首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
140 Organophosphorus compounds (OP's) have been tested for mutagenic activity in bacteria, principally by using two specially constructed sets of tester strains of the bacteria Salmonella typhimurium and Escherichia coli. It was found that 20% gave positive mutagenic responses and that this group of chemicals produce base substitutions rather than frame-shift mutations. In most cases the DNA repair genes exrA+ and recA+ were for mutagenic activity.Seven compounds were further tested in Drosophila melanogaster for the ability to induce recessive lethal mutations. In some of these cases the doses administered to the flies had to be very low due to the highly toxic nature of the compounds. To overcome this problem, the accumulation of recessive lethal mutations was measured in populations which were continually exposed to the compounds over a period of some 18 months. During this time the populations developed increased resistance to the compound and so the dose administered could gradually be increased. Six of the compounds were mutagenic.Of the compounds tested in both systems, those showing mutagenic activity in bacteria were also mutaganic in Drosophila, those mutagenic in bacteria were not mutagenic in Drosophila.  相似文献   

2.
The acute effects of microwave exposure on a repeated acquisition baseline were investigated in three rats. Each session the animals acquired a different four-member response sequence. Each of the first three correct responses advanced the sequence to the next member, and the fourth correct response produced food reinforcement. Incorrect responses produced a three-second timeout. Baseline and control sessions were characterized by a decrease in errors within each session. The animals were acutely exposed to a 2.8 GHz pulsed-microwave field prior to test sessions, with average power densities ranging from 0.25 to 10 mW/cm2. In comparison to control sessions, 1/2 hour of exposure to microwave radiation at power densities of 5 and 10 mW/cm2 increased errors and altered the pattern of within-session acquisition. Exposure to the 10 mW/cm2 power density decreased the rate of sequence completion in all animals. The results of exposures at 0.25, 0.5, and 1 mW/cm2 power densities were generally within the control range. The results are interpreted as indicating a disruption in the discriminative stimulus control of the repeated acquisition behavior.  相似文献   

3.
Female CD-1 mice were injected with an LD50 dose of Streptococcus pneumoniae and then exposed to 2.45 GHz (CW) microwave radiation at an incident power density of 10 mW/cm2 (SAR = 6.8 W/kg), 4 h/d for 5 d at ambient temperatures of 19 °C, 22 °C, 25 °C, 28 °C, 31 °C, 34 °C, 37 °C and 40 °C. Four groups of 25 animals were exposed at each temperature with an equal number of animals concurrently sham-exposed. Survival was observed for a 10-d period after infection. Survival of the sham-exposed animals increased as ambient temperature increased from 19 °C–34 °C. At ambient temperatures at or above 37 °C the heat induced in the body exceeded the thermoregulatory capacity of the animals and deaths from hyperthermia occurred. Survival of the microwave-exposed animals was significantly greater than the shams (~20%) at each ambient temperature below 34 °C. Based on an analysis of the data it appears that the hyperthermia induced by microwave exposure may be more effective in increasing survival in infected mice than hyperthermia produced by conventional methods (ie, high ambient temperature). Microwave radiation may be beneficial to infected animals at low and moderate ambient temperatures, but it is detrimental when combined with high ambient temperatures.  相似文献   

4.
Because Cryptosporidium parvum oocysts are very resistant to conventional water treatment processes, including chemical disinfection, we determined the kinetics and extent of their inactivation by monochromatic, low-pressure (LP), mercury vapor lamp UV radiation and their subsequent potential for DNA repair of UV damage. A UV collimated-beam apparatus was used to expose suspensions of purified C. parvum oocysts in phosphate-buffered saline, pH 7.3, at 25°C to various doses of monochromatic LP UV. C. parvum infectivity reductions were rapid, approximately first order, and at a dose of 3 mJ/cm2 (=30 J/m2), the reduction reached the cell culture assay detection limit of ~3 log10. At UV doses of 1.2 and 3 mJ/cm2, the log10 reductions of C. parvum oocyst infectivity were not significantly different for control oocysts and those exposed to dark or light repair conditions for UV-induced DNA damage. These results indicate that C. parvum oocysts are very sensitive to inactivation by low doses of monochromatic LP UV radiation and that there is no phenotypic evidence of either light or dark repair of UV-induced DNA damage.  相似文献   

5.
Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of 137Cs at 0.13, 2.4, 21, and 222 mGy d-1, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21 mGy d-1 and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.  相似文献   

