首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: The objective of this study was to investigate the effects of calcitriol on adipocyte and macrophage cytokine expression as well as release and on adipocyte-macrophage cross-talk in local modulation of inflammation. RESEARCH PROCEDURES AND RESULTS: We investigated calcitriol modulation of the expression of macrophage inhibitory factor (MIF) and macrophage surface-specific protein CD14, two key factors in regulating macrophage function and survival, in differentiated human adipocytes. Calcitriol significantly increased MIF and CD14 expression by 59% and 33%, respectively, while calcium-channel antagonism with nifedipine completely reversed these effects, indicating that calcitriol stimulates MIF and CD14 expression via a calcium-dependent mechanism. Similar results were also found in cultured 3T3-L1 adipocytes; in addition, calcitriol also up-regulated macrophage colony-stimulating factor, macrophage inflammatory protein, interleukin-6 (IL-6) as well as monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes and stimulated tumor necrosis factor as well as IL-6 expression in RAW 264 macrophages. These effects were blocked by either a calcium-channel antagonist (nifedipine) or a mitochondrial uncoupler (dinitrophenol). Moreover, co-culture of 3T3-L1 adipocytes with RAW 264 macrophages significantly increased the expression and production of multiple inflammatory cytokines in response to calcitriol in both cell types. CONCLUSIONS: These data demonstrate that calcitriol regulates local inflammation via modulating the interaction between adipocytes and macrophages as well as regulating inflammatory cytokine production in each cell type via calcium-dependent and mitochondrial uncoupling-dependent mechanisms. These data provide further mechanistic explanation for our recent observations that suppression of calcitriol by dietary calcium reduces inflammatory cytokine expression and oxidative stress in adipose tissue.  相似文献   

2.

Background

Interleukin 18 (IL-18) is a pro-inflammatory cytokine that mediates fibrotic renal injury during obstruction. Macrophages are a well-known source of IL-18; however, renal tubular epithelial cells are also a potential source of this cytokine. We hypothesized that IL-18 is predominantly a renal tubular cell product and is produced during renal obstruction independent of macrophage infiltration.

Methods

To study this, male C57BL6 mice were subjected to unilateral ureteral obstruction (UUO) vs. sham operation in the presence or absence of macrophage depletion (liposomal clodronate (1 ml/100 g body weight i.v.)). The animals were sacrificed 1 week after surgery and renal cortical tissue harvested. Tissue levels of active IL-18 (ELISA), IL-18 receptor mRNA expression (real time PCR), and active caspase-1 expression (western blot) were measured. The cellular localization of IL-18 and IL-18R was assessed using dual labeling immunofluorescent staining (IFS).

Results

Immunohistochemical staining of renal tissue sections confirmed macrophage depletion by liposomal clodronate. IL-18 production, IL-18R expression, and active caspase 1 expression were elevated in response to renal obstruction and did not decline to a significant degree in the presence of macrophage depletion. Obstruction-induced IL-18 and IL-18R production localized predominantly to tubular epithelial cells (TEC) during obstruction despite macrophage depletion.

Conclusion

These results demonstrate that renal tubular epithelial cells are the primary source of IL-18 production during obstructive injury, and that tubular cell production of IL-18 occurs independent of macrophage infiltration.  相似文献   

3.
Effects of four inhibitors of NF-κB, SAPK/JNK and TLR4 signaling, namely, inhibitor XII, SP600125, CLI-095 and OxPAPC on a macrophage response to low dose ammonium were studied in RAW 264.7 cells. Low dose ammonium induced proinflammatory response in cells as judged from enhanced production of TNF-α, IFN-Γ, and IL-6, and by activation of signal cascades. The increase in production of cytokines, namely TNF, IFN, and IL-6, demonstrated that low-dose ammonium induced à proinflammatory cellular response. In addition, an activation of NF-κB and SAPK/JNK cascades, as well as enhancement of TLR4 expression was shown. Each of used inhibitors reduced to a variable degree the proinflammatory response of RAW 264.7 cells to chemical toxin by decreasing cytokine production. The inhibitor of NF-κB cascade, IKK Inhibitor XII, was more effective, and not only prevented the development of proinflammatory response induced by ammonium, but also decreased cytokine production below control values. The inhibitor of extracellular domains of TLR2 and TLR4 (OxPAPC) had almost the same anti-inflammatory effect, and an addition of the inhibitor of JNK cascade (SP600125) to cell culture practically neutralized the effect of ammonium ions by decreasing cytokine production to control level. Inhibitor analysis showed that activation of RAW 264.7 cells induced by chemical toxin coincided incompletely with intracellular signaling pathways that were earlier determined regarding macrophage response to toxin from Gram-negative bacteria. Nevertheless, application of the inhibitors protected RAW 264.7 from the toxic effect of low dose ammonium.  相似文献   

