phosphodiesterase (phospholipase C). The release of arachidonic acid was found to correlate with the degradation of phosphatidylinositol by the phospholipase A pathway and could be dissociated from the phospholipase C-catalyzed cleavage of inositol phospholipids in several experimental situations: (i) when PMA was the stimulus, (ii) by the difference in Ca2+ dependence between the two enzymatic processes when zymosan was the stimulus and (iii) by the parallel inhibition by chlorpromazine of the phospholipase A pathway and arachidonic acid release, but not inositol phospholipid phosphodiesterase. In addition, phloretin, a reported inhibitor of protein kinase C, was found to inhibit arachidonic acid release and the deacylation of phosphatidylinositol. The results are consistent with a model in which arachidonic acid release is mediated by phospholipase(s) A and in which PMA or the phosphodiesterase-catalyzed degradation of phosphoinositides causes activation of the phospholipase A pathway via protein kinase C.  相似文献   

11.
Decreased prostaglandin production by cholesterol-rich macrophages   总被引:2,自引:0,他引:2  
The regulation of prostaglandin production by macrophages enriched in cholesterol was examined. Mouse peritoneal macrophages were incubated for 18 h with 25 micrograms/ml of human acetyl-LDL (low density lipoprotein) and trace amounts of labeled arachidonic acid. After cholesterol enrichment, the cells were incubated with phorbol 12-myristate 13-acetate (PMA), calcium ionophore, or zymosan to stimulate endogenous arachidonic acid metabolism. A high performance liquid chromatography profile of the eicosanoids released revealed no qualitative differences between unmodified and modified macrophages. Cholesterol-rich cells, however, released less prostacyclin (PGI2) and prostaglandin E2 (PGE2) compared to unmodified cells, and products from the lipoxygenase pathway became the predominant metabolites. A decrease in the synthesis of PGI2 and PGE2 by cholesterol-rich macrophages was confirmed by radioimmunoassay and radiolabeled experiments. The activity of prostaglandin synthetase was modestly increased in the cholesterol-modified macrophages compared to controls. As an estimation of phospholipase activity, the release of labeled arachidonic acid from membrane phospholipids, however, was significantly decreased in cholesterol-rich macrophages. The phosphatidylinositol fraction was particularly resistant to arachidonate release in response to calcium ionophore and PMA in the modified cells. The measurement of membrane phospholipid fatty acid composition before and after calcium ionophore supported the observation that less arachidonate was released by cholesterol-enriched cells in response to the ionophore. Based on these observations, we propose that prostaglandin synthesis from endogenous arachidonate stores is decreased in the cholesterol-rich macrophage. A decrease in agonist-induced activation of the phospholipase activity is proposed as a mechanism for this effect.  相似文献   

12.
The effects of phorbol myristate acetate, an activator of protein kinase C, on the release of [3H]arachidonic acid and prostaglandin synthesis were studied in an osteoblast cell line (MC3T3-E1). Phorbol myristate acetate (20 uM) liberated 16 and 55% of the [3H]arachidonate in prelabeled phosphatidylinositol and phosphatidylethanolamine, respectively, and evoked a 19-fold stimulation in the synthesis of prostaglandin E2. Phorbol myristate acetate doubled the cellular mass of 1,2-diacylglycerol and stimulated the liberation of [3H]arachidonate from the diacylglycerol pool in prelabeled cells. The diacylglycerol lipase inhibitor RHC 80267 blocked 75–80% of the phorbol ester-promoted (total) cellular liberation of [3H]arachidonic acid and production of prostaglandin E2. In comparison, the release of [3H]arachidonate from phosphatidylethanolamine (but not phosphatidylinositol) was only partially antagonized (to the same degree) by the PLA2 inhibitor p-bromophenacylbromide and the protein kinase C inhibitor Et-18-OMe. PMA-induced formation of diacylglycerol or synthesis of PGE2 was not affected by the prior inhibition of protein kinase C. Therefore, we have shown a novel pathway for the liberation of arachidonic acid in osteoblasts involving the nonspecific hydrolysis of phosphatidylinositol and phosphatidylethanolamine by phospholipase C followed by the deesterification of diacylgycerol. This pathway can be activated by a phorbol ester through a protein kinase C-independent mechanism.  相似文献   