6.
Genetic variation at immunoglobulin (Ig) gene variable regions in B-cells is created through a multi-step process involving deamination of cytosine bases by activation-induced cytidine deaminase (AID) and their subsequent mutagenic repair. To protect the genome from dangerous, potentially oncogenic effects of off-target mutations, both AID activity and mutagenic repair are targeted specifically to the Ig genes. However, the mechanisms of targeting are unknown and recent data have highlighted the role of regulating mutagenic repair to limit the accumulation of somatic mutations resulting from the more widely distributed AID-induced lesions to the Ig genes. Here we investigated the role of the DNA damage sensor poly-(ADPribose)-polymerase-1 (PARP-1) in the repair of AID-induced DNA lesions. We show through sequencing of the diversifying Ig genes in PARP-1−/− DT40 B-cells that PARP-1 deficiency results in a marked reduction in gene conversion events and enhanced high-fidelity repair of AID-induced lesions at both Ig heavy and light chains. To further characterize the role of PARP-1 in the mutagenic repair of AID-induced lesions, we performed functional analyses comparing the role of engineered PARP-1 variants in high-fidelity repair of DNA damage induced by methyl methane sulfonate (MMS) and the mutagenic repair of lesions at the Ig genes induced by AID. This revealed a requirement for the previously uncharacterized BRCT domain of PARP-1 to reconstitute both gene conversion and a normal rate of somatic mutation at Ig genes, while being dispensable for the high-fidelity base excision repair. From these data we conclude that the BRCT domain of PARP-1 is required to initiate a significant proportion of the mutagenic repair specific to diversifying antibody genes. This role is distinct from the known roles of PARP-1 in high-fidelity DNA repair, suggesting that the PARP-1 BRCT domain has a specialized role in assembling mutagenic DNA repair complexes involved in antibody diversification.  相似文献   

7.
Two groups of 16 male New Zealand rabbits were exposed to 2450-MHz continuous wave microwave fields in two experiments of 90 days each. The incident power densities of the first and second experiment were 0.5 and 5 mW/cm2, respectively. During each study, 16 animals were adapted to a miniature anechoic chamber exposure system for at least 2 weeks, then 8 of them were exposed for 7 h daily, 5 days a week for 13 weeks, and the other 8 animals were sham exposed. The rabbits were placed in acrylic cages, and each was exposed from the top in an individual miniature anechoic chamber. Thermography showed a maximum specific absorption rate of 5.5 W/kg in the head and 7 W/kg in the back at 5-mW/cm2 incident power density. After each 7-h exposure session, the animals were returned to their home cages. Food consumption in the exposure chamber and body mass were measured daily. Blood samples were taken before exposure and monthly thereafter for hematological, morphological, chemical, protein electrophoresis, and lymphocyte blast transformation studies. Eyes were examined for cataract formation. Finally, pathological examinations of 28 specimens of organs and tissues of each rabbit were performed. Statistically, there was a significant (P < .01) decrease only of food consumption during the 5-mW/cm2 exposure; other variables were not significantly different between exposed and control groups.  相似文献   

8.
Through a series of experiments, the genotoxic/mutagenic and carcinogenic potential of sewage sludge was assessed. Male Wistar rats were randomly assigned to four groups: Group 1 - negative control; Group 2 - liver carcinogenesis initiated by diethylnitrosamine (DEN; 200 mg/kg i.p.); Group 3 and G4-liver carcinogenesis initiated by DEN and fed 10,000 ppm or 50,000 ppm of sewage sludge. The animals were submitted to a 70% partial hepatectomy at the 3rd week. Livers were processed for routine histological analysis and immunohistochemistry, in order to detect glutathione S-transferase positive altered hepatocyte foci (GST-P+ AHF). Peripheral blood samples for the comet assay were obtained from the periorbital plexus immediately prior to sacrificing. Polychromatic erythrocytes (PCEs) were analyzed in femoral bone-marrow smears, and the frequencies of those micronucleated (MNPCEs) registered. There was no sewage-sludge-induced increase in frequency of either DNA damage in peripheral blood leucocytes, or MNPCEs in the femoral bone marrow. Also, there was no increase in the levels of DNA damage, in the frequency of MNPCEs, and in the development of GST-P AHF when compared with the respective control group.  相似文献   