4.
The antiapoptotic molecule Bcl-xL has been implicated in the differentiation and survival of activated macrophages in inflammatory conditions. In this report, the role of Bcl-xL in LPS-induced cytokine gene expression and secretion was studied. Bcl-xL-transfected RAW 264 macrophages were protected from gliotoxin-induced apoptosis, indicating the presence of functional Bcl-xL. Overexpression of Bcl-xL in this macrophage cell line was also associated with a marked inhibition of LPS-induced TNF-alpha, JE/monocyte chemoattractant protein 1, and macrophage inflammatory protein 2 secretion. Inhibition of LPS-induced cytokine secretion was paralleled by a decrease in levels of steady-state mRNA for the above cytokines and for IL-1beta. Decreased production of TNF-alpha in Bcl-xL transfectants was not due to increased mRNA degradation, as the mRNA half-lives were the same in Bcl-xL transfectants and control macrophages. Although the composition of NF-kappaB complexes detected by EMSA and supershift analysis in nuclear lysates derived from Bcl-xL transfectants and control cells was indistinguishable, LPS-induced inhibitory kappaBalpha degradation, as well as NF-kappaB binding and AP-1 activation, were slightly decreased by ectopic expression of Bcl-xL. More strikingly, LPS-induced phosphorylation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase was strongly repressed by Bcl-xL overexpression, offering a possible mechanism for the inhibition of LPS-induced cytokine production. These data provide the first evidence for a novel role for Bcl-xL as an anti-inflammatory mediator in macrophages.  相似文献   

5.
We examined whether Siglec-9 modulates cytokine production in the macrophage cell line RAW264. Cells expressing Siglec-9 produced low levels of tumor necrosis factor (TNF)-α upon stimulation with lipopolysaccharide, peptidoglycan, unmethylated CpG DNA, and double-stranded RNA. On the other hand, interleukin (IL)-10 production was strongly enhanced in Siglec-9-expressing cells. Similar activities were also exhibited by Siglec-5. However, the up-regulation of IL-10 as well as the down-regulation of TNF-α was abrogated when two tyrosine residues in the cytoplasmic tail of Siglec-9 were mutated to phenylalanine. A membrane proximal ITIM mutant of Siglec-9 did not enhance IL-10 production but partly inhibited TNF-α production, indicating diverse regulation mechanisms of TNF-α and IL-10. Siglec-9 also enhanced the production of IL-10 in the human macrophage cell line THP-1. These results demonstrate that Siglec-9 enhances the production of the anti-inflammatory cytokine IL-10 in macrophages.  相似文献   

6.
Effects of four inhibitors of NF-kappaB, SAPK/JNK and TLR4 signaling, namely, inhibitor XII, SP600125, CLI-095 and Oxpapc on a macrophage response to low dose ammonium were studied in RAW 264.7 cells. Low dose ammonium induced pro-inflammatory response in cells as judged from enhanced production of TNF-alpha, IF-gamma, and IL-6, and by activation of signal cascades. The increase in production of cytokines, namely TNF, IFN, and IL-6, demonstrated that low-dose ammonium induced a pro-inflammatory cellular response. In addition, an activation of NF-kappaB and SAPK/JNK cascades, as well as enhancement of TLR4 expression was shown. Each of used inhibitors reduced to a variable degree the pro-inflammatory response of RAW 264.7 cells on chemical toxin by decreasing cytokine production. The inhibitor of NF-kappaB cascade, IKK Inhibitor XII, was more effective, and not only prevented the development of pro-inflammatory response induced by ammonium, but also decreased cytokine production below control values. The inhibitor of extra cellular domains of TLR2 and TLR4 (OxPAPC) had almost the same anti-inflammatory effect, and an addition of the inhibitor of JNK cascade (SP600125) to cell culture practically neutralized effect of ammonium ions by decreasing cytokine production to control level. Inhibitory analysis showed that activation of RAW 264.7 cells induced by chemical toxin coincide incompletely with intracellular signaling pathways that were early determined regarding macrophage's response to toxin from gram-negative bacteria. Nevertheless, application of the inhibitors defended RAW 264.7 from toxic effect of the low dose ammonium.  相似文献   