13.
Lung cells have been isolated by enzymatic digestion of guinea pig lungs and mechanical dispersion to obtain a suspension of viable cells (approximately 500 X 10(6) cells). Type II pneumocytes have been purified to approximately 92% by centrifugal elutriation (2000 rpm, 15 ml/min) followed by a plating in plastic dishes coated with guinea pig IgG (500 micrograms/ml). We have investigated the arachidonic acid metabolism through the cyclooxygenase pathway in this freshly isolated type II cells (2 x 10(6) cells/ml). Purified type II pneumocytes produced thromboxane B2 (TxB2) predominantly and to a smaller extent the 6-keto prostaglandin PGF1 alpha (6-keto-PGF1 alpha) and prostaglandin E2 (PGE2) after incubation with 10 microM arachidonic acid. The stimulation of pneumocytes with 2 microM calcium ionophore A23187 released less eicosanoids than were produced when cells were incubated with 10 microM arachidonic acid. There was no additive effect when the cells were treated with both arachidonic acid and the ionophore A23187. Guinea pig type II pneumocytes failed to release significant amounts of TxB2, 6-keto-PGF1 alpha and PGE2 after stimulation with 10 nM leukotriene B4, 10 nM leukotriene D4, 10 nM platelet-activating factor, 5 microM formyl-methionyl-leucyl-phenylalanine, 0.2 microM bradykinin and 10 nM phorbol myristate acetate. Our findings indicate that guinea pig type II pneunomocytes possess the enzymatic machinery necessary to convert arachidonic acid to specific cyclooxygenase products, which may suggest a role for these cells in lung inflammatory processes.  相似文献   

14.
Exposure of mouse peritoneal macrophages to ethanol induces a rapid release of arachidonic acid to the extracellular medium. All major classes of phospholipids, phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol contribute to this release. Ethanol-induced mobilization of arachidonic acid occurs by deacylation, but it is not accompanied by eicosanoid synthesis. These data suggest that at least two signals are necessary for the release and metabolism of arachidonic acid. Ethanol also activates a phospholipase C which hydrolyzes only phosphatidylinositol, and not its phosphorylated derivatives.  相似文献   

15.
Phagocytosis of non-opsonized microorganisms by macrophages initiates innate immune responses for host defense against infection. Cytosolic phospholipase A(2) is activated during phagocytosis, releasing arachidonic acid for production of eicosanoids, which initiate acute inflammation. Our objective was to identify pattern recognition receptors that stimulate arachidonic acid release and cyclooxygenase 2 (COX2) expression in macrophages by pathogenic yeast and yeast cell walls. Zymosan- and Candida albicans-stimulated arachidonic acid release from resident mouse peritoneal macrophages was blocked by soluble glucan phosphate. In RAW264.7 cells arachidonic acid release, COX2 expression, and prostaglandin production were enhanced by overexpressing the beta-glucan receptor, dectin-1, but not dectin-1 lacking the cytoplasmic tail. Pure particulate (1, 3)-beta-D-glucan stimulated arachidonic acid release and COX2 expression, which were augmented in a Toll-like receptor 2 (TLR2)-dependent manner by macrophage-activating lipopeptide-2. However, arachidonic acid release and leukotriene C(4) production stimulated by zymosan and C. albicans were TLR2-independent, whereas COX2 expression and prostaglandin production were partially blunted in TLR2(-/-) macrophages. Inhibition of Syk tyrosine kinase blocked arachidonic acid release and COX2 expression in response to zymosan, C. albicans, and particulate (1, 3)-beta-D-glucan. The results suggest that cytosolic phospholipase A(2) activation triggered by the beta-glucan component of yeast is dependent on the immunoreceptor tyrosine-based activation motif-like domain of dectin-1 and activation of Syk kinase, whereas both TLR2 and Syk kinase regulate COX2 expression.  相似文献   