9.
Adult rats anesthesized with pentobarbital and injected intravenously with a mixture of [14C]sucrose and [3H]inulin were exposed for 30 min to an environment at an ambient temperature of 22, 30, or 40 °C, or were exposed at 22 °C to 2450-MHz CW microwave radiation at power densities of 0, 10, 20, or 30 mW/cm2. Following exposure, the brain was perfused and sectioned into eight regions, and the radioactivity in each region was counted. The data were analyzed by two methods. First, the data for each of the eight regions and for each of the two radioactive tracers were analyzed by regression analysis for a total of 16 analyses and Bonferroni's Inequality was applied to prevent false positive results from numerous analyses. By this conservative test, no statistically significant increase in permeation was found for either tracer in any brain region of rats exposed to microwaves. Second, a profile analysis was used to test for a general change in tracer uptake across all brain regions. Using this statistical method, a significant increase in permeation was found for sucrose but not for inulin. A correction factor was then derived from the warm-air experiments to correct for the increase in permeation of the brain associated with change in body temperature. This correction factor was applied to the data for the irradiated animals. After correcting the data for thermal effects of the microwave radiation, no significant increase in permeation was found.  相似文献   

10.
EPR tooth in vivo dosimetry is an attractive approach for initial triage after unexpected nuclear events. An X-band cylindrical TM010 mode resonant cavity was developed for in vivo tooth dosimetry and used in EPR applications for the first time. The cavity had a trapezoidal measuring aperture at the exact position of the cavity’s cylindrical wall where strong microwave magnetic field H1 concentrated and weak microwave electric field E1 distributed. Theoretical calculations and simulations were used to design and optimize the cavity parameters. The cavity features were evaluated by measuring DPPH sample, intact incisor samples embed in a gum model and the rhesus monkey teeth. The results showed that the cavity worked at designed frequency and had the ability to make EPR spectroscopy in relative high sensitivity. Sufficient modulation amplitude and microwave power could be applied into the aperture. Radiation induced EPR signal could be observed remarkably from 1 Gy irradiated intact incisor within only 30 seconds, which was among the best in scan time and detection limit. The in vivo spectroscopy was also realized by acquiring the radiation induced EPR signal from teeth of rhesus monkey whose teeth was irradiated by dose of 2 Gy. The results suggested that the cavity was sensitive to meet the demand to assess doses of significant level in short time. This cavity provided a very potential option for the development of X-band in vivo dosimetry.  相似文献   

11.
The effect of a temporally incoherent magnetic field noise on microwave-induced DNA single and double strand breaks in rat brain cells was investigated. Four treatment groups of rats were studied: microwave-exposure (continuous-wave 2450-MHz microwaves, power density 1 mW/cm2, average whole-body specific absorption rate of 0.6 W/kg), noise-exposure (45 mG), microwave + noise-exposure, and sham-exposure. Animals were exposed to these conditions for 2h. DNA single- and double-strand breaks in brain cells of these animals were assayed 4h later using a microgel electrophoresis assay. Results show that brain cells of microwave-exposed rats had significantly higher levels of DNA single- and double-strand breaks when compared with sham-exposed animals. Exposure to noise alone did not significantly affect the levels (i.e., they were similar to those of the sham-exposed rats). However, simultaneous noise exposure blocked microwave-induced increases in DNA strand breaks. These data indicate that simultaneous exposure to a temporally incoherent magnetic field could block microwave-induced DNA damage in brain cells of the rat.  相似文献   

12.
The mutagenic and cytotoxic effects of 4 antineoplastic drugs, vinblastine, vincristine, adriamycin and nitrogen mustard and of several monofunctional alkylating agents have been assayed in V79 Chinese hamster cells. Vincristine, vinblastine and nitrogen mustard did not significantly increase the frequency of TGRHGPRT? mutants but were all highly cytotoxic. Adriamycin and the monofunctional alkylating agents were all significantly mutagenic even at the lowest doses tested (approx. 70 % survival level). Induced mutant frequency increased linearly with increasing dose whereas dose-response curves for cytotoxicity for these effective mutagens invariably showed a shoulder followed by an exponential decline. At equitoxic doses the relative mutagenic effectiveness was MNU ENU EMS MMS ? DMS. MNU was approx. 20 times more effective than MMS and DMS.Measurement of the total amount of alkylation and the relative amounts of reaction with individual DNA bases at approx. equitoxic doses of MNU and DMS indicated a significantly higher O6/N7 ratio after MNU (0.15) than after DMS (0.005). However, approx. equal numbers of mutants/105 cells/μM O6-Meguanine were induced by these 2 agents. These results support previous conclusions, that mutagenic and cytotoxic responses are independent in V79 cells.  相似文献   