7.
The effect of 10-hydroxy-trans-2-decenoic acid (10H2DA), a major fatty acid component of royal jelly, was investigated on LPS-induced cytokine production in murine macrophage cell line, RAW264 cells. 10H2DA inhibited LPS-induced IL-6 production dose-dependently, but did not inhibit TNF-α production. 10H2DA inhibited LPS-induced NF-κB activation in a dose-dependent fashion. In addition, NF-κB activation induced by over-expression of either MyD88 or Toll/IL-1?receptor domain-containing adaptor inducing IFN-β (TRIF) was also inhibited by 10H2DA. Degradation of IκB-α and phosphorylation of IκB kinase-α were not inhibited by 10H2DA. On the other hand, reduction of LPS-induced IκB-ζ expression was discovered. Production of lipocalin-2 and granulocyte colony-stimulating factor (G-CSF), which is dependent on IκB-ζ, was also inhibited by 10H2DA, whereas that of IκB-ζ-independent cytokines/chemokines, such as IFN-β, murine monocyte chemotactic protein-1 (JE), macrophage inflammatory protein (MIP)-1α and MIP-2, was not. Together, 10H2DA specifically inhibited LPS-induced IκB-ζ expression, followed by inhibition of IκB-ζ-dependent gene production. These results suggest that 10H2DA is one of the components of royal jelly to show anti-inflammatory effects and could be a therapeutic drug candidate for inflammatory and autoimmune diseases associated with IκB-ζ and IL-6 production.  相似文献   

8.
Aims:  The objective of this study was to investigate the ability of specific bacterial components of Lactobacillus plantarum KFCC11389P to induce anti-inflammatory mediators in cell cultures of the murine macrophage cell line, RAW 264·7.
Methods and Results:  The RAW 264·7 cells were stimulated with viable bacterial cells (VC), heat-killed (HK) cells, cell walls (CW) or ultrafiltrates of metabolic products (UF). An increase in the levels of tumour necrosis factor (TNF)-α was observed in VC, HK and CW, but this effect was much lower in UF. VC stimulated higher levels of interleukin (IL)-6 releases as well as nitric oxide production than HK. In contrast, UF and its separated molecule, fraction 4, were much strong IL-10 inducers. Fraction 4 (8·1 kDa), especially, inhibited the production of pro-inflammatory cytokines, IL-6 (89% decrease) and TNF-α (55% decrease), in lipopolysaccharide (LPS)-stimulated murine macrophages.
Conclusions:  The results of this study indicate that metabolic products of Lact. plantarum KFCC11389P could influence the immune-modulating activity via IL-10, and pretreatment with this specific molecule could inhibit LPS-induced release of IL-6 and TNF-α.
Significance and Impact of the Study:  Our findings suggest that the specific molecules of Lact. plantarum KFCC11389P may be useful for the treatment of acute inflammatory responses such as Crohn's disease or ulcerative colitis.  相似文献   

9.
TLR2 recognizes components of Mycobacterium tuberculosis and initiates APC activities that influence both innate and adaptive immunity. M. tuberculosis lipoproteins are an important class of TLR2 ligands. In this study, we focused on recombinant MPT83 (rMPT83) to determine its effects on mouse macrophages. We demonstrated that rMPT83 induced the production of TNF-α, IL-6, and IL-12 p40 and that cytokine induction depended on activated MAPKs, because we observed the rapid phosphorylation of ERK1/2, p38, and JNK in macrophages. Additionally, neutralizing Abs against TLR2 significantly inhibited cytokine secretion and reduced or attenuated the rMPT83-induced activation of p38 and JNK in RAW264.7 cells, a mouse macrophage cell line. Furthermore, rMPT83-induced cytokine production was significantly lower in macrophages from TLR2(-/-) mice than in macrophages from wild-type mice. We further found that prolonged exposure (>24 h) of RAW264.7 cells or macrophages from wild-type and TLR2(-/-) mice to rMPT83 resulted in a significant enhancement of IFN-γ-induced MHC class II expression and an enhanced ability of macrophages to present the rMPT83 peptide to CD4(+) T cells. These results indicated that rMPT83 is a TLR2 agonist that induces the production of cytokines by macrophages and upregulates macrophage function.  相似文献   