16.
Human peripheral blood monocytes, prelabeled with [3H]arachidonic acid (AA), release labeled eicosanoids in response to soluble or particulate stimuli. Treatment with 12-O-tetradecanoate phorbol-13 acetate (20 nM), calcium ionophores, A23187 (2 microM) or ionomycin (1 microM), or serum-treated zymosan (300 micrograms) resulted in production of cyclooxygenase (CO) metabolites, 6-keto-PG-F1 alpha, thromboxane-B2, PGE2, PGF2 alpha, PGD2, PGB2, 12-L-hydroxy-5,8,10-heptadecatrienoic acid; 15-lipoxygenase products, including 15-hydroxyeicosatetraenoic acid (HETE); and unmetabolized AA. Labeled 5-lipoxygenase (LO) products, 5-HETE, and leukotriene-B4 were detected only after exposure to ionophore or serum-treated zymosan. The calcium dependence of 5-LO activation was confirmed in experiments where calcium was omitted from the incubation medium, and EGTA (0.5 mM) was added, as well as by direct measurement of increased intracellular calcium in phagocytosing monocytes. Combined or sequential treatment with two stimuli increased the release of unmetabolized AA without a commensurate augmentation of labeled metabolites, indicating that release of CO and LO metabolites does not necessarily reflect the extent of phospholipase activation. Quantitation of individual eicosanoids by RIA confirmed results by using radionuclides. These studies show the following. Activation of human monocyte phospholipase may be regulated by at least two pathways, one "12-O-tetradecanoate phorbol-13 acetate-like," which is largely independent of calcium, and another which is mediated by increased intracellular Ca2+ ("ionophore-like"). "Physiologic" stimulation of monocyte arachidonate release, such as that seen accompanying phagocytosis of opsonized particles, may occur via either a calcium-sensitive or calcium-insensitive pathway or both. Calcium may regulate eicosanoid formation at the level of phospholipase or 5-LO. Free AA, CO products, and 12- or 15-LO products are ordinarily released after phagocytosis, but leukotriene-B4, 5-HETE, or other 5-LO metabolites are produced only under conditions where calcium concentrations are optimal.  相似文献   

17.
Macrophages release a variety of arachidonic acid metabolites after treatment with various membrane triggers or particulate stimuli. We examined the role of phospholipase and lipoxygenase inhibitors in the modulation of superoxide production and tumor cytolysis by murine macrophages. Superoxide was induced by the soluble stimulus, phorbol myristate acetate (PMA), and the particulate stimulus, opsonized zymosan, and was measured by the reduction of ferricytochrome c with the use of a micro ELISA reader. Macrophage-mediated tumor cytolysis was induced by hybridoma-derived, macrophage-activating factor (MAF) and was quantitated by 51Cr release from P815 target cells. In both assays, 72-hr peptone-elicited macrophages were used. Dexamethasone, and to a lesser degree hydrocortisone, inhibited superoxide release and MAF-induced tumor cytolysis. Inhibition in the superoxide assay required pretreatment with corticosteroid. Only the gold compound, auranofin, inhibited superoxide when given simultaneously with stimulant. Other phospholipase inhibitors, including mepacrine and 4-bromophenacyl bromide, and several lipoxygenase inhibitors, including BW755c, nordihydroguaiaretic acid (NDGA), and 5,8,11,14-eicosatetraynoic acid (ETYA), failed to modulate either macrophage response at nontoxic concentrations. At the concentrations tested in the tumoricidal and superoxide assays, mepacrine and 4-bromophenacyl bromide inhibited the release of 14C-arachidonic acid from macrophages stimulated with opsonized zymosan. Our data strongly suggest that corticosteroids suppress macrophage superoxide production and tumoricidal function by a nonphospholipase-dependent mechanism.  相似文献   