13.
Methods for determining the chemical dose of ethyl methanesulfonate (EMS) to the DNA of mouse spermatozoa in the vasa deferentia and epididymides have been developed. These include procedures for the removal of contaminating protamine, which, like DNA, possesses nucleophilic sites that can be ethylated by EMS. At least 99% of all sperm protamine (at a 95% confidence level), as well as any other cellular contaminants, is removed during purification of the DNA. The purified DNA recovered from spermatozoa gives no indication of a preferential recovery of either (G+C)-rich or (A+T)-rich regions of the mouse genome: the [14C]dT/[3H]dC ratios for whole sperm and sperm DNA were the same for each animal tested.The spermatozoa of males used in the dosimetry studies were labeled with [14C]thymidine, and then the animals were given various [3H]EMS doses intraperitoneally. A constant exposure time of 4 h was used. The ratios of 3H and 14C activities in whole sperm and purified sperm DNA were used to measure the percentage of the total sperm ethylation occurring in the DNA. The maximum percentage found was about 18% in the dose range of 100–400 mg/kg. Values for the ethylations per nucleotide (E/N) ranged from ~ 10?7 at 3.3 mg/kg up to ~ 10?4 at 400 mg/kg, and the data indicated that E/N increased with the 1.5 power of the dose. E/N was also measured in testicular DNA, and the values obtained were close to those found for spermatozoan DNA.The results of such chemical dosimetry studies will be far-reaching in the interpretation of molecular events responsible for genetic alterations. As an example, dominant lethal studies by others, using EMS in the dose range considered in the present paper, have shown little or no effect until two or more days after injection of the mutagen into male mice. Since many sperm DNA ethylations are found after a 4-h exposure to EMS it appears that most of these DNA ethylations are not genetically important, at least in the production of dominant lethals, and that perhaps genetic damage occurs only at rarely ethylated DNA sites.  相似文献   

14.
N-Methyl-4-aminoazobenzene (MAB) is believed to be metabolized in the liver to an electrophilic N-sulfonyloxy ester which binds covalently to cellular macromolecules, resulting in the induction of hepatic neoplasia. Previous in vivo studies in the rat detected only two hepatic MAB-DNA adducts, 3-(deoxyguanosin-N2-yl)-MAB(N2-dG) and N-(deoxyguanosin-8-yl)-MAB(C8-dG), which respectively accounted for 25% and 70% of the total MAB bound to DNA at 8 h after a single dose of the carcinogen. Subsequently, the C8-dG adduct was shown to be rapidly lost from the DNA while the N2-dG adduct was a persistent lesion. Since a single dose of MAB is not sufficient for complete carcinogenic activity, we sought to identify the MAB-DNA adducts present in rat liver after multiple oral doses of [3H]MAB. The MAB was administered by intubation at a level of 0.2 mmol/kg for 1, 3 or 4 doses and animals were sacrificed at 8 h after the last dose. Hepatic DNA was isolated by extraction and hydroxylapatite chromatography and was enzymatically hydrolyzed to MAB-mononucleoside adducts, which were quantitated by high pressure liquid chromatography (HPLC). After 3 doses, N2-dG, C8-dG, and an unknown adduct were detected. By 4 doses, these accounted for 51%, 25% and 23% of the total adducts. This data is consistent with rapid removal of the C8-dG derivative and the relative persistence of the N2-dG and the unknown adduct. The latter was shown to exhibit chromatographic and pH-dependent solvent partitioning properties that were identical to a product also present in DNA treated with the synthetic ultimate carcinogen, N-benzoyloxy-MAB. Analysis of this adduct by field desorption mass spectrometry (M+ = 460) and, after perdeuteromethylation, by electron impact mass spectrometry (M+ = 528; M-N(CH3)(CD3) = 481) indicated the structure to be a deoxyadenosin-N6-yl derivative substituted through an aromatic ring of MAB. Further analysis by 270 MHz 1H-NMR spectroscopy allowed complete assignment of the MAB and adenyl resonances and was uniquely consistent with a 3-(deoxyadenosin-N6-yl)-MAB structure. Since this persistent adduct is potentially mutagenic due to possible tautomeric equilibria between the N6-amino and N6-imino structures, it may represent an initiating lesion in MAB hepatocarcinogenesis.  相似文献   