10.
11.
Oxidative burst and cytokines synthesis by macrophages is a crucial point for successful pathogen defense. However, macrophage cell lines commonly used in inflammatory research differ in their responses to external stimuli. Thus, there is the necessity to carefully characterize the cells before experimental usage. In this study we investigated the applicability of two widely-used macrophage cell lines, RAW264.7 and P-388D1, for studying oxidative burst and cytokine synthesis. Cells were tested for NADPH oxidase activity, iNOS-mRNA levels, and the release of NO, TNF-α, IL-6 and IL-10. Stimulation of RAW264.7 triggered oxidative burst as well as synthesis of TNF-α, IL-6 and IL-10. In contrast, following stimulation P-388D1 produced TNF-α and IL-6 only. Our findings confirm the relevance of cell line selection for reliability of in vitro-experiments. Moreover, the results approve RAW264.7 cells to be a suitable model to investigate the modulation capability of macrophages e.g. in context of fatty acid supplementation.  相似文献   

12.
Clodronate belongs to the family of bisphosphonates, which are synthetic analogues of pyrophosphate. Bisphosphonates are widely used in the treatment of metabolic bone diseases. Some bisphosphonates, including clodronate, can be metabolized in cells into non-hydrolysable nucleotide analogues. In this paper, we describe a new method for extraction and quantitation of the clodronate metabolite in cell lysates by using ion-pairing HPLC method that is compatible with negative ion electrospray ionization mass spectrometry (ESI-MS). The method was used for detection of the metabolite of clodronate in extracts from RAW 264 macrophage cells after treatment with clodronate.  相似文献   

13.
Heiner Frost 《Biotherapy》1992,4(3):199-204
MTP-PE in liposomes is a BRM which can be given relatively safely to patients with cancer. The maximum tolerated dose appears to be higher than the optimal dose inducing immunomodulatory effects such as cytokine induction and monocyte/macrophage activation. The most consistently induced cytokines measured in the plasma of patients a few hours after MTP-PE are TNF and IL-6. Indirect evidence supports the assumption that increased levels of TNF and IL-6 are signs of macrophage activation occurringin situ in tissues taking up liposomal MTP-PE shortly after injection. These tissues are mainly lungs, liver and spleen, as shown in 4 patients injected with radiolabelled liposomes containing MTP-PE. Assuming that activated monocytes and macrophages cannot eliminate gross tumor load, the main targets for MTP-PE are micrometastases after removal of the primary tumor. Thus, adjuvant treatment using liposomal MTP-PE in combination with chemotherapy is a major goal for the future.  相似文献   

14.
15.
16.
17.
The present study is supported by our previous findings suggesting that calcium fructoborate (CF) has anti-inflammatory and antioxidant properties. Thus, we investigated the effects of CF on a model for studying inflammatory disorders in vitro represented by lipopolysaccharide (LPS)-stimulated murine macrophage RAW 264.7 cells. This investigation was performed by analyzing the levels of some mediators released during the inflammatory process: cytokines such as tumor necrosis factor-α (TNF-α), interleukins IL-1β and IL-6 as well as cyclooxygenase-2 (COX-2), the main enzyme responsible for endotoxin/LPS-induced prostaglandin synthesis by macrophages. We also measured production of nitric oxide (NO) that plays an important role in the cytotoxicity activity of macrophages towards microbial pathogens. After CF treatment of LPS-stimulated macrophages we found an up-regulation of TNF-α protein level in culture medium, no significant changes in the level of COX-2 protein expression and a decrease in NO production as well as in IL-1β and IL-6 release. Collectively, this series of experiments indicate that CF affect macrophage production of inflammatory mediators. However, further research is required in order to establish whether CF treatment can be beneficial in suppression of pro-inflammatory cytokine production and against progression of endotoxin-related diseases.  相似文献   