18.
Arachidonic acid release is an important regulatory component of uterine contraction and parturition, and previous studies showed that lindane stimulates arachidonic acid release from myometrium. The present study partially characterized the enzyme activity responsible for lindane-induced arachidonic acid release in myometrial cells. Lindane released arachidonic acid from cultured rat myometrial cells in concentration- and time-dependent manners. This release was primarily from phosphatidylcholine and phosphatidylinositol, and was independent of intracellular and extracellular calcium. In cells prelabeled with [3H]arachidonic acid, 85% of radiolabel was recovered as free arachidonate and only 5% was recovered as eicosanoids. Pretreatment with the antioxidants Cu, Zn-superoxide dismutase, alpha-tocopherol or Trolox did not significantly modify lindane-induced arachidonic acid release. Pretreatment of cells with the phosphatidylcholine-specific phospholipase C inhibitor D609, phosphatidylinositol-specific phospholipase C inhibitor ET-18-OCH3, or an interrupter of the phospholipase D pathway (ethanol) did not suppress lindane-induced arachidonic acid release. Although these results are consistent with calcium-independent phospholipase A2 activation by lindane, the calcium-independent phospholipase A2 inhibitor bromoenol lactone failed to inhibit lindane-induced arachidonic acid release in myometrial cells, even though bromoenol lactone effectively blocked arachidonic acid release in neutrophils. These results suggest that myometrial cells express a novel, previously unidentified phospholipase that is arachidonate-specific, calcium-independent, insensitive to bromoenol lactone, insensitive to reactive oxygen species activation, shows substrate preference for phosphatidylcholine and phosphatidylinositol, and is stimulated by lindane. Moreover, the data show that the overwhelming majority of arachidonic acid released remains as arachidonate, but that lindane does not significantly inhibit metabolism of arachidonate to eicosanoids.  相似文献   

19.
In astrocyte-enriched cultures of the rat cerebral cortex the Ca2+ ionophore A23187 provoked the breakdown of inositol phospholipids, the liberation of arachidonic acid and the release of prostaglandins E2, F2 alpha, I2 and thromboxane A2. However, agonists for receptors also coupled to inositol phospholipid metabolism in these cells failed to produce an increase in the release of both arachidonic acid and eicosanoids. Results suggest that the A23187-stimulated release of arachidonic acid and eicosanoids is caused by a phospholipase A2-mediated attack on lipids other than the inositol phospholipids. Moreover, receptors linked to inositol lipid turnover are not involved in the control of eicosanoid release from astrocytes.  相似文献   

20.
The stimulation of the human neutrophil NADPH-oxidase is initiated by a variety of agonists, which appear to utilize more than one activation pathway. We have discerned that opsonized zymosan (OZ) stimulates O2- release by a mechanism distinct from that of phorbol myristate acetate (PMA). PMA differs from OZ stimulation in its susceptibility to H-7 (a protein kinase inhibitor) inhibition of O2- release and the lack of PMA-initiated release of radiolabeled arachidonic acid ([3H]AA) from prelabeled cells. That AA release was linked to O2- generation in OZ-stimulated cells was suggested by the finding that mepacrine, a phospholipase inhibitor, exhibits parallel dose response inhibition for both O2- generation and [3H]AA release, whereas mepacrine did not significantly inhibit the O2- generation induced by PMA. The specific involvement of phospholipase A2 (PLA2) in the release of AA was indicated by the lack of release of [3H]oleate, which is not released by PLA2 in intact cells; [3H]AA released from phosphatidylinositol and phosphatidylcholine and not accompanied by the formation of [3H]-arachidonyl phosphatidic acid, thus eliminating the involvement of phospholipase C; and the inhibition of [3H]AA release by p-bromophenacyl bromide, a specific PLA2 inhibitor. The reduction of O2- formation by inhibitors of AA metabolism (BW755C, acetylsalicylic acid, and indomethacin) further supports a linkage between AA release and O2- generation. That [3H]AA release, like O2- generation, in OZ-stimulated cells was calcium dependent further differentiates OZ from calcium-independent PMA activation. These studies in toto suggest that OZ stimulation of the NADPH-oxidase differs from PMA, in that the particulate stimulus is PLA2 mediated and independent of protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号