15.
DNA sensitivity in peripheral blood leukocytes of radar-facility workers daily exposed to microwave radiation and an unexposed control subjects was investigated. The study was carried out on clinically healthy male workers employed on radar equipment and antenna system service within a microwave field of 10 μW/cm2–20 mW/cm2 with frequency range of 1,250–1,350 MHz. The control group consisted of subjects of similar age. The evaluation of DNA damage and sensitivity was performed using alkaline comet assay and chromatid breakage assay (bleomycin-sensitivity assay). The levels of DNA damage in exposed subjects determined by alkaline comet assay were increased compared to control group and showed inter-individual variations. After short exposure of cultured lymphocytes to bleomycin cells of subjects occupationally exposed to microwave (MW) radiation responded with high numbers of chromatid breaks. Almost three times higher number of bleomycin-induced chromatid breaks in cultured peripheral blood lymphocytes were determined in comparison with control group. The difference in break per cell (b/c) values recorded between smokers and non-smokers was statistically significant in the exposed group. Regression analyses showed significant positive correlation between the results obtained with two different methods. Considering the correlation coefficients, the number of metaphase with breaks was a better predictor of the comet assay parameters compared to b/c ratio. The best correlation was found between tail moment and number of chromatid with breaks. Our results indicate that MW radiation represents a potential DNA-damaging hazard using the alkaline comet assay and chromatid breakage assay as sensitive biomarkers of individual cancer susceptibility.  相似文献   

16.
The accumulation of environmental compounds which exhibit genotoxic properties in short-term assays and the increasing lag of time for obtaining confirmation or not in long-term animal mutagenicity and carcinogenicity tests, makes it necessary to develop alternative, rapid methodologies for estimating genotoxic activity in vivo. In the experimental approach used here, it was assumed that the genotoxic activity of foreign compounds in animals, and ultimately humans, is determined among others by exposure level, organ distribution of (DNA) dose, and genotoxic potency per unit of dose, and that knowledge about these 3 parameters may allow to rapidly determine the expected degree of genotoxicity in various organs of exposed animals. In view of the high degree of qualitative correlation between mutagenic activity of chemicals in bacteria and in cultured mammalian cells, and their mutagenic and carcinogenic properties in animals, and in order to be able to distinguish whether mutagenic potency differences were due to differences in (DNA) dose rather than other physiological factors, the results of mutagenicity tests obtained in the present experiments using bacteria and mammalian cells were compared on the basis of DNA dose rather than exposure concentrations, with the following questions in mind: Is there an absolute or a relative correlation between the mutagenic potencies of various ethylating agents in bacteria (E. coli K12) and in mammalian cells (V79 Chinese hamster) after treatment in standardized experiments, and can specific DNA adducts be made responsible for mutagenicity? Is the order of mutagenic potency of various ethylating agents observed in bacteria in vitro representative of the ranking of mutagenic potency found in vivo? Since the answer to this last question was negative, a further question addressed to was whether short-term in vivo assays could be developed for a rapid determination of the presence (and persistence) of genotoxic factors in various organs of mice treated with chemicals. In quantitative comparative mutagenesis experiments using E. coli K12 and Chinese hamster cells treated under standardized conditions in vitro with 5 ethylating agents, there was no indication of an absolute correlation between the number of induced mutants per unit of dose in the bacteria and the mammalian cells. The ranking of mutagenic potency was, however, identical in bacteria and mammalian cells, namely, ENNG greater than ENU greater than or equal to DES greater than DEN congruent to EMS, the mutagenic activity of DEN being dependent on the presence of mammalian liver preparations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The cyclic aliphatic sulfuric acid esters 1,2-ethylene sulfate (ESF), 1,3-propylene sulfate (PSF) and 1,3-butylene sulfate (BSF) have been tested for their mutagenic and DNA-damaging activity. Mutagenicity of the compounds was established with his-auxotrophic indicator strains of Salmonella typhimurium using the in vitro plate test and the host-mediated assay technique with mice as host animals. The DNA-damaging activity was tested in a repair test with Proteus mirabilis mutants defective in DNA repair.In the repair test with a set of P. mirabilis strains (PG713 hcr?rec?: PG273 hcr+rec+) PSF and BSF showed a preferential growth inhibition of the repair-defective strain suggesting DNA-damaging activity of these chemicals. No such activity was found for ESF using the same concentrations of 5 and 15 μmol/plate.All cyclic sulfates revert the tester strain TA1535 of S. typhimurium in vitro indicating their ability to induce base substitutions. Compared with the reference compounds dimethyl sulfate (DMS), diethyl sulfate (DES), 1,3-propane sulfone (PPS) and 1,4-butane sulfone (BTS) the mutagenic activity in the plate test can be described as follows: PPS > PSF > BSF > BTS > ESF > DES > DMS.Dose-response studies in the host-mediated assay with tester strain TA1950 of S. typhimurium as genetic indicator system revealed a linear dosedependency of mutagenic activity. For PPS and PSF the lowest effective dose (LED) has been established as 10 μmol/kg. The LED for BSF and BTS was 50 μmol/kg, DMS and DES were mutagenic in doses of 2500 μmol/kg, while ESF was only weakly mutagenic with a LED of 5000 μmol/kg.The dose-response studies in the host-mediated assay and the results obtained in the in vitro spot test demonstrate similarities in the mutagenic action of the cyclic sulfates PSF and BSF and the respective sulfones, while the stronger alkylating compound ESF was a weak mutagen both in vitro and in vivo.  相似文献   