18.
The focus of this study was to clarify the relation between the nitric oxide (NO) production and cytokine expression including tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6), and also investigated the effect of COS on LPS stimuli from RAW 264.7 cell. The lipopolysaccharide (LPS) of Gram-negative bacteria induces the expression of cytokines and potent inducers of inflammatory cytokines such as TNF-alpha and IL-6. In this experiment, upon stimulation with increasing concentrations of chitosan, the LPS-stimulated TNF-alpha and IL-6 secretion was significantly recovered within the incubation media of RAW 264.7 cells. Consistently, RT-PCR with mRNA and Western blot with anti-cytokine antiserum including TNF-alpha and IL-6 showed that the amount of TNF-alpha and IL-6 secretion in the incubation media recovered with the concentration of chitosan. The LPS-stimulated NO secretion was significantly recovered within the 6h and 12h incubation media of RAW 264.7 cells, too. The recovery effect of chitosan on IL-6 and NO secretion may be induced via the stimulus of TNF-alpha in RAW 264.7 cell. These results once again suggest that chitosan oligosaccharide may have the anti-inflammatory effect via the stimulus of TNF-alpha in the LPS-stimulated inflammation in RAW 264.7 cells.  相似文献   

19.
Microglia, macrophage-like cells in the CNS, are multifunctional cells; they play an important role in removal of dead cells or their remnants by phagocytosis in the CNS degeneration and are one of important cells in the CNS cytokine network to produce and respond to a variety of cytokines. The functions of microglia are regulated by inhibitory cytokines. We have reported the expression of interleukin (IL)-10, one of the inhibitory cytokines, and its receptor in mouse microglia; therefore, IL-10 may affect microglial functions. In this study, we investigated the effects of IL-10 on purified microglia in culture. IL-10 inhibited lipopolysaccharide-induced IL-1beta and tumor necrosis factor-alpha production, lysosomal enzyme activity, and superoxide anion production in a dose-dependent manner, but did not affect granulocyte/ macrophage colony-stimulating factor-dependent proliferation of microglia. IL-10 also decreased the expression of both IL-6 receptor and lipopolysaccharide-induced IL-2 receptor but not IL-4 receptor on microglia as measured by flow cytometric analysis with an indirect immunofluorescence technique. IL-10 also decreased mRNA expression of IL-2 and IL-6 cytokine receptors. These results suggest that IL-10 is a unique and potent inhibitory factor in the CNS cytokine network involved in decreasing the expression of cytokine receptors as well as cytokine production by microglia.  相似文献   

20.
确定广叶绣球菌β-D-葡聚糖对巨噬细胞RAW264.7的免疫调节作用受体,探索广叶绣球菌β-D-葡聚糖的免疫调节机制。采用MTT法测定不同浓度广叶绣球菌β-D-葡聚糖对巨噬细胞RAW264.7增殖活力的影响,筛选出促进巨噬细胞增殖能力最强的浓度。用筛选出的β-D-葡聚糖浓度作用巨噬细胞RAW264.7;TLR4抗体和TLR2抗体分别作用巨噬细胞RAW264.7 1h,再用含有β-D-葡聚糖的细胞培养液培养。收集细胞培养上清和细胞,检测细胞培养上清中NO、IL-6、TNF-α、IFN-β的生成量;提取细胞内总RNA,采用RT-PCR测定巨噬细胞TLR4 mRNA表达量;提取巨噬细胞总蛋白,采用蛋白免疫印迹western blot测定TLR4的蛋白表达。广叶绣球菌β-D-葡聚糖能够促进巨噬细胞RAW264.7增殖,增加NO、IL-6、TNF-α、IFN-β的生成量,提高TLR4 mRNA表达和蛋白表达,差异极显著(P<0.01)。TLR4抗体作用细胞后,NO、IL-6、TNF-α、IFN-β的生成量明显下降,差异极显著(P<0.01)。TLR2抗体作用细胞后,NO、IL-6、TNF-α、IFN-β的生成量下降,但差异不显著。广叶绣球菌β-D-葡聚糖可以通过细胞表面受体TLR4激活信号转导通路,增强下游细胞因子的释放,从而调节巨噬细胞RAW264.7的免疫功能。TLR2可能不是广叶绣球菌β-D-葡聚糖的免疫受体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号