18.
Male CBA/CAY mice were exposed daily (6 days a week) for 30 minutes in an environmentally controlled waveguide to continuous 2.45 GHz microwave radiation for 2 weeks at average whole body absorbed dose rates of 0.05, 0.5, 10, and 20 mW/g. Shan exposed animals served as controls. Chain translocations were observed at diakinesis at metaphase I in microwave exposed animals. The yield of translocations increased with exposure, and varied nonlinearly with dose rate. An increase in incidence of univalents was seen after exposure at 10 and 20 mW/g. The findings are interpreted to indicate interference with normal spermatogenesis during the exposure period.  相似文献   

19.
Mobile phones communicate with base stations using 900 MHz microwaves. The current study was aimed to survey the effects of long-term 900 MHz microwave exposure of mice on experimentally induced cutaneous candidiasis. Forty inbred, male, BALB/c mice were randomly divided into four groups. Cutaneous lesions with Candida albicans were experimentally induced on the lateral-back skin of the 20 mice. One group of the diseased mice were exposed (6 h per day and 7 d per week) to 900 MHz microwave radiation, while the other groups were not exposed. Two unexposed control groups were also included. The skin lesions were regularly monitored and the live candida cell density was enumerated using the colony-forming unit (CFU) assay. The process was repeated after a one week resting interval. One week later, all mice were challenged through intra tail veins using LD90 dose of C. albicans. Mortality of the mice was recorded and the candida load of the kidney homogenates from died animals was counted. 900 MHz microwave exposed mice had 1.5 day and 3.7 day delays on wound healing in stages two. Live Candida inoculated Wave exposed (LCW) mice also showed higher yeast loads in skin lesions at days 5, 7 and 9 post inoculation. Survival analysis of live candida challenged mice showed the radiation exposed group is prone to death induced by systemic infection and candida enumeration from the kidney homogenates showed radiation exposed animals have had significantly higher yeast load in the tissue. In collection, long-term 900 MHz radiation exposure of mice led to longevity of skin wounds and susceptibility of the animals to systemic challenge and higher incidences of microorganisms in internal tissues.  相似文献   

20.
We conducted a large-scale in vitro study focused on the effects of low level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system in order to test the hypothesis that modulated RF fields may act as a DNA damaging agent. First, we evaluated the responses of human cells to microwave exposure at a specific absorption rate (SAR) of 80 mW/kg, which corresponds to the limit of the average whole body SAR for general public exposure defined as a basic restriction in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. Second, we investigated whether continuous wave (CW) and Wideband Code Division Multiple Access (W-CDMA) modulated signal RF fields at 2.1425 GHz induced different levels of DNA damage. Human glioblastoma A172 cells and normal human IMR-90 fibroblasts from fetal lungs were exposed to mobile communication frequency radiation to investigate whether such exposure produced DNA strand breaks in cell culture. A172 cells were exposed to W-CDMA radiation at SARs of 80, 250, and 800 mW/kg and CW radiation at 80 mW/kg for 2 and 24 h, while IMR-90 cells were exposed to both W-CDMA and CW radiations at a SAR of 80 mW/kg for the same time periods. Under the same RF field exposure conditions, no significant differences in the DNA strand breaks were observed between the test groups exposed to W-CDMA or CW radiation and the sham exposed negative controls, as evaluated immediately after the exposure periods by alkaline comet assays. Our results confirm that low level exposures do not act as a genotoxicant up to a SAR of 800 mW/kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号